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An attempt to a β rays theory

Nota di Enrico Fermi

(ricevuto 1933)

Summary. — A quantitative theory of β-rays emission is proposed in which
≪neutrino≫ is admitted; electrons and neutrinos emission from a nucleus at a β
decay is treated with a procedure similar to the one followed for radiation theory
to describe a light quantum emission by an excited atom. Formulae are derived for
the mean life and for the distribution of the β-rays continuum spectrum, which are
compared with experimental data.

Basic assumptions of the theory (1)

1. –

In attempting to construct a theory of nuclear electrons and of the β rays emission, two
well known difficulties are encountered. The first is that the primary β rays are emitted
by the nuclei with a continuous velocity distribution. If the energy conservation principle
is not abandoned, we must therefore admit that a fraction of the energy made available
in the β decay escapes our present observation possibilities. According to a proposal by
Pauli existence can be supposed, for instance, of a new particle, the so called ≪neutrino
≫. with a zero electric charge and a mass of the order of magnitude of the electron mass
or less. One admits, furthermore, that in every β process are simultaneously emitted an
electron, observed as a β ray, and a neutrino escaping observation and carrying away
part of the energy.

A second difficulty for the nuclear electrons theory arises because the current rela-
tivistic theories of light particles (electrons or neutrinos) do not satisfactorily deal with
the possibility that such particles could be bound into orbits of nuclear size.

As a consequence it seems more appropriate to admit with Heisenberg(2) that all
nuclei only consist of heavy particles, protons and neutrons. Nevertheless to understand
the possibility of β rays emission, we shall attempt the construction of a theory for the
emission of light particles from a nucleus in analogy with the emission theory of a light

(1) Cfr. preliminary note in ≪La Ricerca Scientifica ≫, 2, n. 12, 1933.
(2) W.Heinsenberg, ≪Zs. für Phys.≫, 77,1, 1932; E. Majorana, ≪Zs. für Phys.≫,
82,137, 1933.
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quantum by an excited atom in the ordinary radiation process. In radiation theory the
total number of light quanta is not constant; the quanta are created at the moment an
excited atom emits them, while they disappear when absorbed. In analogy we shall try
to build the theory of the β rays upon the following hypotheses:

• a) The total number of electrons and neutrinos is not necessarily constant.

• b) Electrons (or neutrinos) can be created or destroyed. Such a possibility does
not have any analogy with the possibility of creation or annihilation of an electron-
positron pair; if, indeed, a positron is interpreted as a Dirac ≪hole≫, we can
simply view the latter process as a quantum transition of an electron from a state of
negative energy to one with positive energy, with conservation of the total (infinite)
number of electrons.

• b) Heavy particles, neutron and proton, can be considered, according to Heisen-

berg, as two different quantum states of a heavy particle. We shall formulate this
by introducing an internal coordinate ρ for the heavy particle, which can take only
two values: ρ = +1, if the particle is a neutron; ρ = −1, if the particle is a proton.

• c) The Hamiltonian of the entire system, consisting in heavy and light particles,
has to be chosen so that every transition of a proton into a neutron occurs together
with the creation of an electron and a neutrino. Notice that in this way electric
charge conservation is guaranteed.

The operators of the theory

2. –

A mathematical formalism allowing the construction of a theory in agreement with
the above items can be constructed most easily via Dirac-Jordan-Klein’s method(3)
known as ≪ second quantization≫. We shall therefore consider the probability ampli-
tudes ψ and ϕ of electrons and neutrinos, in ordinary space, as well as their complex
conjugates ψ∗ and ϕ∗ as operators; while for the heavy particles we shall employ the
usual representation in configuration space, in which, of course, also ρ will have to be
considered among the coordinates.

Introduce first two operatorsQ and Q∗ acting over functions of the two values variable
ρ as the linear substitutions

Q =

(
0 1
0 0

)
; Q∗ =

(
0 0
1 0

)
(1)

It is immediately recognized that Q describes transitions from proton to neutron, and
Q∗ the opposite transitions from neutron to proton.

As it is known, the meaning of the probability amplitudes ψ and ϕ interpreted as
operators is the following. Let

ψ1, ψ2, . . . , ψn, . . .

