

INFN

I-MCP: IONIZATION MICRO-CHANNEL PLATES FOR FAST TIMING OF SHOWERS IN HIGH RATE ENVIRONMENTS

F.Cavallari ⁽²⁾, D.Del Re ⁽²⁾, A.Ghezzi ⁽¹⁾, P.Govoni ⁽¹⁾, A.Martelli ⁽¹⁾, P.Meridiani ⁽²⁾, S.Rahatlou ⁽²⁾, C.Rovelli ⁽²⁾, T.Tabarelli de Fatis ⁽¹⁾

(1) INFN and Università di Milano Bicocca(2) INFN Sezione di Roma 1 and Università di Roma "La Sapienza"

10/8/13

BICOCCA

Executive summary

- We propose an R&D program of a detector element based on micro-channel plates (MCP) to sample the ionizing component of electromagnetic showers
 - Extensively used in ion time-of-flight mass spectrometers
 - Never exploited in depth to detect the ionizing component of showers
- The fast time resolution of MCPs exceeds anything that has been previously used in calorimeters
 - Aid in the event reconstruction at high luminosities and occupancies
 - Can meet requirements for HL-LHC experiments
- Solution attractive due to recent technological progress in MCP production

• Expected outcome:

- Proof-of-concept and design of a radiation-hard module (~300 kGy and 10¹⁶ n/cm²) with extreme time resolution (<50 ps) to be embedded in a sampling calorimeter (e.g. as a preshower)
- This solution would factorize the quest for precision timing from the technological choice of the full calorimeter

Potential applications to:

Monitoring with precision event timing of high intensity beams

Problem identification and opportunity

High-Luminosity LHC (> 2020)

- Luminosity, interactions/beam crossing (pileup), and radiation levels ~10 times than target design of current detectors
- Upgrade necessary for several detectors, including calorimetry in the forward direction, and trigger

General goals in calorimetry

- Lepton/photon identification and isolation at $p_T \sim O(m_H/2)$
- Resolution on MET: key signature of 'new physics'
- Good jet reconstruction in the forward direction

Performance degraded by pileup

- about 140 interaction vertices per beam crossing
- Mitigation possible with extreme time resolution on shower deposits
 - Spread of vertex time ~ 300 ps (bunch length)
 - 'Effective occupancy' similar to current LHC for time resolution ~30 ps

Technical approach: (ionization) micro-channel plates

- One (or more) layer(s) embedded in the calorimeter for fast timing of showers (<50 ps)</p>
 - Possibly a preshower: quest for precise timing decoupled from the choice of the calorimeter technology
 Classical PMT-

Exploit MCPs as m.i.p. detector

- 1. **PMT-MCP**: Very fast (O(10 ps)), high efficiency to m.i.ps through Cerenkov emission in the quartz/glass window
- "Ionization-MCP": efficiency to m.i.p.s
 >70% with at least σt=75 ps
 - NIM A 478 (2002) 220
- Option 2 could be sufficient to sample a shower with high m.i.p. multiplicity; it would dispense the photocathode, simplifying the design and assembly
 - Early proposal for calorimetry : A. A. Derevshchikov et al. Preprint IFVE 90-99, Protvino, Russia, 1990.

Classical PMT-MCP+Absorber

Longitudinal shower profile with iMCP

- A. A. Derevshchikov et al. Preprint IFVE 90-99, Protvino, 1990
- Not exploited for timing.
- Amplitude measurement:

10/8/13

Preliminary test bench at MiB

- Allestimento preliminare di un *test bench* a Milano Bicocca per raggi cosmici (costo zero, eccetto FTE)
 - Due PMT-MCP in prestito (M.Barnyakov, INP, Novosibirsk)
 - Caratteristiche Lehman et al. NIM A595 (2008) 173; Barnyakov et al. A598 (2009) 160
 - Bias (HV CAEN) e readout (DPO Tektronix 2.5 GHz) con strumentazione esistente
 - Misure di Δt per eventi in coincidenza tra due tubi
 - Tasso di coincidenze atteso ~ 0.25 min⁻¹ = 15 / hour

<p.e.>~4 (1.2 mm with n=1.56; Q.E~10%, ΔE~1 eV)

- Next: test secondary emission from MCP surface
 - Inhibit photoelectron collection with reverse photocathode bias

10/8/13

State of the art on (PMT)-MCPs

MCP

- PMT-MCPs well known and available off-theshelf at some cost (~ 8000 \$ for a ~50x50 mm2) unsuited for large scale application
- A new technology mature for mass production of large surface MCPs
 - LAPPD collaboration (see e.g. <u>this talk</u>)
 - MCP wafers of glass capillaries with atomic layer deposition (ALD) of high resistivity layers available from Incom, Ltd.

