

Test beam results of microchannel plates in "ionisation-mode" for the detection of single particles and electromagnetic showers

Luca Brianza¹

¹ INFN and University of Milano Bicocca

A. Barnyakov^{1,2}, M. Barnyakov^{1,2}, L. Brianza³, F. Cavallari⁴, D. Del Re⁴, S. Gelli⁴, A. Ghezzi³, C. Gotti³,
P. Govoni³, C. Jorda Lope⁴, A. Martelli³, B. Marzocchi³, P. Meridiani⁴, G. Organtini⁴, R. Paramatti⁴, L. Pemié⁴,
S. Pigazzini³, S. Rahatlou⁴, C. Rovelli⁴, F. Santanastasio⁴, T. Tabarelli de Fatis³, and N. Trevisani³

¹Budker Institute of Nuclear Physics, pr. Akademika Lavrentieva, 11, Novosibirsk, Russia ²Novosibirsk State University, str. Pirogova 2, Novosibirsk, Russia ³Università di Milano Bicocca and INFN, Sezione di Milano-Bicocca, , Piazza della Scienza 3, I-20126, Milano, Italy ⁴Università di Roma "La Sapienza" and INFN, Sezione di Roma1,, P.le A. Moro 1, I-00044 Rome, Italy

ANIMMA conference – 22/04/2015

Introduction

Hadron colliders: several collisions per beam crossing

LHC: ~25 pp coll/bx

Target: identify interesting events in this high-rate environment

- So far: associate particles to event vertices
- \rightarrow remove tracks and energy deposits not associated to the hard-interaction

HL-LHC (2023): ~140 coll/bx (spread: 200 ps) \rightarrow <u>Very challenging!</u>!

20/04/15

A viable solution: the i-MCP

MCP (Microchannel plates)

Matrix of tiny channels (diameter: a few µm), usually made by lead glass, working as dinode photomultiplier

 \rightarrow Need to test the performance

Luca Brianza

MCP layers

Anode

Test Beam

Performance of i-MCP devices investigated in two test-beam campaigns:

- BTF (Frascati, Italy) – May 2014

- H4 @ SPS NA (CERN) – October 2014

Test beam @ CERN:

Electron beam with energy [10,200] GeV

Already tested @ BTF:

Double layer MCP: two MCP layers in a
V-shape → max eff. to single particle: ~50%

Two new prototypes:

- **Z-stack**: three MCP layers in a Z-shape
- Enhanced Secondary Emitter (SEE): secondary emission from MCP surfaces enhanced after particular treatment

Lead adsobers, used to test MCP properties in response to em showers

One double-layer MCP used as trigger and reference for time measurement

20/04/15

Luca Brianza

Typical MCP-pulse: 1 ns rise-time

Charge: the integral of the pulse within a 5 ns window (red window)

Time: time corresponding to the 50% of the max amplitude, computed via constant fraction method (green line)

Noise: integral of the baseline (blue window) event accepted if charge > 5 RMS(noise)

Detection Efficiency to single electrons

NMCP: # of events which pass the selection in the MCP under test (and the trigger) Ntrig: # of events which pass the selection in the trigger MCP

Response to electromagnetic showers

Electromagnetic showers: high track multiplicity

 \rightarrow increase efficiency

Put i-MCP layers after 2-3 X0 (e.g: in a preshower configuration)

Lead absorbers placed in front of the detectors, to generate the shower \rightarrow Scan in X0:

Timing performance in electromagnetic showers

RESULTS

Improvement in resolution due to the higher track multiplicity

At 2-3 X0:

RMS of time difference: 30 ps

→ estimated resolution on single detector: ~25 ps

Conclusion

Several i-MCP devices have been characterized in test beam at CERN

Excellent properties have been verified, in terms of detection efficiency and time response

- i-MCP detectors show **70% of detection efficiency** to single electrons **The value increases to 100% in response to electromagnetic shower at 2-3 X0**

- Time resolution at the order of ~35 ps in response to single electrons, ~25 ps in response to electromagnetic shower

 → iMCP: excellent candidate to reconstruct time of photons and vertices (from energy deposits associated to charged tracks) with high precision
→ could aid in event reconstruction in high-rate environment

Other test beams will follow:

- test new prototypes (increase efficiency to single particles)

- radiation tolerance tests

Backup

Efficiency to photons