(3) Cfr. for instance P. Jordan and O. Klein, ≪ZS. für Phys.≫, 45, 751. 1927; W.
Heisenberg, ≪Ann. d. Phys.≫, 10, 888, 1931.
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be a system of individual quantum states for the electrons. Let then

ψ =
∑

s

ψsas, ψ∗ =
∑

s

ψ∗
sa

∗
s,(2)

The amplitudes as and their conjugated a∗s are operators acting on functions of the
occupation numbers N1, N2, . . . of the individual states. If Pauli’s principle holds each
of the Ns can only take values 0, 1; and the operators as, a

∗
s are defined as follows:

asΨ(N1, N2, . . . , Ns, . . .) =(−1)N1+N2+...+Ns−1(1−Ns)Ψ(N1, N2, . . . , 1−Ns, . . .)

a∗sΨ(N1, N2, . . . , Ns, . . .) =(−1)N1+N2+...+Ns−1NsΨ(N1, N2, . . . , 1−Ns, . . .)
(3)

The operator a∗s induces creation of an electron in the quantum state s while the operator
as induces its destruction.

Correspondingly to (2) we shall set, for the neutrinos:

ϕ =
∑

σ

ϕσbσ; ϕ∗ =
∑

σ

ϕ∗
σb

∗
σ;(4)

The complex conjugated bσ and b∗σ operate on the functions of the occupation numbers
M1,M2, . . . ,Mσ, . . . of the individual quantum states ϕ1, ϕ2, . . . , ϕσ, . . . of neutrinos.
Admitting that also such particles follow Pauli’s principle, the numbers Mσ can take
only the two values 0, 1; and it is

bσΨ(M1,M2, . . . ,Mσ, ..) = (−1)M1+M2+...+Mσ−1(1−Mσ)Ψ(M1,M2, . . . , 1−Mσ, ..)

b∗σΨ(M1,M2, . . . ,Mσ, . . .) = (−1)M1+M2+...+Mσ−1MσΨ(M1,M2, . . . , 1−Mσ, . . .)
(5)

The operators bσ and b∗σ determine respectively disappearance and creation of a neu-
trino in the state σ.

The Hamiltonian function

3. –

Energy of the total system, consisting in the heavy and light particles, is the sum
of the energy Hheavy of heavy particles + the energy Hlight of the light particles + the
interaction energy between the light and heavy particles.

Restricting, for simplicity, consideration to only one heavy particle, we shall write the
first term in the form

Hheavy =
1 + ρ

2
N +

1− ρ

2
P(6)

where N and P are the operators representing the energy of the neutron and the proton.
Notice indeed that for ρ = +1 (neutron) Eq.(6) reduces to N ; while for ρ = −1 (proton)
it reduces to P .
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To write the energy Hlight in the simplest way, we shall take stationary states for the
quantum states ψs, ϕs of electrons and neutrinos. For the electrons we shall take the
eigenfunctions in the coulumbian field of the nucleus (suitably screened to take into ac-
count the action of the atomic electrons); for neutrinos we shall simply take De Broglie

plane waves, because forces possibly acting on neutrinos are certainly extremely weak.
Let H1, H2, . . . , Hs, . . . and K− 1,K2, . . . ,Kσ, . . . the energies of the stationary states of
the electrons and of the neutrinos: we shall then have

Hlight =
∑

s

HsNs +
∑

σ

KσMσ(7)

We are left with writing the interaction energy. It consists first in the coulombian
energy between proton and electron; in the case of heavy nuclei, however, the attraction
exercised by a single proton is not very important(4) and in any event it does not con-
tribute to the β decay process. To avoid complicating needlessly the matter we shall not
take this term into account. We must instead add to the Hamiltonian a term to satisfy
condition c) of Sec.1.

A term that necessarily couples the transformation of a proton into a neutron with
an electron and neutrino creation has, according to the results of Sec.2, the form

Q∗a∗sb
∗
σ(8)

while the conjugate operator
(8’) Qasbσ
couples the inverse processes (transmutation of a proton into a neutron and disappearance
of an electron and a neutrino).

A term satisfying condition c) will then have the form

H = Q
∑

s,σ

csσasbσ +Q∗
∑

s,σ

c∗sσa
∗
sb

∗
σ(9)

where csσ and c∗sσ are quantities that can depend upon coordinates, momenta, etc... of
the heavy particle.

Further determination of H cannot be done other than by a maximum simplicity
criterion; naturally, however, the possibilities of choices of H are constrained by the
need that H be invariant under change of coordinates and that it should satisfy linear
momentum conservation.

If at first we neglect relativistic effects the simplest choice for Eq.(9) is the following

H = g [Qψ(x)ϕ(x) +Q∗ [ψ∗(x)ϕ∗(x)](10)

Eq.(10) by no means represents the only possible choice of H; equally admissible
would be any scalar expression like like

L(p)ψ(x)M(p)ϕ(x)N(p) + c.c.

