Special relativity

in a certain inertial frame two light pulses are emitted, a distance 5 km
apart and separated by 5 us. An observer who is travelling, parallel to the
line joining the points where the pulses are emitted, at a velocity v with
respect to this frame notes that the pulses are simultaneous. Find v.

Solution

The ‘standard configuration’ in special relativity problems involves two
inertial frames S and S’ such that, according to observers stationary with
respect to the frame S, the frame §' has a velocity v in the x-direction. If
Ax, Ay, Az, Arare the intervals measured in S between two events, and
Ax',Ay', Az', At are the intervals between the same events measured
in §', the relations between the intervals are given by the Lorentz
transformations:

Ax = y(Ax' + vAt'),
Ay = Ay’,

Az = Az,

At = y(At' + vAx'[cY),

Ax' = y(Ax — vAl),
Ay' = Ay,

Az' = Az,

At' = ‘y(Al - DAI/CZ)s

where

i
1- %/

We will assume that S is the frame in which the pulses are emitted with a
time separation of 3 us, S0 that Ax = 5km, At =5 us. We require to find
the frame S’ in which A¢’ = 0. From the Lorentz transformation, we can

see that this is so if

= CzAf/Ax.

P  Inserting the values of Ar and Ax gives v = 9 x 10" ms~! (=0.3¢c).
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Problem 33

Observer A sees two events at the

A se same place (Ax = Ay = Az =0) and
separated in um? by Ar =107%s. A second observer B sees them ti) be
separated by 'At =2x 1076 5. What is the separation in space of the two
events according to B? What is the speed of B relative to A?

Solution

O'bserver A is at rest in frame §, and observer B is at rest in the frame
§'. The Lorentz transformation for Ar’ gives

At = yAtr

(since Ax = 0), so we must have y = 2. Now since

y= \/_1_
1 - ¢

it follows that

-el-3)

== - 12_

sov=c(l—-1/4)2=1/3 ¢/2. The Lorentz transformation for Ax’ gives
Ax' = —yvAt

(again using the fact that Ax = 0), so

Ax' = —2%3 X 108 x 1074 m = —520 m.
Thus according to obs i i
s aceore mg’ . =ezv:'r =B(,].the spatial separation of the two events is

ca][W]e (Eould have c.alculated the magnitude of Ax' directly, without first
culating v, by using the Lorentz invariant interval. This is defined as

As? = Ax? + Ay + Az ~ PAL2,

and it ca 2= As? i i
n be shown that As® = As’?, i.e. that the interval between two

0 - ?A? = Ax'? — PAr2,
which can be rearranged to give
Ax" = cHAr'? - AP,

Putting At* =2 us and At = 1 us gives Ax’ = +£520m.]
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Problem 54

Two inertial frames of reference § and S’ are in the standard
configuration, frame §’ having velocity v with respect to frame S. At the
instant when their spatial origins O and O’ coincide, a light beam is
emitted from O and O’ along the positive x- and x'-axis. The beam is
reflected by a mirror M fixed in S at a distance d from O and with its
plane perpendicular to the x-axis. Consider the following three events:

(1) light beam reaches M,

(2) reflected beam returns to O’

(3) reflected beam returns to O.
Calculate the times of these events as measured by observers in frame S.
Use the Lorentz transformation to determine the times of these events as
measured by observers in frame §'. Show how observers in frame §’
would explain their measurements without reference to frame §.

Solution

1t will be helpful to draw a space—time diagram of the events in §, as
shown in figure 53.

4
* Event 3 /
hY
N
~

world line of M

Evemt 0 *

Figure 53

The dashed lines show the world-line of the light beam. We will assume
that clocks in both frames are synchronised to r = ¢' = 0 when the origins
of the frames coincide at event 0 (emission of the light beam).
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‘ The mirror M is a distance d from the origin O, so light will take a
time d/c to reach it. Thus

H= d/C

When we perform.the Lorentz transformations later we will also need the
x-coordinate of this event, which is obviously
X1 = d.

At tlme. 11, the light beam is at x = 4. After this time, the light beam
travels in the negative x-direction, so at time ¢ > r, its x-coordinate is

x=d-€(f—f1)
=d - ¢(t - dfc)
=2d - ¢t.

{\t time ¢, the x-coordinate of O' is vt, so at time t2, when O’ and the
light beam meet, we must have

2d — cty = vt,.
Thus

2d
c+o

t =

The x-coordinate of this event can be found by substituting into either
X =2d — ct; or x = v1y, to give

2dv
c+o

X2 =

The time coordinate of event 3 is easy to calculate, since it is just the time

,}?Uimd for the beam of light to travel from O to M and back again.
us

t; = Zd/t.‘.
Clearly
Xy = 0.

