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Chapter 1

Introdution

The aim of these letures is a desription of the onstrution and the main phenomenologial

impliations of the Glashow-Weinberg-Salam uni�ed theory of weak and eletromagneti in-

terations (universally referred to as the standard model.) Basi knowledge in quantum �eld

theory [1℄,[2℄ and elementary group theory [3℄ is assumed, as well as familiarity with the funda-

mental phenomenology of weak interations [4℄.

No attempt will be made to give a full list of referenes. Suh a list an be found in any

standard text book of partile physis; see for example refs. [4℄-[8℄.
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Chapter 2

Constrution of the standard model

2.1 A gauge theory of weak interations

Our starting point is the e�etive lagrangian that desribes weak interation proesses at low

energies. This lagrangian (often alled the Fermi lagrangian) has the form of a sum of produts

of vetor and axial vetor urrents. For example, the terms responsible for nuleon � deay and

for muon deay are

1
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: (2.1.1)

From the experimental values of the muon and neutron lifetimes, one obtains

G

(�)

' 1:16639� 10

�5

GeV

�2

; G

(�)

' G

(�)

� G

F

; (2.1.2)

while the value

a = 1:239� 0:09 (2.1.3)

an be extrated from hyperon deays.

The �eld theory de�ned by the interation in eq. (2.1.1) is manifestly not renormalizable,

sine it ontains operators with mass dimension 6 (a neessary ondition for perturbative renor-

malizability is that the lagrangian density ontains operators with mass dimension less than or

equal to 4, see Appendix 4.1), and it gives rise to a non-unitary S matrix (see Appendix 4.2).

However, it ontains all the physial information needed to build a renormalizable and unitary

theory of weak interations.

The idea is that of building a theory with loal invariane under the ation of some group

of �eld transformations, a gauge theory, in analogy with quantum eletrodynamis (see Ap-

pendix 4.3). We will then require that the new theory redue to eq. (2.1.1) in the low-energy

limit, in the sense that the loal four-fermion interation of the Fermi lagrangian will be inter-

preted as the interation vertex that arises from the exhange of a massive vetor boson with

1

Throughout these letures, partile �elds will be denoted by the symbol usually adopted for the orresponding

partile: e for the eletron, �

e

for the eletron neutrino, and so on.
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momentum muh smaller than its mass. In this way, both problems of renormalizability and

unitarity will be solved, sine gauge theories are known to be renormalizable, and the mass of

the intermediate vetor boson will at as a ut-o� that stops the growth of ross setions with

energy, thus ensuring unitarity of the sattering matrix.

In order to omplete this program, we must hoose the group of loal invariane, and then

assign partile �elds to representations of this group. Both these steps an be performed with

the help of the information ontained in the Fermi lagrangian. Let us �rst onsider the eletron

and the eletron neutrino. They partiipate in the weak interation via the urrent

J

�

= �

e



�

1

2

(1� 

5

)e: (2.1.4)

We would like to rewrite J

�

in the form of a Noether urrent,
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j

; (2.1.5)

where  

i

are the omponents of some multiplet of the (as yet unknown) gauge group, and T

A

ij

are the orresponding generators. In the ase of J

�

, this an be done in the following way. We

observe that the urrent J

�

an be written as

J

�

= L

�

�

+

L; (2.1.6)
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and �

i

are the usual Pauli matries. The hermitian onjugate urrent

J

y

�

= L

�

�

�

L; �

�

=

1

2

(�

1

� i�

2

) (2.1.9)

will also partiipate in the interation. The urrents are in one-to-one orrespondene with

the generators of the symmetry group, whih, in turn, form a losed set with respet to the

ommutation operation: the ommutator of two generators is also a generator. Therefore, the

urrent

J

�

3

= L

�

[�

+

; �

�

℄L = L

�

�

3

L (2.1.10)

will also be present. No other urrent must be introdued, sine

[�

3

; �

�

℄ = 2�

�

: (2.1.11)

We have thus interpreted the urrent J

�

as one of the three onserved urrents of a theory with

SU(2) gauge invariane, the Pauli matries being the generators of SU(2) in the fundamental

representation, and we have assigned the left-handed neutrino and eletron �elds to an SU(2)

doublet. The right-handed neutrino and eletron omponents, �

e

R

and e

R

, do not take part in
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the weak-interation phenomena desribed by the Fermi lagrangian, so they must be assigned

to the singlet (or salar) representation. Of ourse, this is not the only possible hoie, but it

is the simplest possibility (and also the orret one, as we will see) sine it does not require the

introdution of fermion �elds other than the observed ones.

