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over the paths of the oscillator can be performed when calculating 
the transition amplitude of the system from the initial time 0 to the 
final time T. With x(O) = x and x(T) = x', Feynman calls the 
function so obtained G-y(x, x'; T), obtaining finally the formula for 
the transition amplitude 

(xrlll'l/Jo)s = j Xr(Qm, x)ekSo[ .. Q; .. lG-y(x, x'; T)'l/Jo(Q0 , x') 

x dxdx1 -'-y19_g_d_Qm_·_·_ ·yl9'-g_d_Q_o 
Nm···Nl 

where the Q's are the coordinates of the system other than the 
oscillator. 

By using the last expression in the problem of particles interacting 
through an intermediate oscillator having x(O) = o: and x(T) = 

(3, Feynman shows that the expected value of a functional of the 
coordinates of the particles alone (such as a transition a!llplitude) can 
be obtained with a certain action that does not invqlve the oscillator 
coordinates, but only the constants o: and (3. 16 This eliminates the 
oscillator from the dynamics of the problem. Various other initial 
and/or final conditions on the oscillator are shown to lead to a similar 
result. A brief section labeled "Conclusion" completes the thesis. 
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April 2005 

The editor ( LMB) thanks Professor David Kiang for his invaluable 
assistance in copy-editing the Tetyped manuscript and checking the 
equations. 

16 
In the abstract at the end of the thesis this conclusion concerning the interaction of 

two systems is summarized as follows: "It is shown that in quantum mechanics, just as 
in classical mechanics, under certain circumstances the oscillator can be completely elim
Inated, its place being taken by a direct, but, in general, not instantaneous, interaction 
lwt.woen the two systems." 

THE PRINCIPLE OF LEAST ACTION IN 
QUANTUM MECHANICS 

RICHARD P. FEYNMAN 

Abstract 

A generalization of quantum mechanics is given in which the cen
tral mathematical concept is the analogue of the action in classical 
mechanics. It is therefore applicable to mechanical systems whose 
equations of motion cannot be put into Hamiltonian form. It is 
only required that some form of least action principle be available. 

It is shown that if the action is the time integral of a function 
of velocity and position (that is, if a Lagrangian exists), the gener
alization reduces to the usual form of quantum mechanics. In the 
classical limit, the quantum equations go over into the correspond
ing classical ones, with the same action function. 

As a special problem, because of its application to electrody
namics, and because the results serve as a confirmation of the pro
posed generalization, the interaction of two systems through the 
agency of an intermediate harmonic oscillator is discussed in de
tail. It is shown that in quantum mechanics, just as in classical 
mechanics, under certain circumstances the oscillator can be com
pletely eliminated, its place being taken by a direct, but, in general, 
not instantaneous, interaction between the two systems. 

The work is non-relativistic throughout. 

I. Introduction 

Planck's discovery in 1900 of the quantum properties of light led to 

an enormously deeper understanding of the attributes and behaviour 

of matter, through the advent of the methods of quantum mechanics. 

When, however, these same methods are turned to the problem of 

light and the electromagnetic field great difficulties arise which have 

not been surmounted satisfactorily, so that Planck's observations still 
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It has been the purpose of this introduction to indicate the motiva
tion for the problems which are discussed herein. It is to be empha
sized again that the work described here is complete in itself without 
regard to its application to electrodynamics, and it is this circum
stance which makes it appear advisable to publish these results as an 

independent paper. One should therefore take the viewpoint that the 
present paper is concerned with the problem of finding a quantum 

mechanical description applicable to systems which in their classi
cal analogue are expressible by a principle of least action, and not 
necessarily by Hamiltonian equations of motion. 

The thesis is divided into two main parts. The first deals with the 
properties of classical systems satisfying a principle of least action, 
while the second part contains the method of quantum mechanical 
description applicable to these systems. In the first part are also 
included some mathematical remarks about functionals. All of the 

analysis will apply to non-relativistic systems. The generalization to 
the relativistic case is not at present known. 

II. Least Action in Classical Mechanics 

1. The Concept of a Functional 

The mathematical concept of a functional will play a rather predom
inant role in what is to follow so that it seems advisable to begin 
at once by describing a few of the properties of functionals and the 
notation used in this paper in connection with them. No attempt is 
made at mathematical rigor. 