Ngw let us calculate the time-coordinates of these events in the frame §’,
using the Lorentz transformation

’ ox
v =ofe- 22},
CZ
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Thus
f=v4- )= 21 - ofe,
(3 c c
2
:5=Y( EE = )= 21 - o?fe?)
c+v  cHc+v) ct+uv

(which is equal to 211),
2yd
té-_—y(&-—(}) =_Y__
¢ €

In order to see how observers in S’ would interpret these measurements,
it is helpful to draw the space-time diagram for the frame §', as shown in

figure 54.

Event 0

Figure 54

According to the observersin §', O is moving in the negative ,

. '

x'-direction at some speed u. We can use their measurements of +{ and 13
to calculate u as follows: .

At time ¢', the x’-coordinate of O is

x'=—ut'.

For times less than ¢}, the light beam moves in the positive x'-fjirection,
and for times greater than 1] it moves in the negative x‘-directhn. Thus
at time 2¢} the light beam has an x'-coordinate of zero, and at time

t’ > t} the x’-coordinate is

x' = =c(t' = 2t).
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The x'-coordinates of O and of the light beam must be equal at ¢’ = 3,
S0
uty = c(t3 — 21})

and hence

Substituting the observed values
= __YE_(I — i) and ;= H
c c ¢

gives u = v, so the observers in §’ see the frame § moving backwards at
speed v. [We could have written this down straight away, since it follows
directly from the postulates of special relativity. ]

The observers in S’ can also use their measurements to calculate the
distance d' between O and M: At time ¢, the x'-coordinate of M is

x'=d —ut'=d" - vt
At time t' the x'-coordinate of the light beam is
x'=ct',

and when 1’ = ¢{ these x’-coordinates must be equal. Thus

d'= (¢ + v)ty.
Substituting the observed value of ¢] gives

2 2112
d'=7’—‘f(1—£)(c+u)=yd(l—”—)=d(1—"—) Sy
c ¢? Y

[of CZ

The observers in §' thus measure the distance from O to M to be d/y,
which is in agreement with the length-contraction formula.

Problem 55

A member of a colony on a moon of Jupiter is required to salute the un
flag at the same time as it is being done on Earth, at noon in New York.
If observers in all inertial frames are to agree that he has performed his
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duty, for how long must he salute? (The distance from Earth to Jupiter is
8 x 10% km. The relative motion of the Earth and Jupiter’s moon may be
ignored.)

Solution
Write down the Lorentz transformation for ¢ in differential form,
At' = y(At — vAx/c?),

and let § be the frame of reference in which the Earth (and the moon of
Jupiter) is at rest, and S’ the rest frame of an arbitrary observer.

Identify the salute on Earth and the salute on the moon of Jupiter as
two events. In the frame §, the spatial displacement Ax between these
two events is D (i.e. the distance from Earth to Jupiter) and the temporal
separation Aris T.

We require that in S’A¢’ is zero, hence

T = vD/c%

Thus the member of the colony must be saluting at a time v D/c? after the
salute on Earth, as measured in the frame §, and since v can vary
between *c¢ he must salute for a total time of

2D/c

=2 x 8 x 1011/(3 x 108) 5
=53x%x10s

== 1.5 hours.

Problem 56

Two rockets 4 and B depart from Earth at steady speeds of 0.6¢ in
opposite directions, having synchronised clocks with each other and with
Earth at departure. After one year as measured in Earth’s reference
frame, rocket B emits a light signal. At what times, in the reference
frames of the Earth and of rockets A and B, does rocket A receive the
signal?

Solution

In this problem we have three inertial frames to consider, so we will use
coordinates x and ¢ to denote quantities measured in the Earth’s frame,
X4 and ¢, to denote quantities measured in A’s frame, and xg and 1 to
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denote quantities measured in B’s frame. We will assume that, according
to an observer in the Earth’s frame, rocket A is travelling at speed v in
the positive x-direction and rocket B in the negative x-direction. With
these assumptions, we can write down the Lorentz transformations:

x = ylxq + i), X4 = }'(I - ut),

t=y(14 + vxa/c?), ta = y(t — vx/c?),

xr= T(xB - U‘B)’ Xg = }’(I + Uf),

t = y(tz — vxz/c?), tg = y(t + vx/c?),
where

v =0.6¢
and

y=(1-0v¥/c}2 =5/
It will be convenient to use a system of units in which time is measured in
years and distance in light-years, in which case ¢ has a value of 1. Again,

it is helpful to draw a space-time diagram in the Earth’s frame of
reference, as shown in figure 55.