The urrent J

�

3

is a neutral urrent: it ontains reation and annihilation operators of partiles

with the same harge (atually, of the same partile). Neutral urrents do not appear in the

Fermi lagrangian; no neutral urrent phenomenon is observed in low-energy weak interations.

As we will see, the experimental observation of phenomena indued by weak neutral urrents is a

ruial test of the validity of the standard model. Notie also that the neutral urrent J

�

3

annot

be identi�ed with the only other neutral urrent we know of, the eletromagneti urrent. This

is for two reasons: �rst, the eletromagneti urrent involves both left-handed and right-handed

fermion �elds with the same weight; and seond, the eletromagneti urrent does not ontain a

neutrino term, the neutrino being hargeless. We will ome bak later to the problem of neutral

urrents, that will end up with the inlusion of the eletromagneti urrent in the theory. For the

moment, we go on with the onstrution of our SU(2) gauge theory. We must introdue vetor

meson �elds W

�

i

, one for eah of the three SU(2) generators, and build a ovariant derivative

D

�

= �

�

� igW

�

i

T

i

; (2.1.12)

where we have introdued, as is ustomary in gauge theories, a oupling onstant g. The matries

T

i

are generators of SU(2) in the representation of the multiplet the ovariant derivative is ating

on. For example, when D

�

ats on the doublet L, we have T

i

� �

i

=2, and when it ats on the

gauge singlet e

R

we have T

i

� 0. We are now ready to write the gauge-invariant lagrangian for

the fermion �elds (whih we assume massless for the time being):

L = iLD=L+ i�

e

R

D= �

e

R

+ ie

R

D= e

R

= L

kin

+ L



+ L

n

(2.1.13)

where D= = 

�

D

�

. The lagrangian L ontains the usual kineti term for massless fermions,

L

kin

= iL �=L + i�

e

R

�= �

e

R

+ ie

R

�= e

R

; (2.1.14)

plus an interation term L



+ L

n

, where

L



= gW

�
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�
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�

2

2

L (2.1.15)

orresponds to harged-urrent interations, and

L

n

= gW

�

3
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g

2
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3

(�

e
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�
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e

L

) (2.1.16)

to neutral urrent interations. The harged-urrent term L



is usually expressed in terms of

the �elds

W

�

�

=

1

p

2

(W

1

�

� iW

2

�

): (2.1.17)
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We �nd

L
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g

p

2

L

�

�

+

LW

+

�

+

g

p

2

L

�

�

�

LW

�

�

: (2.1.18)

We have already observed that the neutral urrent J

�

3

= L

�

�

3

L annot be identi�ed with

the eletromagneti urrent, and orrespondingly that the gauge vetor boson W

�

3

annot be

interpreted as the photon. The onstrution of the model an therefore proeed in two di�erent

diretions: either we modify the multiplet struture of the theory, in order to make J

�

3

equal to

the eletromagneti urrent; or we admit the possibility of the existene of weak neutral urrents,

and we extend the gauge group in order to aommodate also the eletromagneti urrent in

addition to J

�

3

. We proeed to desribe the seond possibility, whih is the one that turns out

to be orret, after the disovery of weak proesses indued by neutral urrents. Nevertheless,

it should be kept in mind that this was not at all obvious to physiists before the observation of

weak neutral-urrent e�ets.

The simplest way of extending the gauge group SU(2) to inlude a seond neutral generator

is to inlude an abelian fator U(1):

SU(2)! SU(2)
 U(1): (2.1.19)

We will require our lagrangian to be invariant also under the U(1) gauge transformations

 !  