INFN

MCP Wafers: Incom Ltd.

MCP wafers: 1.6 k\$ / wafer + IVA

- Wafer 5x5 cm² (10x10 cm² ~ 4.5 k\$ / wafer)
- Pore size/pitches 10 µm/12 µm or 25µm/30 µm (*)
- Resistivity from ALD layer thickness tunable on request
- Emissive coating Al₂O₃ (default), MgO (available at the same price), others on request (**)

Resistive
Emissive
Conductive coatings on a glass wafer (with capillaries)

BICOCCĂ

MCP Wafers: Incom Ltd.

MCP wafers: 1.6 k\$ / wafer + IVA

- Wafer 5x5 cm² (10x10 cm² ~ 4.5 k\$ / wafer)
- Pore size/pitches 10 µm/12 µm or 25µm/30 µm (*)
- Resistivity from ALD layer thickness tunable on request
- Emissive coating Al₂O₃ (default), MgO (available at the same price), others on request (**)

Test more than one geometry and coating:

Dimensions	Pore Size	Quantity	Unit Pricing	
50mm x 50mm x 0.60mm	10 micron	12	\$	1,600
50mm x 50mm x 0.80mm	20 micron	12	\$	1,600
50mm x 50mm x 1.20mm	20 micron	12	\$	1,700
100mm x 100mm x 0.60mm	10 micron	12	\$	4,200
100mm x 100mm x 0.80mm	20 micron	12	\$	4,200
100mm x 100mm x 1.20mm	20 micron	12	\$	4,400
	Gain Measurement		\$	1,500

~ 24 wafers for a minimal set

Can be converted in a formal quote in ~2 weeks (delivery time ~3 months)

(*) Smaller pores and high thickness enhance MIP efficiency, according to Bondila et al., NIM A478 (2002) 220 (the only available test of the i-MCP concept with MIPs) (**) Higher emissivity with MgO coating than AI_2O_3 (with dependence on the thickness) → NEED TO TEST MORE THAN ONE OPTION 80 **Two MCPs** 70 Chevron в Config. 60 C 12 µm / 0.8 mm 50 **High Gain** 0 Efficiency, % G 40 0 - H **Three MCPs** 0 30 Z-stack Config. 0 к 25 µm / ?? mm 20 10 From Bondila et al. _ □ 0 3000 4000 2000 2500 3500 High Voltage, V

(*) Smaller pores and high thickness enhance MIP efficiency, according to <u>Bondila et al., NIM A478 (2002) 220</u> (the only available test of the i-MCP concept with m.i.p.s)
 (**) Higher emissivity with MgO coating than Al₂O₃ (with dependence on the thickness)

→ NEED TO TEST MORE THAN ONE OPTION

Mechanics and electronics for tests

• Vacuum tight boxes:

- Host up to three wafers (two in the figure)
 - Chevron or Z-stack configuration
- Housing for an additional emissive layer (foil) to enhance efficiency

Anode readout and electronics

- 4x4 pads to cover the full surface (~1x1 cm² / pad)
- Merged at readout to test the full surface
 - Independent readout (of a fraction of them) to map local response
- Minimum: 16 electronic channels
 - Discrete components
 - Monolithic CLARO-CMOS if available

Summary on R&D plan and expected outcome

Detailed R&D plan:

Test of the i-MCP concept with cosmic rays:

different pore sizes, aspect ratios and coatings

Characterization of response to showers at BTF (LNF):

 efficiency, timing, amplitude, rate capability, and response vs the sampling depth

Radiation hardness qualification

- Neutron and γ irradiation at ENEA Casaccia (protons at CERN 2015)
- First exposure up to ~1/3 HL-HLC (100 kGy, 10¹⁵ n/cm²)
- Further exposures to verify response evolution up to HL-LHC fluences
- Development of a detector response model
 - For application-specific design optimization

• Expected outcome:

Proof-of-concept and design of i-MCP prototypes for fast timing of electromagnetic showers

- Contingency: MIP efficiency could be enhanced though Cerenkov emission in an optical window
- Exploitation of a cutting edge technology, with potential applications in other fields [e.g. beam monitors with fast timing]