Event 2

Evem 0 x (light years)
Figure 55

In the Earth’s frame of reference, event 1 ( B emits the signal) has
coordinates

= —0.6,
1= +1,
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so at time 1 > 1 the x-coordinate of the light signal is
x=-06+{(—-1)=1-1.6.

At time ¢, the x-coordinate of rocket A is
x = +0.6¢.

The x-coordinates must be equal at event 2, so for this event we must
have

t —1.6=0.06t,

hence ¢ = 4. Thus according to an observer in the Earth frame, event 2
occurs after 4 years. The x-coordinate of this event is therefore
0.6 x4=24.

We can now substitute these coordinates into the Lorentz
transformation formulae to find the time coordinates of event 2in A’s
and B’s frame of reference:

ty = y(t — vx)

(remember that ¢ = 1)

(4 — 0.6 X 2.4) = 3.2,

+ | n

so that, according to A, event 2 occurs after 3.2 years.
tg = y(t + vx)
= 3(4 +0.6 % 2.4) = 6.8,

so according to B, event 2 occurs after 6.8 years.

Problem 57

A very fast train of proper length L, rushes through a station which has a
platiorm of length L (< Lg). What must be its speed v such that the back
of the train is opposite one end of the platform at exactly the same instant
as the front of the train is opposite the other end, according to an
cbserver on the platform?

According to this observer, two porters standing at either end of the -
platform (distance L apart) kick the train simultaneously, thereby making
dents in it. When the train stops, the dents are at a distance Lq apart.
How is the difference between L and Lj explained by (a) the observer on
the platform, and (b) an observer travelling in the train?
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Solution

According to the observer on the platform, the train undergoes a Lorentz
coatraction by a factor of y, so that its length is Lo/y. This must clearly
be equal to L if the two ends of the train are to align with the two ends of
the platform, so

Y= — 0¥/ = Ly/L.
Rearranging,

vfe = (1 = L*/L3)"?,
S0

v=c(l— L¥LH,

(a) According to the observer on the platform, the kicks are
administered at either end of the train so the dents will be at the two ends
of the train. When the train stops this is found to be the case, although
the train is no longer undergoing a Lorentz contraction so the separation
of the dents is greater than it was when the train was in motion.

(b) According to an observer on the train, the train is of length L, but
the platform is moving at velocity —v so it undergoes Lorentz contraction
from its proper length L to a length L/y = L?/L,. The fact that two
porters standing this distance apart nevertheless manage to make dents in
the train separated by L, is explained by the fact that the kicks are not
administered simultaneously.

We can show this using the Lorentz transformations. Let us identify
frame § as the frame in which the platform is stationary, and §' as the
frame in which the train is stationary. The train thus has a velocity +v in
the x-direction relative to the platform. We will call the two porters A
and B, and assume that their x-coordinates are 0 and L respectively in
the frame §. We will also assume that, in frame S, the kicks occur at time
t = 0. Thus we have, using the Lorentz transformations, the data shown
in Table 5.

Table 5

In frame S In frame §*

A kicks the train x=0,¢=0 x'
Bkicksthe train x=L, =10 x'

0,¢=0
yL,t'=—yolL/c?

In order for an observer at rest in the frame 5' to measure the distance
between the kicks as Lg, we must have y = Ly/L as before. However, we
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see that in this frame porter B’s kick is administered earlier than porter
A’s kick, by an interval of time equal to yoL/c®. To show that this is
consistent with the Lorentz contraction of the platform observed by the
train, we can use this time interval to calculate the length of the platform
according to an observer in §'. . .
According to observers in §’, the porters are moving at speezd v 1;1 the
negative x’'-direction, so at t' = 0, porter Bisatx' = LO.— yv*L/c* and
porter A is at x* = 0. The length of the platform, according to an -
observer in §’, is thus Ly — yo? L/c?. Using the fact that y = Ly/L, this
can be rewritten as Lo(1 — v?/c?), and using the fact that (1 — v%/c?) =
1/¥2, it can be simplified to Lo/y?. Thus according to an observer moving
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with the train, the length of the platform is Ly/y” = L/y, so it has been
Lorentz-contracted as we expect.

This can be summarised on space-time diagrams in S and §’, shown in
figure 56.

Problem 58

Given two observers O and O’, with O’ moving at uniform velocity v in
the positive x-direction relative to O, use the appropriate Lorentz
transformations to show that if an object is moving with velocity
component u, in the frame of reference of O’, then

e+ v
ux=_'_"—,
(LT
1+ —=

o2
where u, is the corresponding velocity component according to O.