(4) Coulombian attraction due to the many other protons must, naturally, be taken into account
as a static field.
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where L(p),M(p), N(p) are suitable functions of the heavy particle. Since, on the other
hand, consequences of Eq.(10) have shown to be in agreement with experimental data it
seems useless, for the time being, to have recourse to more complicated expressions.

It is however essential to extend Eq.(10) to treat relativistically at least light particles.
Of course, even such a generalization does not seem possible without some degree of
arbitrariness. The most general solution to the problem appears to be the following:
relativistically, instead of ψ and ϕ, there are two four-ples ψ1, ψ2, ψ3, ψ4 and ϕ1, ϕ2, ϕ3, ϕ4

ofDirac’s functions. Consider the 16 bilinear independent combinations of ψ1, ψ2, ψ3, ψ4

and ϕ1, ϕ2, ϕ3, ϕ4. When the system of reference undergoes a Lorentz transformation,
the 16 bilinear combinations undergo a linear substitution, which yields a representation
of the Lorentz group. In particular the four bilinear combinations

A0 =− ψ1ϕ2 + ψ2ϕ1 + ψ3ϕ4 − ψ4ϕ3

A1 = ψ1ϕ3 − ψ2ϕ4 − ψ3ϕ1 + ψ4ϕ2

A2 = iψ1ϕ3 + iψ2ϕ4 − iψ3ϕ1 − iψ4ϕ2

A3 =− ψ1ϕ4 − ψ2ϕ3 + ψ3ϕ2 + ψ4ϕ1

(11)

are transformed as the components of a quadrivector, i.e. as the components of the elec-
tromagnetic quadripotential.(5) It is therefore natural to introduce in the Hamiltonian
of the heavy particle the four quantities

g (QAi +Q∗A∗
i )

as in the corresponding quadripotential. Here is met a difficulty depending on the lack
of knowledge of a relativistic wave equation for the heavy particles. Nevertheless, if the
heavy particle speed is small compared to c, it will be possible to consider only the term
corresponding to eV (V being the scalar potential) and write

H =g
[
Q(−ψ1ϕ2 + ψ2ϕ1 + ψ3ϕ4 − ψ4ϕ3)+

+Q∗(−ψ∗
1ϕ

∗
2 + ψ∗

2ϕ
∗
1 + ψ∗

3ϕ
∗
4 − ψ∗

4ϕ
∗
3)
](12)

To the latter term others must be added of the order v/c. However, for the time being,

(5) NdT: This means using Aµ = ψT gµϕ with

g0 =
(
−iσy 0
0 iσy

)
, g1 =

(
0 σz

−σz 0

)
, g2 =

(
0 i
−i 0

)
, g3 =

(
0 −σx

σx 0

)

hence g0 ≡ δ, see Eq.(14), and gj = −δ

(
0 σj

σj 0

)
, j = 1, 2, 3, with the usual Pauli matrices σj .

The matrices are determined by requiring that the spinor trasformation ϕ′(x) = S(Λ)ϕ(Λ−1x)
defines a covariant vector: i.e. ST (Λ)gνS(Λ) = Λ µ

ν gµ for any Lorentz tranformation Λ (therefore
the gµ are not the usual γ-matrices). This is obtained from the infinitesimal generator of
Lorentz transformations T =

∑
µ,ν

1

8
λµν(γµγν − γνγµ) ≡

∑
µ<ν

1

2
λµνγµγν (see S. Schweber, An

introduction to relativistic quantum field theory, Row-Peterson &Co., 1961, p.77, Eq.(78)), with
λµν = −λνµ by successively choosing λµν = 0 except λ0j = −λj0 = 1, j = 1, 2, 3: but I find
that g2 should have the opposite sign; however this changes the r.h.s. of A2 in Eq.(11) which,
of course, is never used in the paper, see Eq.(12).
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we shall neglect such terms, because the neutrons and protons speeds in the nuclei are
usually small compared to c (Cfr. §9).

In a symbolic matrix representation Eq.(12) can be written

H = g [Qψ̃∗ δ ϕ+Q∗ψ̃δϕ∗](13)

where ψ and ϕ are understood to be written as single column matrices, and the tilde
sign transforms a matrix into the transposed conjugated; furthermore it is

δ =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


(14)

With the above notations one finds, comparing Eq.(12) and (9)

csσ = gψ̃∗
sδϕσ; c∗sσ = gψ̃sδϕ

∗
σ(15)

where ψs and ϕσ represent the normalized eigenfunctions with four components of the
electron states s and of the neutrino states σ, considered as functions of the position
(x, y, z) occupied by the heavy particle.