0

= exp

"

ig

0

�

Y ( )

2

#

 ; (2.1.20)

where  is a generi �eld of the theory, g

0

is the oupling onstant assoiated with the U(1)

fator of the gauge group, and Y ( ) is a quantum number, usually alled the weak hyperharge,

to be spei�ed for eah �eld  . Sine the SU(2) fator of the gauge group ats in a di�erent

way on left-handed and right-handed fermions (it is a hiral group), it is natural to allow for the

possibility of assigning di�erent hyperharge quantum numbers to the left and right omponents

of the same fermion �eld. A new gauge vetor �eld B

�

must be introdued, and the ovariant

derivative beomes

D

�

= �

�

� igW

�

i

T

i

� ig

0

Y

2

B

�

; (2.1.21)

where Y is a diagonal matrix with the hyperharge values in its diagonal entries. Y being

diagonal, only the term L

n

is modi�ed. We have now

L

n
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g

2

W

�

3
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℄ : (2.1.22)

This an be written as

L

n

= g	

�

T

3

	W

�

3

+ g

0

	

�

Y

2

	B

�

; (2.1.23)

where 	 is a olumn vetor formed with all left-handed and right-handed fermioni �elds in the

theory, and T

3

= �1=2 for �

e

L

and e

L

respetively, and T

3

= 0 for �

e

R

and e

R

. We an now
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assign the quantum numbers Y in suh a way that the eletromagneti interation term appear

in eq. (2.1.22). To do this, we �rst perform a rotation by an angle �

W

in the spae of the two

neutral gauge �elds W

�

3

; B

�

:

B

�

= A

�

os �

W

� Z

�

sin �

W

(2.1.24)

W

�

3

= A

�

sin �

W

+ Z

�

os �

W

: (2.1.25)

In terms of the new vetor �elds A

�

, Z

�

, eq. (2.1.23) takes the form

L

n

= 	

�

�

g sin �

W

T

3

+

Y

2

g

0

os �

W
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	A

�

+	

�

�

g os �

W

T

3

�

Y

2

g

0

sin �

W

�

	Z

�

: (2.1.26)

In order to identify one of the two neutral vetor �elds, say A

�

, with the photon �eld, we must

hoose Y (L), Y (�

e

R

) and Y (e

R

) so that A

�

ouples to the eletromagneti urrent

J

�

em

= �e (e

R



�

e

R

+ e

L



�

e

L

) � e	

�

Q	; (2.1.27)

where Q is the eletromagneti harge matrix in units of the positron harge e. In other words,

it must be

T

3

g sin �

W

+

Y

2

g

0

os �

W

= eQ : (2.1.28)

The weak hyperharges Y appear in eq. (2.1.28) only through the ombination Y g

0

: thus, we

have the freedom of resaling the hyperharges by a ommon fator K, provided we resale g

0

by 1=K. This freedom an be used to �x arbitrarily the value of one of the three hyperharges

Y (L); Y (�

e

R

); Y (e

R

). The onventionally adopted hoie is

Y (L) = �1: (2.1.29)

With this hoie, eq. (2.1.28) restrited to the doublet of left-handed leptons is

+

1

2

g sin �

W

�

1

2

g

0

os �

W

= 0 (2.1.30)

�

1

2

g sin �

W

�

1

2

g

0

os �

W

= �e; (2.1.31)

whih gives

g sin �

W

= g

0

os �

W

= e: (2.1.32)

(For a generi doublet of fermions with harges Q

1

and Q

2

the r.h.s. of eq. (2.1.32) beomes

e(Q

1

�Q

2

), but gauge invariane of the harged oupling requires Q

1

�Q

2

= 1.) Equation (2.1.28)

then redues to

T

3

+

Y

2

= Q; (2.1.33)

whih is valid for any fermion. For example, we �nd

Y (�

e

R

) = 0; Y (e

R

) = �2: (2.1.34)
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This ompletes the assignments of weak hyperharge values to all fermion �elds. Notie that the

right-handed neutrino has zero harge and zero hyperharge, and it is an SU(2) singlet: it does

not take part in eletroweak interations.

The seond term in eq. (2.1.26) de�nes the weak neutral urrent oupled to the other neutral

vetor boson Z

�

. It an be written as

e	

�

Q

Z

	Z

�

; (2.1.35)

where

Q

Z

=

1

os �

W

sin �

W

�

T

3

�Q sin

2

�

W

�

: (2.1.36)

The extension of the theory to more lepton doublets is straightforward.