(2) A space ship is launched from Earth and maintains a uniform
velocity of 0.900c. The space ship subsequently launches a small rocket in
the forward direction with a speed of 0.900c relative to the ship. What is
the speed of the small rocket relative to the Earth?

(b) According to observations on the Earth, the nearest star to the
solar system is 4.25 light years away. A space ship which leaves the Earth
and travels at uniform velocity takes 4.25 years, according to ship-borne
clocks, to reach the star. What is the speed of the space ship, expressed as
a fraction of the speed of light ¢?

Solution

The frames of reference of O and O’ have the standard relationship, so
that the Lorentz transformations are given, in differential form, by

dx' = y(dx — v dt),

dr' = y(dt = %)
&2

[We could also write down the reverse transformations, but in fact we
don’t need them.] The ratio of these two expressions gives the component
(T

dx'  dx —vdt

di' - vdx

C2
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Multiplying through by the denominator of the right-hand side and
rearranging, we obtain

vy
2

dx(l + ) = dt(uy + v),
[y

from which we can write down the required result:

dx o+ o
Hx=d—=——"—.
t DU

1+ —=

c?

(a) This result can be applied directly if we identify O with an observer
on Earth and O’ with an observer on the space ship. We have v = 0.900¢
and u,. = 0.90c, so

0.900c + 0.900c  _ 1.800¢

| 4 (0.900c)©.900c) 1810
2

Uy =

C

The speed of the rocket relative to Earth is thus 0.994c.

(b) We can solve this using the Lorentz transformations. Let us identify
S as the frame in which the Earth and the star are at rest, and S’ as the
frame in which the space ship is at rest, and synchronise clocks to
t =t' =0whenx =x'=0, If we put D for the distance to the star in the
frame S, the coordinates in S of the event of the space ship reaching the
star are

x=D,
t = Djv.

Thus the time coordinate of this event in the space ship’s frame §' is
' = y(t — vxfc?)
= y(D/v — Do/c?)

= (yD/v)(1 - v*/c?)
= D/fyv.

Now we are given that t' = 4.25 years and D/c = 4.25 years, so it follows
that

yufc = 1.
Putting

B =vfc
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for convenience, we have

YB=1,
and since
N S
V- p)
this gives
2
£y
1- 8
so that
g =1/,

hence v = ¢/V/2.

Problem 59

To an observer, two bodies of equal rest mass collide head on with equal
but opposite velocities 4¢/5 and cohere. To a second observer, one body
is initially at rest. Find the apparent velocity of the other, moving mass
before the collision and compare its initial energy in the two frames of
reference.

Solution

It is clear that the apparent velocity of the second mass must be equal to
the relative velocity of the two masses, which is given by the relativistic
addition of 4¢/5 and 4c¢/5:

_ 4c/5 + 4cf5 _ 8¢/5
1+ (dc/5)(4c/5)(1/c?)  41/25
= 40c/41.

The total initial energy of either particle in the first frame is ymc?, where
m is its rest mass and y is the Lorentz factor for a speed of 4¢/5, thus



124 Special relativity

In the second frame, the same formula applies for the moving particle but
y is now the value appropriate to a speed of 40c/41, thus

mc e

V-4
412
= (41/9)mc*.

Thus the initial energy of the moving particle is greater by a factor of
41/15 in the second frame.

Problem 60

A beam of monochromatic light, whose wavelength in free space is A, is
split into two separate beams and each is then passed through identical
troughs of water. Show that if the water in one trough is stationary and
the water in the other trough is moving with speed v (<< ¢) in the
direction of the light, the phase difference between the emerging beams is

A¢ = QaL/N(n* — 1)(v/c),

where L is the length of the troughs and » is the refractive index of the
stationary water. Suggest suitable values for L and v in an experimental
arrangement for verifying this result.

E=

Solution

Fipure 57 shows the arrangement.

Ny

Figure 57

The refractive index r defines the speed at which light propagates with
respect to the medium as ¢/n, and since the moving water moves forward
(i.e. in the same direction as the light) in the laboratory frame at speed v,
the speed of the light relative to the laboratory frame must be the
relativistic sum of v and ¢/n, i.e.
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c
v+ —
n

1+ 2
nc
Thus the time taken for light to travel from one end of the trough of
moving water to the other, measured in the laboratory frame, is

Trmoving = L(1 + v/nc)/(c/n + v)
= (Lnfe)(1 + v/nc)(1 + vnfc)!.

Since v << ¢, we can use the binomial theorem to expand this expression
to the first order in v, giving

Tonoving = (Lnfc)(1 + v/nc = vnjc).