The perturbation matrix

4. –

With the just established Hamiltonian it is possible to develop the β decay theory in
complete analogy with radiation theory. In the latter, the Hamilton function consists,
as is known, of the sum: atom Energy +Radiation field Energy + Interaction between
atom and radiation; the last term is considered as a perturbation of the other two.
Analogously we shall take as unperturbed Hamiltonian

Hheavy +Hlight.(16)

Perturbation is represented by the interaction term Eq,(13).
Quantum states of the unperturbed system can be enumerated as follows:

(ρ, n,N1, N2, . . . , Ns, . . . ,M1,M2, . . . ,Mσ, . . .)(17)

where the first number ρ assumes one of the values ±1, indicating whether the heavy
particle is a neutron or a proton. The second number indicates the neutron or the proton
quantum state. For ρ = +1 (neutron) let the corresponding eigenfunction be

un(x)(18)

while for ρ = −1 (proton) let the eigenfunction be

vn(x)(19)
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The remaining numbers N1, N2, . . . , Ns, . . . ,M1,M2, . . . ,Mσ, . . . can only take values 0, 1
and indicate which electron and neutrino states are occupied.

Examining the general form Eq.(9) of the perturbation energy, it is immediately
realized that it has non zero matrix elements only for transitions in which either a heavy
particle is changed from proton to neutron while at the same time an electron and a
neutrino are created, or viceversa.

Through Eqs. (1),(3),(5),(9),(18),(19) it is easily found that the corresponding matrix
element is

H
1n N1N2. . .0s. . .M1M2 . . .0σ. . .

−1mN1N2. . .1s. . .M1M2 . . .1σ. . .
= ±

∫
v∗mc

∗
sσundτ(20)

where the integration has to be extended to the whole configurations space of the heavy
particle (except over the coordinate ρ); the sign ± means more precisely

(−1)N1+N2+...+Ns−1+M1+M2+...+Mσ−1

and disappears from the calculations that will follow. To the opposite transition corre-
sponds a matrix element complex conjugate of Eq.(20).

Taking Eq.(15), Eq.(20) becomes

H
1n 0s0σ

−1m1s1σ
= ±g

∫
v∗munψ̃sδϕ

∗
σ dτ(21)

where, for brevity, we omitted writing in the r.h.s. all labels which remain unchanged.

Theory of β decays

5. –

A β decay is a process in which a nuclear neutron is transformed into a proton, while
at the same time, with the above described mechanism, an electron is emitted, which is
observed as a β particle, and a neutrino. To compute the probability of such a process we
shall admit that, at time t = 0, there is a neutron in a nuclear state with eigenfunction
un(x), and that furthermore the electronic state s and the neutrino state σ are not
occupied, i.e. Ns =Mσ = 0. At t = 0 it will therefore be possible to suppose equal to 1
the probability amplitude of the state (1, n, 0s, 0σ), i.e.

a1,n,0s,0σ = 1(22)

while initially the probability amplitude of the state (−1,m, 1s, 1σ), in which the neu-
tron is transformed into a proton with eigenfunction vm(x) emitting and electron and a
neutrino in the states s and σ vanishes.

Applying the usual formulae of perturbation theory we find, for a time short enough
so that Eq.(22) is still approximately valid,

a−1,m,1s,1σ = −
2πi

h
H

1 n 0s 0σ
−1 m 1s 1σ

e
2πi
h

(−W+Hs+Kσ)t(23)

where W indicates the energy difference between the neutron state and the proton state.



8 NOTA DI ENRICO FERMI

Integrating Eq.(23) we find (since for t = 0 it is a−1,m,1s,1σ = 0)

a−1,m,1s,1σ = −H
1n 0s0σ

−1m1s1σ
e

2πi
h

(−W+Hs+KG)t−1
−W+Hs+Kσ

(24)

The probability of the considered transition is then

|a−1,m,1s,1σ |
2 = 4

∣∣∣H 1n 0s0σ
−1m1s1σ

∣∣∣
2
sin2 πt

h
(−W+Hs+Kσ)

−W+Hs+Kσ
(25)

To compute the mean life of the neutron state un it is necessary to sum Eq.(25) over
all unoccupied electron and neutrino states. An important simplification of such sum
is obtained after remarking that the De Broglie wavelength for electron or neutrinos
with energies of a few million Volts is considerably larger than the nucleus dimensions.
It is therefore possible, at first approximation, to consider the eigenfunctions ψs and ϕσ

as constants within the nucleus size. Eq. (21) thus becomes

H
1n 0s0σ

−1m1s1σ
= ±g ψ̃s δ ϕ

∗
σ

∫
v∗mundτ(26)

where, here and in the following, ψs and ϕσ must be intended to be evaluated in the
nucleus (Cfr. §8). From Eq.(26) we deduce