We must now inlude hadrons in the theory. We will do this in terms of quark �elds, taking

as a starting point the hadroni urrent responsible for � deay and strange partile deays:

J

�

had

= os �



u

�

1

2

(1� 

5

)d+ sin �



u

�

1

2

(1� 

5

)s; (2.1.37)

where �



is the Cabibbo angle (�



� 13

Æ

) and u, d, s are the up, down and strange quark �elds

respetively. We are tempted to proeed as in the ase of leptons: de�ne
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(2.1.38)

and

T

+

=

2

6

4

0 os �



sin �



0 0 0

0 0 0

3

7

5

; (2.1.39)

so that

J

�

had

= Q

�

T

+

Q: (2.1.40)

This leads to a system of urrents whih is in ontrast with experimental observations. Indeed,

we �nd that

T

3

= [T

+

; T

�

℄ =

2

6

4

1 0 0

0 � os

2

�



� os �



sin �



0 � os �



sin �



� sin

2

�



3

7

5

: (2.1.41)

The orresponding neutral urrent ontains avour-hanging terms, suh as e.g. d

L



�

s

L

, with a

weight of the same order of magnitude of avour-onserving ones. These terms indue proesses

at a rate whih is not ompatible with experimental observation. For example, the ratio of the

deay rates for the proesses

K

+

! �

0

e

+

�

e

(2.1.42)

K

+

! �

+

e

+

e

�

(2.1.43)
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is approximately

r =

"

sin �



sin �



os �



#

2

=

1

os

2

�



' 1:1; (2.1.44)

while observations give

r

exp

' 1:3� 10

5

; (2.1.45)

that is, the harged-urrent proess (s! u) is enhaned by �ve orders of magnitude with respet

to the neutral-urrent (s ! d) one. Our theory should therefore be modi�ed in order to avoid

the introdution of avour-hanging neutral urrents. The solution to this puzzle was found

by S. Glashow, J. Iliopoulos and L. Maiani. They suggested to introdue a fourth quark  (for

harm) with harge 2=3 like the up quark, and to assume that its ouplings to down and strange

quarks are given by

J

�

had

= os �



u

�

1

2

(1� 

5

)d+ sin �



u

�

1

2

(1� 

5

)s

� sin �





�

1

2

(1� 

5

)d+ os �





�

1

2

(1� 

5

)s: (2.1.46)

The  quark being not observed at the time, they had to assume that its mass was muh larger

than those of u, d and s quarks, and therefore outside the energy range of available experimental

devies. The urrent J

�

had

an still be put in the form (2.1.40), where now

Q =

2

6

6

6

4

u

L



L

d

L

s

L

3

7

7

7

5

(2.1.47)

and

T

+

=

2

6

6

6

4

0 0 os �



sin �



0 0 � sin �



os �



0 0 0 0

0 0 0 0

3

7

7

7

5

: (2.1.48)

No avour-hanging neutral urrent is now present. In fat,

[T

+

; T

�

℄ =

2

6

6

6

4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

3

7

7

7

5

; (2.1.49)

thanks to the fat that the upper right 2 � 2 blok of T

+

has been leverly hosen to be an

orthogonal matrix. The existene of the quark  was later on�rmed by the disovery of the J= 

partile. The urrent J

�

had

is usually written in the following form, analogous to the orresponding

leptoni urrent:

J

�

had

= (u

L

d

0

L

)

�

�

+

 

u

L

d

0

L

!

+ (

L

s

0

L

)

�

�

+

 



L

s

0

L

!

; (2.1.50)
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where

 

d

0

L

s

0

L

!

= V

 

d

L

s

L

!

; V =

"

os �



sin �



� sin �



os �



#

: (2.1.51)

The pairs (u; d), (; s) are alled quark families. Atually, there is a orrespondene between

quark and lepton families, whose origin will be investigated in setion 3.3. The struture outlined

above an be extended to an arbitrary number of quark families. With n families, V beomes an

n� n matrix, and it must be unitary in order to ensure the absene of avour-hanging neutral

urrents.

The �nal form of the harged-urrent interation term, inluding n families of leptons and

quarks, is then

L



=

g

p

2

n

X

f=1

�

L

f



�

�

+

L

f

+Q

f



�

�

+

Q

f

�

W

+

�

+ h::; (2.1.52)

where

L

f

=

 

�

e

L

e

L

!

;

 

�

�

L

�

L

!

; : : : (2.1.53)

Q

f

=

 

u

L

d

0

L

!

;

 



L

s

0

L

!

; : : : : (2.1.54)

An equivalent (and often more useful) form of eq. (2.1.52) is

L



=

g

p

2

0

�

n

X

f=1

��

f

L



�

e

f

L

+

n

X

f;g=1

�u

f

L



�

V

fg

d

g

L

1

A

W

+

�

+ h:: (2.1.55)

The neutral-urrent lagrangian in eq. (2.1.23) is diretly generalizable to inlude quark �elds.