The time required for light to travel through the trough of stationary
water can be deduced from this expression by substituting into it v = 0, to
give

Tstationary = L"/C

(which is obviously correct), so the difference in travel times through the
two troughs is

AT = (Lnfc)(v/c)(n — 1/n)
= (Lvfc®)(n® - 1).

The phase difference A¢ is given by 2rvA T where vis the frequency, and
substituting v = ¢/A finally gives

A¢ = (2nL/A)(n* - 1)(v/c)

as required.

Water has a refractive index n of approximately 1.33 at optical
wavelengths (say 500 nm), and if we assume that A¢ must be at least 1/2
to produce a measurable effect, substitution into this expression shows
that Lv must exceed about 50 m®s~!, Possible values for a demonstration
mightbe L =5m and v = 10ms~!,

Problem 61

In its rest frame, a source emits light in a conical beam of width +45°. In
a frame moving towards the source at speed v, the beam width is +30°.
What is »?
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Solution

There are several ways of solving this. The longest, but most basic, is to
use the Lorentz transformations directly. It is also possible to use the
formulae for relative velocity, or (the shortest method) to use the
aberration formula.

(1) Using the Lorentz transformation directly.

First we need to set up two inertial frames § and 8’ in which to describe
the problem. If we adopt the standard configuration in which frame S’
has a positive velocity v in the x-direction when observed in frame §,
figure 58 shows that we can consider the light to be emitted at up to +45°
from the x'-axis in the frame §'.

T
Y i

\J
Y

Figure 58

We can write the spatial parts of the Lorentz transformations in
differential form:

Ax = y(Ax' + vAr"),
Ay = Ay’

If we consider a photon travelling at the very edge of the cone, in §’ it
will make an angle of 45° with the x'-axis. If the photon connects two
events which have a separation along the x’-axis of Ax’, the separation
along the y'-axis must be numerically equal to Ax' (because the photon is
travelling at an angle of 45°), and the time interval A¢' must be /2Ax'/c
(because the photon travels a distance V2 Ax' at the speed of light).
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Thus we have
Ax’,
Ay’ = Ax’,
At' = V2 Ax'/e.

Transforming into the frame §, we find

Ax =yl Ax' + M) = yAx'(l + _‘/2_"),
€
Ay = Ax’, ¢

The photon must make an angle of arctan (A y/Ax) with the x-axis (which
we are told is 30°), so

y(1+ \/2”)= L =1/3
c tan 30°
Substituting y = (1 — v%/c?) ™2 gives
1+ V2(v/e) _
V- @fcp)
:11” \ie ﬂ;;t)nltﬂ[f :evéz tf:il;l convenience, and multiply throughout by
1+V28=03-~38)"
Squaring:
1+2y28+26=3-38,
This can be rearranged as a quadratic equation in j:
58 +2v2p-2=0.

Solving the quadratic gives v/c = -+0.410 or —0.976. Clearly we require
the positive solution, so our result is v = 0.41 ¢, [The negative solution

corresponds to the transformed cone making an angle of ~30° with the

axis. It was introduced when we squared our expression for B.]

(2] Using the velocity transformation formulae.

A photon travelling along the edge of the cone has velocity components,
in §’, of

vy =cfV2

and

vy = ¢/\/2.
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In the frame §, these will transform to v, and v, where, in general,
_ b+
1+ vul/c?

and

_ oy(1 = v/
vy = —————.

1+ wvolfc

In this particular case, we thus obtain

1+

V2e

Since v, /v, = tan30° = 1/1/3 we have

1+V2(/e) _
V(1 - (v/c)?)

as before,

[1f we were unable to remember the transformation for v,, we could
solve the problem using the velocity transformation for v, alone, using
the fact that the speed of light is the same in all inertial frames, as shown
in figure 59,

30

Figure 59
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Thus v,/c = cos30° = V/3/2, so

c
v+ —
V2 =\/3c
5
14+ —
V2e

Cross-multiplying this expression gives

20+ V2c=V3c+ V3o,

which can be solved to give
v= c—-—v3 — V2

2- 2
2

= 0.410 ¢ as before.]

(3) Using the aberration formula for light making an angle ¢
with the x-axis and ¢' with the x'-axis.

tan (¢/2) = \/ ;—;z—;z tan (¢'/2}.

Substitution of ¢ = 30° and ¢’ = 45° gives
1-ov/c _ tan’15°
1+0o/c  an?22.5°

therefore
v _1-04185

¢ 1+0.4185
= 0.41.