∣∣∣H 1n 0s0σ
−1m1s1σ

∣∣∣
2

= g2
∣∣∣
∫
v∗mundτ

∣∣∣
2

ψ̃δϕ∗
σ ϕ̃

∗
σδψσ.(27)

The neutrino states σ are determined by their momentum pσ and by the spin direction.
If, for ease of normalization, quantization is performed inside a volume Ω, with dimen-
sions which will be eventually let to infinity, the normalized neutrino eigenfunctions are
Dirac’s plane waves with density Ω. Easy algebraic considerations allow us to perform
in Eq(26) the average with respect to all orientations of pσ and of the spin. (In so doing
only the positive energy states must be considered; the negative energy states must be
eliminated via an artifice similar to Dirac’s holes theory). One gets

∣∣∣H 1n 0s0σ
−1m1s1σ

∣∣∣
2

= g2

4Ω

∣∣∣
∫
v∗mundτ

∣∣∣
2(
ψ̃sψs −

µc2

Kσ
ψ̃s β ψs

)
(28)

where µ is the neutrino mass at rest and β id Dirac’s matrix




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


(29)

Remarking that the number of neutrino states with positive energy and momentum
between pσ and pσ + dpσ is 8πΩp2σdpσ/h

3 and that ∂Kσ/∂pσ = vσ, with vσ the neutrino
speed in the state σ and finally that Eq.(25) has a strong peak for the value pσ for which
there is no variation of the unperturbed energy, i.e. for which
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−W +Hs +Kσ = 0(30)

it is possible to perform in the usual way(6) the sum of Eq.(25) with respect to σ and to
find

t ·
8π2g2

h4

∣∣∣
∫
v∗mnundτ

∣∣∣
2 p2σ
vσ

(
ψ̃sψs −

µc2

Kσ
ψ̃sβψs

)
(31)

pσ being the neutrino momentum value for which Eq.(30 holds.

The elements that determine the transition probability

6. –

Eq.(31) gives the probability that within time t a β-decay occurs in which the electron
is emitted in the state s. As it should be, such probability is proportional to time (t has
been supposed small in comparison with the mean life); the coefficient of t gives the
transition probability for the considered process; it is

Ps =
8π3g2

h4

∣∣∣
∫
v∗mnundτ

∣∣∣
2 p2σ
vσ

(
ψ̃sψs −

µc2

Kσ
ψ̃sβψs

)
(32)

Remark that:
a) The free neutrino states have always Kσ ≥ µc2. It is therefore necessary, so that

Eq.(30) can possibly be satisfied, that

Hs ≤W − µc2(33)

Equality corresponds to the upper limit of the β-rays spectrum.
b) furthermore for the non occupied electronic states Hs ≥ mc2 and one finds, to

make the β decay possible, the following condition

W ≥ (m+ µ)c2(34)

Hence in the nucleus there has to be an occupied neutronic state higher enough above a
free protonic state in order that the β emission can occur.

c) According to Eq.(32) Ps depends on the eigenfunctions un and vm of the heavy
particle in the nucleus, through the matrix element

Q∗
mn =

∫
v∗mu

∗
ndτ(35)

(6) For a description of the methods that are used to perform such sums cfr. and review article
about the radiation theory. For instance E. Fermi, ≪Rev. of Mod. Phys≫, 4, 87, 1932.
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Such matrix element plays, in the β–rays theory, a role analogous to the one of the
electric moment matrix element in radiation theory. The matrix element in Eq.(35) has
normally size of order 1; however it often happens that, due to particular symmetries
of the eigenfunctions un and v∗m, Q∗

mn vanishes exactly. In such cases we shall call the
β-transitions forbidden. But one should not expect that the forbidden transitions are
really impossible, because Eq.(32) is only an approximate formula. We shall come back
on this point in Sec.9.

The neutrino mass

7. –

The transition probability Eq.(32) determines, among other properties, the form of
the β rays continuum spectrum. We shall discuss here how the form of such spectrum
depends on the neutrino rest mass, so that this mass can be determined by comparison
with the experimentally observed form of the spectrum. The mass µ appears in Eq.(32)
in the factor p2σ/vσ in particular. The µ dependence of the form of the energy distribution
curve is specially strong near the β rays maximum energy E0. It is easily recognized that
the distribution curve for energies E near the maximum value E0, behaves, aside from a
E independent factor, as

p2σ
vσ

=
1

c2
(µc2 + E0 − E)

√
(E0 − E)2 + 2µc2(E0 − E)(36)

In Fig.1 the end of the distribution curve is represented for µ = 0, and for a small value
of µ or for a large one. The closer similarity with the experimental curves is achieved for
µ = 0. Therefore we reach the conclusion the the neutrino mass is zero or, in any case,
is small compared to the electron mass(7). In the following calculations we shall set, for
simplicity, µ = 0.