To onlude the onstrution of the standard model lagrangian, we must onsider the pure

Yang-Mills term

L

YM

= �

1

4

B

��

B

��

�

1

4

W

i

��

W

��

i

; (2.1.56)

where

B

��

= �

�

B

�

� �

�

B

�

W

��

i

= �

�

W

�

i

� �

�

W

�

i

+ g�

ijk

W

�

j

W

�

k

: (2.1.57)

The orresponding expression in terms of the physial �eldsW

�

�

, Z

�

and A

�

an be easily worked

out with the help of eqs. (2.1.17), (2.1.24) and (2.1.25), whih we rewrite here:

W

1

�

=

1

p

2

(W

+

�

+W

�

�

) (2.1.58)

W

2

�

=

i

p

2

(W

+

�

�W

�

�

) (2.1.59)

W

3

�

= A

�

sin �

W

+ Z

�

os �

W

(2.1.60)

B

�

= A

�

os �

W

� Z

�

sin �

W

: (2.1.61)
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We get

W

1

��

=

1

p

2

h

W

+

��

+ ig sin �

W

(W

+

�

A

�

�W

+

�

A

�

) + ig os �

W

(W

+

�

Z

�

�W

+

�

Z

�

)

i

+ h::

W

2

��

=

i

p

2

h

W

+

��

+ ig sin �

W

(W

+

�

A

�

�W

+

�

A

�

) + ig os �

W

(W

+

�

Z

�

�W

+

�

Z

�

)

i

+ h::

W

3

��

= F

��

sin �

W

+ Z

��

os �

W

� ig(W

+

�

W

�

�

�W

�

�

W

+

�

)

B

��

= F

��

os �

W

� Z

��

sin �

W

; (2.1.62)

where

F

��

= �

�

A

�

� �

�

A

�

(2.1.63)

Z

��

= �

�

Z

�

� �

�

Z

�

(2.1.64)

W

��

�

= �

�

W

�

�

� �

�

W

�

�

: (2.1.65)

It follows that

L

YM

= �

1

4

F

��

F

��

�

1

4

Z

��

Z

��

�

1

2

W

+

��

W

��

�

(2.1.66)

+ig sin �

W

(W

+

��

W

�

�

A

�

�W

�

��

W

�

+

A

�

+ F

��

W

�

+

W

�

�

)

+ig os �

W

(W

+

��

W

�

�

Z

�

�W

�

��

W

�

+

Z

�

+ Z

��

W

�

+

W

�

�

)

�

g

2

2

(2g

��

g

��

� g

��

g

��

� g

��

g

��

)

�

W

+

�

W

�

�

(A

�

A

�

sin

2

�

W

+ Z

�

Z

�

os

2

�

W

+ 2A

�

Z

�

sin �

W

os �

W

)�

1

2

W

+

�

W

+

�

W

�

�

W

�

�

�

2.2 Masses

Masses for the gauge bosons

We will now show that, in order to make ontat with the Fermi theory, whih is known to

orretly desribe low-energy weak interations, the gauge vetor bosons of weak interations

must have a non-zero mass. We will also be able to set a lower bound to the mass of the W

boson. Let us onsider the amplitude for down-quark � deay. In the Fermi theory, it is simply

given by

�

G

F

p

2

u

�

(1� 

5

)d e

�

(1� 

5

)�

e

: (2.2.1)

In the ontext of the standard model, the same proess is indued by the exhange of aW boson,

with amplitude

 

g

p

2

u

L



�

d

L

!

1

q

2

�m

2

W

 

g

p

2

e

L



�

�

e

L

!

; (2.2.2)

(we are negleting Cabibbo mixing for simpliity). The virtuality q

2

of the exhanged vetor

boson is bounded from above by the square of the neutron-proton mass di�erene, q

2

� (m

N

�

11



m

P

)

2

� (1:3 MeV)

2

. For eq. (2.2.2) to be equal to the Fermi amplitude in the q

2

! 0 limit, m

W

must be non zero, and

G

F

p

2

=

 

g

2

p

2

!

2

1

m

2

W

: (2.2.3)

Realling that g = e= sin �

W

, eq. (2.2.3) gives us the lower bound

m

W

� 37:3 GeV; (2.2.4)

quite a large value, if ompared with the present upper bound on the photon mass,

m



� 2 � 10

�16

eV: (2.2.5)

So, we know sine the beginning that if weak interations are to be mediated by vetor bosons,

these must be very heavy. On the other hand, we also know that gauge theories are inompatible

with mass terms for the vetor bosons. One possibility is to break gauge invariane expliitly

and insert a mass term for the W boson by hand, but this leads to a non-renormalizable theory.