Problem 62

Estimate the minimum frequency of a y-ray that causes a deuteron to
disintegrate into a proton and a neutron, commenting on any assumptions
you make. The masses of the particles are

= 0.4185,

my = 2.0141m,,
my, = 1.0078m,,
my, = 1.0087m,.
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Solution

We will assume that the deuteron is at rest, and that the proton and
neutron are created at rest. This cannot be quite correct, since it violates
the principle of conservation of momentum, but the masses of the
particles involved are large so the associated velocities will be small.

The total mass of the products is 2.0165m,, which is greater than the
mass of the deuteron by 0.0024m,,. The extra mass must be provided by
the energy of the photon, so the minimum possible frequency must be
given by

hv = 0.0024m,c2.

Substituting m, = 1.66 X 107" kg gives v=5.4 x 10" Hz.

[We can roughly check the reliability of our assumption as follows. The
momentum of this photon is given by hv/e = p = 1.2 x 107 kgms™. If
all of this momentum were transferred to (say) the proton, it would
acquire a velocity of p/m = 7.2 x 10° ms™". This is much less than the
speed of light, so we are justified in ignoring changes in mass caused by
the velocities of the particles. In fact, the error in our calculation can be
shown to be less than 0.1%.]

Problem 63
What is the speed of an electron which has a total energy of 1 MeV?

Solution
The total energy E is given by

E = ymyc?,
SO
¥ = Ef(moc?)
= 10°® x 1.60 x 10~17/(9.11 x 1073)/(3.00 x 10%)*
= 1.95.
Now
y=( - o)y,
50

ofe = (1 = 1/)'"
= (.86.
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Therefore

v = 0.86¢c.

Problem 64

{\ particle of rest mass my is travelling so that its total energy is just twice
is rest mass energy. It collides with a stationary particle of rest mass my
to form a new particle. What is the rest mass of the new particle?

Solution

Beforze the collision, particle 1 (the moving particle) has a total energy of
2mye a‘nd a@ non-zero momentum which we will call p, as shown in figure
60. Particle 2 has a total energy of mgc? and a momentum of zero. Thus
by conservation of energy and momentum, the new particle has a total
energy of 3myc? and a total momentum of p.

Before After
panticle [ particle 2 new particle
—9>r @ —@>r
g nig "y
Figure 60

We can find p by using the energy-momentum invariant for particle 1:
E?_ pZCZ — m%c“;
rearranging,
p? = E¥e? - mac?
= (211;0(:2)2/::3 - mic?
= 3-’"002.

Applying the same invariant to the new particle (whose rest mass we will
call m,), we have

2 2
E? - p*® = mict,
50

24 _ 2
mic* = (3}1*;,;(:2)2 - I'mroc2 - ¢t
= 6mgc“.
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Thus

m = \/6 my.

Problem 65

Explain carefully why an uncharged pi-meson {mass 134 MeV/c?) can
always decay into two photons whereas a photon of sufficient energy can
decay into an electron—positron pair only in the presence of matter.

Solution

(1) Decaying pi-meson.

However the pi-meson is moving, we can define its zero momentum
frame (ZMF) in which it is at rest. In this frame it can clearly decay into
two photons of equal and opposite momentum, each of which carries a
total energy of 67 MeV. If the process is possible in one inertial frame, it
must be possible in all inertial frames even though the details (energy and
momentum of the photons) will differ.

{2) Decaying photon.

If we assume this to be possible in the absence of matter, the electron-
positron pair produced by the decay will have a ZMF. However, a photon
cannot have zero momentum, so the decay process is impossible in the
ZMF and hence in all frames.

In the presence of another particle, however, we can allocate energy
and momentum between the photon and the particle as required, and the
process becomes possible. For example, let us consider a photon of
energy fiv decaying in the presence of a particle of rest mass M to
produce an electron—positron pair (each of rest mass m), and the original
particle of mass M, all at rest (see figure 61).

Since all the particles after the decay are at rest, the total momentum of
the system is zero. Since the photon’s momentum is -+ Av/c, the initial
momentum of the particle of mass M must be —hv/c.

The total energy of the system after the decay is (M + 2m)c?, which
must be equal to the total energy before the decay. Since the energy of
the photon is Av, the initial energy of the particle of mass M must be
(M +2m)c? = hv.
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Before
E=hv E
WA —@
p=hvic P M
After
meg @m
®
M
Figure 61

We know that for a single particle of rest mass M, the energy E and
momentum p are related by

EZ - p2c2 = M2c4’
so on substituting for £ and p we obtain
(M +2mYc* + B — AM + 2m)cihv ~ k32 = M2cH.
Therefore
py= (M + 2m)*c? — M2c?
2AM + 2m)c?
_ 2mcX(1 + m/M)
(1+2m/M)

j['hus t!1ere is a solution for any value of M, and we deduce that the decay
15 possible if the photon has sufficient energy.