To say F is a functional of the function q(o-) means that F is a 
number whose value depends on the form of the function q( o) (where 
o is just a parameter used to specify the form of q( o)). Thus, 

F = 1: q(o) 2e-a
2 
do (1) 

is a functional of q(o) since it associates with every choice of the 

function q( o) a number, namely the integral. Also, the area under 
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a curve is a functional of the function representing the curve, since 

to each such function a number, the area is associated. The expected 
value of the energy in quantum mechanics is a functional of the wave 
function. Again, 

F = q(O) (2) 

is a functional, which is especially simple because its value depends 

only on the value of the function q(o) at the one point o = 0. 
We shall write, ifF is a functional of q(o), F[q(o)]. A functional 

may have its argument more than one function, or functions of more 
than one parameter, as 

F[x(t,s), y(t,s)] = 1:1_: x(t,s)y(t,s)sinw(t-s)dtds. 

A functional F[q(o)] may be looked upon as a function of an 
infinite number of variables, the variables being the value of the 
function q( o) at each point o. If the interval of the range of o is 
divided up into a large number of points oi, and the value of the 
function at these points is q(oi) = qi, say, then approximately our 
functional may be written as a function of the variables qi. Thus, in 
the case of equation (1) we could write, approximately, 

00 

F(· · · qi · · ·) = L q[e-ar (oi+l- oi). 
i=-oo 

We may define a process analogous to differentiation for our func
tionals. Suppose the function q( o) is altered slightly to q( o) + >.( o) 
by the addition of a small function >.(o). From our approximate 
viewpoint we can say that each of the variables is changed from qi 
to qi + Ai. The function is thereby changed by an amount 

"""' 8F( .. · qi · .. ) 
L.....,; a >.i. 

i qi 

In the case of a continuous number of variables, the sum becomes 
an integral and we may write, to the first order in >., 

F[q(o) + >.(o)] - F[q(o)] = J K(t)>.(t)dt, (3) 
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where K(t) depends on F, and is what we shall call the functional 
derivative of F with respect to q at t, and shall srmbolize, with 
Eddington,5 by 8~~~WJ. It is not simply BF(a~:;··· as this is in 

general infinitesimal, but is rather the sum of these g~ over a short 
range of i, say from i + k to i - k, divided by the interval of the 
parameter, (Ji+k- (Ji-k· 

Thus we write, 

F[q((J) +A((]")] = F[q((J")] + J <5~~~~~)] A(t)dt 

+ higher order terms in A . ( 4) 

For example, in equation (1) if we substitute q +A for q, we obtain 

F[q +A]= /[q((J") 2 + 2q((J)A((J) + A((J") 2]e-a2 
d(J 

= J q((J) 2e-a
2 
d(J + 2 J q((J)A((J)e-a

2 
d(J 

+ higher terms in A . 

Therefore, in this case, we have ~:cW = 2q(t)e-t
2

• In a similar way, if 

F[q((J")] = q(O), then 8~[t) = 5(t), where 5(t) is Dirac's delta symbol, 

defined by J 5(t)f(t)dt = f(O) for any continuous function f. 
The function q( (]") for which 8~[t) is zero for all t is that function 

for which F is an extremum. For example, in classical mechanics the 
action, 

Sli' = J L(q((J), q((J))d(J (5) 

is a functional of q((J). Its functional derivative is, 

5Sli' _ _ !!:._ { 8L(q(t), q(t))} + 8L(q(t), q(t)) 
5q(t) - dt 8q 8q . (6) 

If Jl1 is an extremum the right hand side is zero. 

a A. S. Eddington, "The Mathematical Theory of Relativity" (1923) p. 139. 
Editor's not.n: We have changed Eddington's symbol for the functional derivative to that 
now commonly in use. 
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2. The Principle of Least Action 

F~E _most mechanical systems it is possible to fir1d a functional, ~, 
called the action, which assigns a number to each possible mechanical 

path, Ql ((]"), q2((]") ... QN((J), (we suppose N degrees of freedom, each 
with a coordinate Qn ( (]"), a function of a parameter (time) (]") in such · 