Let us investigate this point in more detail. Consider for simpliity the lagrangian of a pure

abelian gauge theory, with a mass term for the gauge vetor �eld:

L = �

1

4

(�

�

A

�

� �

�

A

�

)(�

�

A

�

� �

�

A

�

) +

1

2

m

2



A

�

A

�

; (2.2.6)

and work out the propagator �

��

for A

�

in momentum spae. We get

�

��

=

i

k

2

�m

2



 

�g

��

+

k

�

k

�

m

2



!

: (2.2.7)

The propagator �

��

has not the orret behaviour for large values of the momentum k: for

k !1 it beomes a onstant, rather than vanishing as k

�2

, thus violating power-ounting and

making the theory unrenormalizable.

A related problem of a massive vetor boson theory, suh as the one de�ned by eq. (2.2.6),

is again unitarity of the sattering matrix. The amplitude for a generi physial proess whih

involves the emission or the absorption of a vetor boson with four-momentum k and polarization

vetor �(k) has the form

M =M

�

�

�

(k): (2.2.8)

A massive vetor (ontrary to a massless one) may be polarized longitudinally. In this ase,

hoosing the z axis along the diretion of the 3-momentum of the vetor boson, the polarization

is given by

�

L

= (k=m



; 0; 0; E=m



) = k=m



+O(m

2



=E

2

); (2.2.9)

where we have imposed the transversity ondition p � � = 0 and the normalization ondition �

2

=

�1. Clearly, the amplitudeM will grow inde�nitely with the energy E, unless some mehanism

takes plae to ut o� this growth, and unitarity of the sattering matrix will eventually be

violated.
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To see how one an introdue a mass term for gauge vetor bosons without spoiling renor-

malizability and unitarity, we �rst onsider a simple example where this happens, and then we

generalize our onsiderations to the standard model. The simple theory we onsider is salar

eletrodynamis, that is, a gauge theory based on U(1) invariane, oupled to one omplex salar

�eld � with harge e. The lagrangian is given by

L = �

1

4

F

��

F

��

+ (D

�

�)

y

D

�

�� V (�); (2.2.10)

where D

�

= �

�

� ieA

�

, and V (�) is the so-alled salar potential, whih is onstrained by gauge

invariane and renormalizability to be of the form

V (�) = m

2

j � j

2

+� j � j

4

: (2.2.11)

We look for �eld on�gurations that minimize the energy of the system. Beause of the require-

ment of translational invariane, they must be onstant on�gurations, so we an neglet the

derivative terms and look for the minimum of the potential V . Now, if m

2

� 0, then V has a

minimum for � = 0. If, on the other hand, m

2

< 0, then m

2

an no longer be interpreted as a

mass squared for the �eld �; furthermore, the potential has now an in�nite number of degenerate

minima, given by all those �eld on�gurations for whih

j � j

2

= �

m

2

2�

�

1

2

v

2

: (2.2.12)

All these minimum on�gurations (in the language of quantum theory, all these ground states)

are onneted by gauge transformations, that hange the phase of the omplex �eld � without

a�eting its modulus. The system will hoose one of the in�nite possible minimum on�gura-

tions. This phenomenon is usually alled spontaneous breaking of the gauge symmetry, but the

symmetry is not atually broken. In fat, the Lagrangian is still gauge invariant, and all the

properties onneted with this invariane (suh as, for example, urrent onservation) are still

there. It is important to stress this point, beause at the quantum level this is essentially what

guarantees the renormalizability of the theory, whih would instead be lost in the ase of an

expliit breaking of the gauge symmetry.

Let us now expand the �eld � around one of the in�nite minimum on�gurations; we hoose

the one for whih � is real at the minimum, but of ourse any other hoie would be equivalent.

We introdue real salar �elds H(x) and G(x) by

�(x) =

1

p

2

[v +H(x) + iG(x)℄ ; (2.2.13)

where v is de�ned in eq. (2.2.12). In priniple, the �eld G ould have been removed from the

lagrangian by an appropriate gauge transformation. In fat, we ould have �rst applied a loal

gauge transformation to � in order to make it real, and then shift it aording to � = (v+H)=

p

2.