Problem 66

A. particle of rest mass m moving along the x-axis with velocity v collides
with a particle of rest mass m/2 moving along the x-axis with velocity —p.
If the two particles coalesce, find the rest mass of the resulting particle.

Solution

Figure 62 shows the situation before and after the collision. Particle 1 (the
one with mass /m) has a total energy of ymc?, where y = (1 — uz/cz)"g,
and particle 2 has a total energy of 0.5ymc?, so by conservation of energy
the resulting particle must have a total energy of 1.5yme?,
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Before After

particle 1 particle 2 new particle

—@> <0 —@—>r
m v U o mn m

Figure 62

Particle 1 has a momentum of ymuv, and particle 2 has a momentum of
—0.5ymuv, so by conservation of momentum the resulting particle must
have a momentum of 0.5ymv.

We now know the energy and momentum of the resuiting particle, so
we can use the energy-momentum invariant to find its rest mass m;:

E2 — pzcz i m%c‘i,
50
mi = E3/c* — p*/c?
= (9/4)7*m’ — (1)’ m*v?/c?
= (1/4)y*m?(9 — v?/c?).
Substituting the expression for y = (1 — vz/cz)'lﬂ, we finally obtain
_m \/ 9 — v?/c?
my = — | ———.
2 ¥V 1-p3c?

As a simple check, we can see that when (v/c)* « 1 this tends to 3m/2,
which is clearly the correct classical limit.

Problem 67

The proton collider at CERN in Geneva makes use of proton and
antiproton beams travelling in opposite directions. Explain the
advantages of this technique over that of using an antiproton beam hitting
stationary protons by calculating the minimum energy of the antiprotons
(P) needed to give the following reaction in which QQ particle-
antiparticle pairs are produced:

p+p—op+p+Q+Q:
(a) for colliding antiproton and proton beams;

(b) for antiprotons hitting stationary protons.
Express your answers in terms of the proton rest-mass energy.

(The © has a mass of 1.78m.)
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Solution

(a) Figure 63 shows the situation before and after the collision. If the
proton and antiproton collide with equal and opposite velocities, the
laboratory frame is the zero momentum frame (ZMF). The resulting
system of particles thus has no net momentum, so the configuration of

minimum energy is when all four particles are at rest. The total energy
after the collision is thus

2myc? + 2mgc? = 5.56m,c’.

By conso.?rvation of energy, this must be equal to the total energy of the
two particles before the collision, so by symmetry the energy of the
antiproton must be half of this value, i.e. 2.78mpcz.

Before
_: .
After P
ON
Q 0
Figure 63

(]3) If the proton is initially at rest, the description in part (a) is still
valid except that we need to transform it into a different inertial frame, as
shown in figure 64.

In ZMF
P P
Energy E Energy E
Momentum p Momentum -p

In laboratory frame

Energy E' Energy m,, c2
Momentum p’ Momentum 0
Figure 64
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In the zero momentum frame, the system has a total energy of 2E and
a total momentum of zero. In the laboratory frame, it has a total energy
of E' + mpc2 and a total momentum of p’. Now for any system, the
quantity
EZ _ p2c2
is a Lorentz invariant, i.e. it is the same in any inertial frame, so we have
the relationship

(2E)2 = (Er + mPCZ)Z _ ptZCZ,
which can be expanded as
4E? = E'? + mic* + 2E'myc® — p'*ct.

However, the energy E’ and the momentum p' of the antiproton are
related by

232 .24

E'* — p’“c = myc’,
and we can substitute this result to eliminate p':

2E? = mic* + E'myc.
Therefore

24

E' = 2E* — myc*)/myct.

Now E is the value that we calculated in part (a), and we want to express

E’ in terms of the proton rest-mass energy, so if we divide this expression
by ml,c:2 we obtain
' 2
E_ _, ( E ) i
myc? myc?
=2(2.78)* - 1
= 14.5.

Thus the minimum antiproton energy if the proton is stationary is
14.5myc2.

Problem 68

A proton of total energy E collides elastically with a second proton at rest
in the laboratory. After the collision the two protons follow trajectories
which are disposed symmetrically at angles *¢/2 to the direction of the
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incident particle. By considering the motion in the laboratory frame, or
otherwise, show that
E - Ey
E +3E,
where Ej is the rest mass energy of the proton.