--- .-1 
~~~:tnner t~~! this number is an extremum for an actual path q( (]") 
which could arise in accordance with the laws of motion. Since this 
extremum often is a minimum this is called the principle of least 

action. It is often convenient to use the principle itself, rather than 
the Newtonian equations of motion as the fundamental mechanical 
law. The form of the functional Sli'[ql((J") ... QN((J)] depends on the 

mechanical problem in question. 
According to the principle of least action, then, if 

Sli'[ql((J") ... QN((J)] is the action functional, the equations of motion 

are N in number and are given by, 

8Sli' bsd bsd 
8q1 (t) = O, bq2(t) = O, ... ' bqN(t) = O (7) 

(We shall often simply write 8~ft) = 0, as if there were only one 
variable). That is to say if all the derivatives of sd, with respect to 
Qn(t), computed for the functions ifm((J) are zero for all t and all n, 
then ifm((J") describes a possible mechanical motion for the systems. 

We have given an example, in equation (5), for the usual one 

dimensional problem when the action is the time integral of a La
grangian (a function of position and velocity, only). As another ex

ample consider an action function arising in connection with the 

theory of action at a distance: 

Sli' = /_: { m(x~t))
2 

- V(x(t)) + k 2x(t)x(t +To)} dt. (8) 

It is approximately the action for a particle in a poten~ial yr(x), and 
,--··-~--- ---< -w••~- ••··~-- -•· • -~ 

interacting with itself in a distant mirror by means Q( .~:etarded and - ,. _ _, __ ._ .. ·- ... ~- --- -~· --- . ' 

advanced waves. The time it takes for light to reach the mirror from 
the particle is assumed constant, and equal to To/2. The quantity 

.::'/ -
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k2 depends on the charge on the particle and its distance from the 

mirror. If we vary x(t) by a small amount, .X(t), the consequent 
variation in .szl is, 

6.szl = 1: {mx(t).X(t)- V'(x(t)).X(t) + k2 .X(t)x(t + T0 ) 

+ k2 .X(t + T0 )x(t)}dt 

= 1: { -mx(t)- V'(x(t))- k2x(t +To) 

- k2x(t- T0 )}.X(t)dt, by integrating 
by part 

so that, according to our definition (4), we may write, 

6.szl 
Jx(t) = -mx(t)- V'(x(t))- k2x(t + T0 )- k2x(t- To). (9) 

The equation of motion of this system is obtained, according to (7) 
by setting 8~ft) equal to zero. ~11 be seei1 that the force acti?g at 
time t depends on the motion of the particle at other time than t. 
The equations of motion cp,gnot be described directly in Hamilt~n 

•1··-?'jl<·~ -~~---r 

form. 

3. Conservation of Energy. Constants of the Motion 6 

The problem we shall study in this section is that of determining to 

what extent the concepts of conservation of energy, momentum, etc., 
may be carried over to mechanical problems with a general form 
of action function. The usual principle of conservation of energy 
asserts that there is a function of positions at the time t, say, and 
of velocities of the particles whose value, for the actual motion of 
the particles, does not change with time. In our more general case 
however, the forces do not involve the positions of the particles only 

at one particular time, but usually a calculation of the forces requires 

0 Thla aec:tlon Ia not 111entlal to an underatandln1 of the remainder of the paper. 
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a knowledge of the paths of the particles over some considerable 
range of time (see for example, Eq. (9) ). It is not possible in this 

case generally to find a constant of the motion which only involves 
the positions and velocities at one time. 

For example, in the theory of action at a distance, the kinetic 

~the p~ticl~_not conserved. Topfi!!~l_~conserved '@_antity 
one must add a term correspondigg to the "energy in the field". The ---·-------------
field, however, is a functional of the motion of the particles, so that 
it is possible to express this "field energy" in terms of the motion of 
the particles. For our simple example (8), account of the equations 

of motion (9), the quantity, 

E(t) = m(x(t))
2 

+ V(x(t))- k2 1t+To x(cr- To)x(cr)dcr 
2 t 

+ k2x(t)x(t +To), (10) 

has, indeed, a zero derivative with respect to time. The first two 
terms represent the ordinary energy of the particles. The additional 
terms, representing the energy of interaction with the mirror (or 
rather, with itself) require a knowledge of the motion of the particle 

from the timet- To tot+ To. 
Can we really talk about conservation, when the quantity con

served depends on the path of the particles over considerable ranges 
of time? If the force acting on a particle be F(t) say, so that the 

particle satisfies the equation of motion mx(t) = F(t), then it is 
perfectly clear that the integral, 

I(t) = 1too [mx(t) - F(t)]x(t)dt (11) 

has zero derivative with respect to t, when the path of the particle 
satisfies the equation of motion. Many such quantities having the 
same properties could easily be devised. We should not be inclined 
to say (11) actually represents a quantity of interest, in spite of its 

constancy. 
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