For the moment, we keep both H and G in the lagrangian; we will ome bak to this point later.

Up to an irrelevant onstant, the salar potential takes the form

V (�) = (m

2

v + �v

3

)H +

1

2

(m

2

+ 3�v

2

)H

2

+

1

2

(m

2

+ �v

2

)G

2

+�vH(H

2

+G

2

) +

�

4

(H

2

+G

2

)

2

: (2.2.14)
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Using eq. (2.2.12), �v

2

= �m

2

, we see that the terms proportional to H and G

2

vanish, whih

means that the �eld G is massless. The oeÆient of the H

2

term is now (�2m

2

)=2, and has

therefore the orret sign to be interpreted as a mass term (remember that m

2

is negative).

After the reparametrization eq. (2.2.13), the jD�j

2

term takes the following form:

(D

�

�)

y

D

�

� =

1

2

�

�

H�

�

H +

1

2

�

�

G�

�

G+

1

2

e

2

(H

2

+G

2

+ 2vH)A

�

A

�

� eA

�

(H�

�

G�G�

�

H)� evA

�

�

�

G+

1

2

e

2

v

2

A

�

A

�

: (2.2.15)

We see that the gauge �eld A

�

has aquired a mass m



= ev, preisely the result we were looking

for. The term �evA

�

�

�

G is unpleasant, beause it mixes the gauge vetor �eld A

�

with the

unphysial �eld G; we will see in a moment how to get rid of it.

We must now hek that the appearane of a mass term for A

�

via the spontaneous symme-

try breaking mehanism has not spoiled the renormalizability of our theory, ontrary to what

happened when we tried to break the symmetry expliitly. It is well known that, in order to

quantize a gauge theory, a gauge-�xing term must be added to the lagrangian (obviously, this

was not neessary in the ase of expliit gauge symmetry breaking). A onvenient hoie for the

gauge-�xing term is

L

GF

= �

1

2�

(�

�

A

�

+ ev�G)

2

; (2.2.16)

where � is an arbitrary onstant (the gauge parameter). Equation (2.2.16) orresponds to the

gauge-�xing ondition

�

�

A

�

= �ev�G: (2.2.17)

The gauge-�xing lagrangian (2.2.16) has been arefully hosen in order to anel the term pro-

portional to A

�

�

�

G in eq. (2.2.15). Indeed, eq. (2.2.16) ontains a term �ev�

�

AG, whih after

partial integration anels the unwanted term in eq. (2.2.15). Observe also that the gauge-�xing

lagrangian introdues a term

�

1

2

�e

2

v

2

G

2

= �

1

2

�m

2



G

2

; (2.2.18)

whih gives a squared mass �m

2



to the unphysial �eld G.

Colleting the various terms, the lagrangian is given by:

L = �

1

2

(�

�

A

�

�

�

A

�

� �

�

A

�

�

�

A

�

) +

1

2

m

2



A

�

A

�

�

1

2�

(�

�

A

�

)

2

+

1

2

�

�

H�

�

H �

1

2

m

2

H

H

2

+

1

2

�

�

G�

�

G�

1

2

�m

2



G

2

+

1

2

e

2

(H

2

+G

2

+ 2vH)A

�

A

�

� eA

�

(H�

�

G�G�

�

H)

��vH(H

2

+G

2

)�

�

4

(H

2

+G

2

)

2

; (2.2.19)

where m



= ev and m

2

H

= 2�v

2

. The propagators an be worked out from the quadrati terms,

olleted in the �rst two rows of eq. (2.2.19). We get

�

��

�

(k) =

i

k

2

�m

2



"

�g

��

+

(1� �)k

�

k

�

k

2

� �m

2



#

(2.2.20)
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for the photon propagator, and

�

H

(k) =

i

k

2

�m

2

H

; �

G

(k) =

i

k

2

� �m

2



(2.2.21)

for the two salar propagators.

Observe that the photon propagator has now the orret behaviour 1=k

2

at large momenta.

However, in addition to the pole at k

2

= m

2



, an unphysial singularity at k

2

= �m

2



has now

appeared. This singularity is loated at the mass squared of the unphysial salar �eld G. One

an prove that the ontributions of this term of the photon propagator to physial quantities

are exatly anelled by the ontributions of G exhange. It is easy to hek this anellation in

spei� ases, suh as e.g. H ! H sattering at tree level. In order to perform this kind of

heks, it is useful to rewrite the propagator in eq. (2.2.20) in the form

�

��

�

(k) =

i

k

2

�m

2



 

�g

��

+

k

�

k

�

m

2



!