What is the value of ¢ when the first proton is accelerated from rest

through a potential difference of 1.5 x 10° V before colliding with the
second proton?

cos¢ =

Solution

Let us call the momentum of the initially moving particle p,, and the
energy and (modulus) momentum of each particle after the collision E,
and p, respectively, as shown in figure 65.

Before

— 9> ®

E, p Ey

Figure 65

Conservation of momentum gives
P1 = 2pzcos (¢/2).
The relationship between E and p, is
E? - pic? = E},
which we can substitute into our expression to obtain
(E? ~ Eg) = 4p3c? cos? (¢/2).

We.can eliminate p, from this by using the energy-momentum relation
again:

2 2 2
E3 — pic® = Eyp,
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which gives
(E? - E}) = 4(E3 — Eg)cos’ (¢/2).

Finally we can eliminate E, using the principle of conservation of energy:
E+ Ey=2F,,

which gives
(E? - E}) = (E? — 3E} + 2EEq) cos? (¢/2),
S0
2 2
cos’ (—Q) = I 27
2] E?+2EE,-3Ej

Recalling that cos ¢ = 2cos® (¢/2) — 1, we can rearrange this to give

E?+ Eg - 2EE,

0" 4 2EE, - 3E3
(E - Eof
" (E - Eo)(E +3Eq)
Hence
- E,
. E +3E,
as required.

If the first proton is accelerated through a potential V, it acquires a
kinetic energy of eV, so

E = Eg+ eV;
therefore
E/Eg=1+ erE.,z
Z i : ‘1?26"::10 19 % 1.5 x 10°/(1.67 x 1072)/(3.00 x 10%)?
= 2.60,

50

cos ¢ = (2.60 — 1)/(2.60 + 3)
= 0.286;

therefore ¢ = 73°.

Problem 69 139

Problem 69

Consider the elastic scattering of a photon of frequency v by a stationary
electron (the Compton effect). Find an expression for the wavelength
change of a photon scattered through 180°. What is the energy of a
photon of initial energy 1 MeV after a single 180° scattering?

Solution

Let us assume that the photon has a frequency v’ after being scattered,

and that the electron acquires a momentum p as a result of the collision,
as shown in figure 66.

Before Afer
N> C ) W, o—
v my v P
Figure 66

Since the momentum of a photon of frequency v is given by Av/c,
conservation of momentum gives

h hv
—=p-, €y
c c

and since the energy of a particle of rest mass mg and momentum p is
given by (mac* + p2c?)2, conservation of energy gives

hv + moc® = hv' + (mic* + picd)2, (2)
Rearranging (2) to separate the square root gives

(mbc* + P22 = hy — hv + moc?,
and squaring this gives

mic* + p2c? = K22 + B2V 4+ m2et - 2w + 2hvmgc?
— 2hV myct. (3

We can eliminate p from this by rearranging (1),
pc=hv+ hv,
and squaring,

PPt = 1V + v+ 2wy,
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Substituting this expression into (3) and simplifying gives
2hvv = (v~ v)myc?.
If we divide throughout by vv' mge we obtain

l: V_V'c=(i—l)c=/1'—l.
mgc 144 Y

Thus the change in the wavelength on being scattered through 180"‘ is
2h/moc. [The quantity h/mqc is the Compton wavelength of a particle of
Teil;lﬁii;:oo]f energy E has a wavelength ch/E, so taking E = 1 MeV =
1.602 x 107 J gives A = 1.240 X 10712 . 24/myc has a value of

4.853 x 1072 m if my is taken as the rest mass of the electron, s0 the final
wavelength A’ is 6.093 x 10~'2 m. The energy of a photon of this
wavelength is 3.260 X 107 J or 0.20 MeV.

Quantum, atomic and nuclear physics

The Andromeda Nebula, at a distance of 2 x 102 m from the Earth,
radiates 8 X 10 W in the spectral line of frequency 1420 MHz. Estimate
the number of photons received per second when the nebula is observed
by a radio telescope of collecting area 100 m?.

Solution
The energy of a photon of frequency vis hv, so if the nebula radiates a
power P this must correspond to
i
hv
photons per unit time.

At adistance D, all of these photons will be spread uniformly
(assuming the nebula radiates uniformly and there is no absorption) over
an area 47D, so the number of photons received in unit time by an area
A will be

PA
4rD*hv
Substituting P=8x 107 W, 4 = 102 m?, p = 2 x 102 m and
v=1.42 x 10° Hz yieids 1.7 x 10 photons per second.

What is the force experienced by a mirror when it reflects all the light
from a laser with a power of 10 mW?

Solution

Write P for the laser power, and assume that the photons have frequency
v. Since the energy of the photons is &1v, the number incident per unit