Then, taking also into account Eq.(30),

vσ = c; Kσ = cpσ; pσ =
Kσ

c
=
W −Hs

c
(37)

and inequalities eq.(33) and (34) become:

Hs ≤W ; W ≥ mc2(38)

Finally the transition probability Eq.(32) takes the form

Ps =
8π3g2

c3h4

∣∣∣
∫
v∗mundτ

∣∣∣
2

ψ̃sψs(W −Hs)
2.(39)

(7) In a recent note F. Perrin, ≪C.R.≫, 197, 1625, 1933, reaches via quantitative arguments
the same conclusion.
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Lifetime and form of the energy distribution curve
for allowed transitions.

8. –

From Eq.(39) it is possible to derive a formula expressing how many β transitions, in
which the β particle receives a momentum between mcη and mc(η + dη), take place per

unit time. For this purpose it is necessary to compute the sum of the values of ψ̃sψs in
the nucleus, over all states (in the continuum) which are within the indicated momentum
interval. Note in this respect that the relativistic eigenfunctions

in Coulomb field for the states with j = 1
2 (

2s1/2 and 2p1/2) become infinite in the center.
On the other hand Coulomb’s law is not valid up to the center of the nucleus, but only up
to a distance from it larger than R, where R is the nuclear radius. A heuristic calculation
shows that, under plausible hypotheses on the behavior of the electric potential in the
nucleus interior, the value of ψ̃sψs in the center of the nucleus is very close to the value
that ψ̃sψs would take, in the case of Coulomb’s law, at distance R from the center.
Applying the known formulae(8) for the relativistic continuum spectrum eigenfunctions
in Coulomb’s field one finds via a somewhat lengthy, but without difficulties, calculations

∑

dη

ψ̃sψs =

dδ ·
32πm3c3

h3 [Γ(3 + 2S)]2

(4πmcR
h

)2S

η2+2Seπγ
√

1+η2

η

∣∣∣Γ(1 + S + iγ

√
1 + η2

η
)
∣∣∣
2

(40)

where we set

γ = Z/137; S =
√
1− γ2 − 1(41)

(8) R.H. Hulme, ≪Proc. Roy. Soc.≫, 188, 381, 1931.
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The transition probability in an electronic state with momentum in the interval mcdη
becomes therefore, see Eq.(39),

P (η)dη = dη · g2
256 π4

[Γ(3 + 2S)]2
m5c4

h7

(4πmcR
h

)2S∣∣∣
∫
v∗mun dτ

∣∣∣
2

η2+2S ·

· eπγ
√

+η2

η

∣∣∣Γ(1 + S + iγ

√
1 + η2

η
)
∣∣∣
2

(
√

1 + η20 −
√
1 + η2)2

(42)

where η0 represents the maximum momentum of the emitted β rays, measured in units
mc.

For the numerical evaluation of Eq.(42) let us consider the special value γ = 0.6,
which corresponds to Z = 82.2, because the atomic numbers of radioactive elements are
not far from this value. For γ = 0.6, from Eq.(41) we get S = −0.2. Furthermore we
find that for η < 10 we can set, with sufficient approximation,

η1.6e0.6π
√

1+η2

η

∣∣∣Γ(0.8 + 0.6i

√
1 + η2

η
)
∣∣∣
2

≃ 4.5η + 1.6η2(43)

Eq.(42) becomes, setting in it R = 9 · 10−13,

P (η)dη = 1.75 · 10 95g2
∣∣∣
∫
v∗mun dτ

∣∣∣
2

(η + 0.355η2)(
√

1 + η20 −
√
1 + η2)2(44)

The inverse of the mean life is found by integrating Eq.(44) between 0 and η = η0; one
finds

1

τ
= 1.75 · 10 95g2

∣∣∣
∫
v∗mun dτ

∣∣∣
2

F (η0)(45)

where we set

F (η0) =
2

3

√
1 + η20 −

2

3
+
η40
12

−
η20
3
+

+ 0.355
[
−
η0
4

−
η30
12

+
η50
30

+

√
1 + η20
4

log(η0 +
√
1 + η20)

](46)

For small values of the argument, F (η0) behaves as η
6
0/24: for larger arguments the

values of F are collected in the following table

Tabella I

η0 F (η0) η0 F (η0) η0 F (η0) η0 F (η0)
0 η60/24 2 1.2 4 29 6 185
1 0.03 3 7.5 5 80 7 380
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Forbidden transitions

9. –

Before comparing theory and experiments we still want to illustrate some properties
of the forbidden β–transitions.

