ALCUNI PROBLEMI DI URTI RELATIVISTICI

TRATTI DI W.G. REES – PHYSICS BY EXAMPLE (Cambridge University Press)

Problem 62

Estimate the minimum frequency of a γ -ray that causes a deuteron to disintegrate into a proton and a neutron, commenting on any assumptions you make. The masses of the particles are

```
m_{\rm d} = 2.0141 m_{\rm u},

m_{\rm p} = 1.0078 m_{\rm u},

m_{\rm n} = 1.0087 m_{\rm u}.
```

NOTE:

- 1) Modifica al testo: **CALCOLARE L'ENERGIA MINIMA** (tra energia e frequenza esiste una relazione $E = h\nu$ che non abbiamo coperto negli argomenti di questo corso).
- 2) $m_u = 1.66 \times 10^{-27} \text{ kg}$
- 3) Se si vuole convertire in eV: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$ (oppure si lasci il risultato in unità SI)

Suggerimento: Si svolga il calcolo in modo simile alla materializzazione del fotone mostrata in aula, scegliendo SRI opportuni dove le particelle sono ferme (eccetto il fotone).

Problem 63

What is the speed of an electron which has a total energy of 1 MeV?

NOTA: $m_e = 0.511 \text{ MeV/c}^2$

Suggerimento: Si ricordino i) la relazione tra velocità di un corpo e fattore di Lorentz per portarsi nel SRI comovente con il corpo, ii) la relazione tra energia, massa e fattore di Lorentz.

Problem 64

A particle of rest mass m_0 is travelling so that its total energy is just twice its rest mass energy. It collides with a stationary particle of rest mass m_0 to form a new particle. What is the rest mass of the new particle?

Suggerimento: Usare proprietà invarianti nel sistema prima e dopo l'urto (massa invariante)

Problem 66

A particle of rest mass m moving along the x-axis with velocity v collides with a particle of rest mass m/2 moving along the x-axis with velocity -v. If the two particles coalesce, find the rest mass of the resulting particle.

Suggerimento: Scrivere le relazioni in termini di E, p (trovando il fattore di Lorentz associato a v) e usare proprietà invarianti nel sistema prima e dopo l'urto (massa invariante)

Problema 69 (MODIFICATO): Si consideri l'urto di una particella di massa nulla (fotone) di energia $E\gamma = 1$ MeV su un elettrone ($m_e = 0.511$ MeV/ c^2) a riposo nel sistema del laboratorio. Si trovi l'energia del fotone dopo l'urto, nel caso di diffusione all'indietro (*back-scattering*), con angolo di 180° rispetto all'angolo di incidenza.

Suggerimento: Le direzioni sono definite, dunque il problema ha quattro incognite (E_{γ} , p_{γ} , E_{e} e p_{e} dopo l'urto): i) Usare direttamente la conservazione di energia e quantità di moto nel sistema di laboratorio per scrivere due equazioni relazioni tra E e p delle particelle coinvolte prima e dopo l'urto ii) Ricorrere alla relazione $E^{2}=p^{2}+m^{2}$ per ciascuna particella nell'urto (ponendo c=1 per semplificare la scrittura) per ottenere altre due equazioni. [Eliminare E_{e} e p_{e} , risolvere per E_{γ} dopo l'urto].