Relatività

Emanuele Re

23/01/2025

Sul primo foglio, in modo chiaro, riportare **nome**, **cognome**, **numero di matricola e** firma. Su eventuali fogli successivi riportare almeno il **nome e cognome**.

Tempo a disposizione: 2.5 ore.

Risolvere i seguenti problemi tenendo presente che risultati non semplificati o non ridotti ai minimi termini saranno considerati solo parzialmente.

Scrivere in modo chiaro e leggibile. Si consiglia di fare i calcoli prima in brutta copia, e di riportali solo successivamente in bella copia.

Problema 1

La particella Σ^0 ha velocita' c/3 ed e' diretta verso un rilevatore di fotoni (il rilevatore e' quindi a riposo nel lab frame). Σ^0 decade in una particella Λ e in un fotone che e' diretto esattamente nella stessa direzione di Σ^0 , e dunque raggiunge il detector. Sia $M=m_{\Sigma}$ e $m=m_{\Lambda}$.

- a) Con considerazioni generali, determinare se M e' maggiore o minore di m.
- b) Energia di Σ^0 (in funzione di M e m).
- c) Energia del fotone nel rest frame della particella Σ^0 (in funzione di M e m).
- d) Energia del fotone rilevata dal detector (in funzione di M e m).

Problema 2

Sia data la Lagrangiana seguente per un campo scalare ϕ e un campo complesso ψ

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi + \partial_{\mu} \psi^* \, \partial^{\mu} \psi - m^2 \psi^* \psi - \alpha \phi^2 \psi^* \psi - \beta (\psi^* \psi)^2$$

con α , β , m parametri reali.

- a) Si scrivano le equazioni del moto per i campi ϕ e ψ . (NB: si noti che le equazioni del moto per ψ e ψ^* non sono indipendenti)
- b) Si verifichi che la corrente

$$J^{\mu} = i(\psi \, \partial^{\mu} \psi^* - \psi^* \, \partial^{\mu} \psi)$$

e' conservata.

c) Si sostituisca nella Lagrangiana il termine cinetico del campo ψ come segue:

$$\partial_{\mu}\psi^*\partial^{\mu}\psi \to (D_{\mu}\psi)^*(D^{\mu}\psi)$$

dove $D_{\mu} = \partial_{\mu} - iA_{\mu}(x)$, e $A_{\mu}(x)$ e' un campo vettoriale (reale). Si verifichi che la nuova Lagrangiana e' invariante sotto le seguenti trasformazioni:

$$\psi(x) \rightarrow e^{i\theta(x)} \psi(x)$$
 $A_{\mu}(x) \rightarrow A_{\mu}(x) + \partial_{\mu}\theta(x)$

dove $\theta(x)$ e' una funzione arbitraria della coordinata spaziotemporale x.

Problema 3

In un sistema di riferimento inerziale sono presenti una particella di carica q e massa m, un campo elettrico $\bar{\mathbf{E}}$ ed un campo magnetico $\bar{\mathbf{B}}$. I campi elettrico e magnetico sono uniformi, costanti e paralleli tra loro.

Per $\tau=0$ la particella ha velocita' solamente perpendicolare ai campi: $\vec{u}_{\parallel}(\tau=0)=0$, $\vec{u}_{\perp}(\tau=0)\neq 0$. Calcolare la componente della velocita' \vec{u} lungo la direzione dei campi $(\vec{u}_{\parallel}(\tau))$ in funzione del tempo proprio τ della particella. Il risultato dipende da $\vec{u}_{\perp}(\tau=0)$?