As already mentioned, a transition is forbidden when the corresponding matrix el-
ement Eq.(35) vanishes. If the nucleus model for the individual protons and neutrons
quantum states represents a good approximation, the matrix element Q∗

mn vanishes, for
symmetry reasons, when it is not

i = i′(47)

i and i′ being the angular momentum, which we measure in units h/2π, of the neutronic
state un and the proton state vm. In the case in which the individual quantum states
are not a good approximation the selection rule Eq.(47) is replaced by the corresponding

I = I ′(48)

where I and I ′ are the nucleus angular momentum before and after the β decay.
The selection rules Eq.(47) and (48) are far less rigorous than the selection rules in

optics. Exceptions are possible particularly via the following processes:
a) Formula Eq.(26) has been obtained while neglecting the variations of ψs and ϕσ

within the nucleus extension. If instead such variations are taken into account it becomes
possible to obtain β transitions even when Q∗

mn vanishes. It is easily recognized that
the intensity of such transitions, in order of magnitude, has with respect to that of the
allowed transitions, a ratio (R/λ)2, λ being the De Broglie wavelength of the light
particles. Notice that, at equal neutrino and electron energy, the kinetic energy of the
first, when it is near the nucleus, is, because of the electrostatic attraction, much larger
and hence the largest effect is due to the variations of ψs. An evaluation of the order
of magnitude of the intensity of such forbidden processes shows that, at equal energy of
the emitted electrons, they must be about hundred times less intense than the normal
processes.

Besides the relatively small intensity, a characteristic feature of forbidden transitions
has to be looked in the different form of the curve of the β rays energy distribution,
which for the forbidden transitions, must yield a smaller number of particles with energy
lower than in the normal case.

b) A second possibility for the realization of β transitions forbidden by the selection
rule Eq.(48) depends on the feature, already remarked at the end of Sec. §3, that, when
the neutrons and protons speed is not negligible compared to the speed of light, we must
add to the interaction term Eq.(12) other terms of the order v/c. If, for instance, we
admitted also for the heavy particles a Dirac-like relativistic wave equation, we could
add to Eq.(12) terms like

g Q (αxA1 + αyA2 + αzA3) + c.c.(49)
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with αx, αy, αz being the usual Dirac matrices for the heavy particle and A1, A2, A3 the
spatial components of the four-vector defined by the Eq.(11).

A term like Eq.(49) allows also β transitions that do not satisfy the selection rule
Eq.(48), and their intensity is, compared to that of the normal processes, of the order of
magnitude (v/c)2, i.e. of about 1/100. Thus we find a second possibility of forbidden
transitions about 100 times less intense than the normal ones.

Comparison with experimental data

10. –

Eq.(45) establishes a relation between the maximum momentum η0 of the β rays
emitted by a substance and its mean lifetime. In such relation intervenes, indeed, an
unknown quantity, the integral

∫
v∗mun dτ(50)

and its evaluation requires knowledge of the nuclear eigenfunctions of the neutron and of
the proton. However in the allowed transitions case Eq.(50) is of the order of magnitude
of unity. Therefore we expect that the product

τ F (η0)(51)

has the same order of magnitude for all allowed transitions. For the forbidden transitions,
instead, the mean lifetime will be, as order of magnitude, one hundred times larger,
and correspondingly also the product Eq.(51) will be larger. In the following table are
collected the products τF (η0) for all substances that disintegrate emitting β rays for
which we have sufficiently exact data.

Table II

Element τ in hours η0 F (η0) τF (η0)
UX2 . . . 0.026 5.4 115 3.0
RaB . . . 0.64 2.04 1.34 0.9
ThB . . . 15.3 1.37 0.176 2.7
ThC′′ . . . 0.076 4.4 44 3.3
AcC′′ . . . 0.115 3.6 17.6 2.0
RaC . . . 0.47 7.07 398 190
RaE . . . 173 3.23 10.5 1800
ThC . . . 2.4 5.2 95 230

MsTh2 . . . 8.8 6.13 73 640

In the table are, without doubt, recognizable the two groups that we expected; on
the other hand such a partition in two groups of the elements that admit primary β rays
had been already empirically observed by Sargent(9). The values of η0 have been taken

(9) B.W. Sargent, ≪Proc. Roy. Soc.≫, 139, 659, 1933.
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from the quoted work of Sargent (for a comparison notice that: η0 = (Hρ)max/1700).
Besides the data reported in the table, Sargent gives the data for three other elements,
warning that they are not equally reliable as the others. They are: UX1 for which it is
τ = 830; η0 = 0.76; F (η0) = 0.0065; τ F (η0) = 5.4; hence this element seems to belong
to the first group. For AcB it is τ = 0.87; η0 = 1.24; F (η0) = 0.102; τ F (η0) = 0.09;
hence one finds a value for τ F (η0) about ten times smaller than the values of the first
group. Finally for RaD it is: τ = 320000; η0 = 0.38 (very uncertain); F (η0) = 0.00011;
τF (η0) = 35. This element is therefore to be located at about half way between the two
groups. I have been unable to find data about the other elements which emit primary β
rays, i.e. MsTh1, U Y , Ac, AcC, U Z , RaC′′.

All things considered from the above comparison it can be concluded that agreement
between theory and experiment is as good as it could have been expected.

The observed discrepancies for the elements on which there are uncertainties on the
experimental data, RaD and AcB, can be well explained partially by the lack of precise
measurements, partially also with the perfectly plausible variations of the matrix element
Eq.(50). We must further remark that most β decays come together with γ rays emissions,
indicating that most β processes may leave the proton in excited states, which again
provides a mechanism that can produce variations in the value of τ F (η0).

From the data of table II it is possible to deduce a value, although very rough, of the
constant g. For instance if we admit that when the matrix element Eq.(50) has value 1,
it is τF (η0) = 1hour = 3600sec, one finds from Eq.(45):

g = 4 · 10−50cm3 · erg

a value that, naturally, does not give anything more than the order of magnitude.

We now discuss the form of the distribution curve of the β rays speeds. In the case of
the allowed processes, the distribution curve, as a function of η (i.e. up to the factor 1700
of Hρ is drawn in Fig. 2, for various values of the maximum momentum η0. The curves
are sufficiently similar to the experimentally collected ones by Sargent(10). Only in
the low energy portion Sargent’s curves are a little lower than the theoretical ones, a
feature which is more visible in the curves in Fig.3 in which energies rather than momenta

(10)B.W. Sargent, ≪Proc. Camb. Phil. Soc.≫, 28,538, 1932.
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are taken as abscissae. It as, however, to be remarked that the low energy portion of the
curves is very imprecisely experimentally known (11). Furthermore also theoretically for
the forbidden transitions the low energy portion has to be lower than in the case of the
curves that pertain to the allowed transitions, drawn in Fig.2 and 3.

This must be particularly taken into account in the case of RaE, which is best known for
the experimental viewpoint. The β rays emission from this element, as it appears from
the anomalously high value of τ F (η0) (C.f.r. table II) is certainly forbidden, actually it is
possible that it becomes allowed only in a second order approximation. I hope to be able,
in a forthcoming communication, to make more precise the behavior of the distribution
curves for the forbidden transitions.

Summarizing it appears justified to state that the theory, in the form presented here,
is found in agreement with the experimental data, which on the other hand are not always
very precise. Even if, in a further comparison with experimental data, we should arrive
at contradictions, it would always be possible to modify the theory without essentially
altering the conceptual foundations. One could precisely save the equation Eq.(9) while
choosing differently the csσ. This would in particular lead to a different form of the
selection rule Eq.(48), and to a different form of the energy distribution curve.

Only a further development of the theory, as well as an increased precision of the
experimental data, will possibly indicate whether such a modification will become nec-
essary.

(11) E.g. c.f.r. Rutherford, Ellis and Chadwick, Radiations from active substances,
Cambridge, 1930. See, in particular p. 407.
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• Sunto Si propone una teoria quantitativa dell’emissione dei raggi β in cui si am-

mette l’esistenza del ≪neutrino≫ e si tratta l’emissione degli elettroni e dei neutrini

all’atto dela disintegrazione β con un procedimento simile a quello seguito nella teoria

dell’irradiazione per descrivere l’emissione di un quanto di luce da un atomo eccitato.

Vengono dedotte delle formule per la vita media e per la forma dello spettro continuo dei

raggi β, e le si confrontano con i dati sperimentali.

Translated from the Italian original by Giovanni Gallavotti, May 2011

Other English translations exist, possibly based on the almost identical contemporary
German version by Fermi himself, and contain useful preliminary comments:

(1) In: “The development of weak interaction theory”, Ed. P.K. Kabir, ’International
Science Reviews Series’, Vol.5, p.1–21, Gordon-Breach, 1963 (the translation might be
based on the Italian version of the collected papers of E. Fermi, printed in 1962, because
formula (11) for A1 contains the same misprint absent in both the original Italian and
German versions).

(2) In: F.L. Wilson, Fermi’s theory of beta decay, American Journal of Physics, 36,
1150-160, 1968, (from the German version).