�

k

�

k

�

m

2



i

k

2

� �m

2



; (2.2.22)

where the G propagator appears expliitly.

When we let � tend to in�nity, the photon propagator eq. (2.2.20) takes the form of eq. (2.2.7):

lim

�!1

�

��

�

(k) =

i

k

2

�m

2



 

�g

��

+

k

�

k

�

m

2



!

: (2.2.23)

The theory is still renormalizable, but in a hidden way: renormalizability must arise as a on-

sequene of anellations among di�erent ontributions to the same Green funtion, sine the

propagator does not obey the power-ounting rule. The limit � !1 is alled the unitary gauge.

The advantage of the unitary gauge is that the theory ontains only physial degrees of free-

dom. In fat, when � ! 1 the gauge-�xing ondition redues to G(x) = 0 (see eq. (2.2.16));

it orresponds to the gauge hoie that eliminates G from the theory sine the very beginning.

The drawbak is that in the unitary gauge renormalizability is not manifest at eah intermediate

step of a alulation.

Two ommon gauge hoies are the Feynman gauge, � = 1, whih gives

�

��

F

= �

ig

��

k

2

�m

2



(2.2.24)

and the Landau gauge, � = 0, for whih

�

��

L

=

i

k

2

�m

2



 

�g

��

+

k

�

k

�

k

2

!

: (2.2.25)

One last observation about the �eld G(x). It looks like we lost a degree of freedom, sine we

started with a omplex salar �eld and we end up with one real salar. Atually, the number

of degrees of freedom stays the same, sine the photon is now massive, and has therefore three

polarization states instead of two. The �eld G(x) is alled a would-be Goldstone boson. This

terminology reets the fat that, in the absene of gauge invariane and of the gauge-�xing
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term, G would have simply been a physial, zero-mass state, whih is always present when

spontaneous symmetry breaking ours. This mehanism is known as the Higgs mehanism. It

is possible to extend it to the standard model, with a few modi�ations that we now desribe in

detail.

We have learned that, in order to break spontaneously a gauge symmetry, we must intro-

due salar �elds in the game. How should we do this in the standard model? First, the salar

�eld must transform non-trivially under that part of the gauge group that we want to undergo

spontaneous breaking. Seondly, we must be areful not to break the U(1) invariane orre-

sponding to eletrodynamis, or, in other words, we want the photon to stay massless. This

means that spontaneous symmetry breaking must take plae in three of the four \diretions" of

the SU(2)� U(1) gauge group, the fourth one being that orresponding to eletri harge. The

simplest way to do this is to assign the salar �eld � to a doublet representation of SU(2):

� =

 

�

1

�

2

!

: (2.2.26)

The Higgs mehanism takes plae in analogy with salar eletrodynamis. The most general

salar potential onsistent with gauge invariane and renormalizability is

V (�) = m

2

j � j

2

+� j � j

4

; (2.2.27)

whih has a minimum at

j � j

2

= �

m

2

2�

�

1

2

v

2

: (2.2.28)

The value of the hyperharge of the salar doublet � is �xed by the requirement that the minimum

on�guration

� =

1

p

2

 

v

1

v

2

!

; jv

1

j

2

+ jv

2

j

2

= v

2

(2.2.29)

is left unhanged by eletromagneti gauge transformations, that orrespond to the subgroup

U(1)

em

. This orresponds to the requirement

e

ieQ�

1

p

2

 

v

1

v

2

!

=

1

p

2

 

v

1

v

2

!

; (2.2.30)

or equivalently

 

Q

1

0

0 Q

2

! 

v

1

v

2

!

=

 

1=2 + Y=2 0

0 �1=2 + Y=2

! 

v

1

v

2

!

=

 

0

0

!

; (2.2.31)

where Q

1

; Q

2

are the eletri harges of �

1

; �

2

, and we have used eq. (2.1.33). There are two

possibilities:

1) v

1

= 0; jv

2

j = v; Y = +1 (2.2.32)

2) v

2

= 0; jv

1

j = v; Y = �1: (2.2.33)
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We will adpot the �rst hoie, with Y = +1 and therefore Q

1

= 1; Q

2

= 0. We will further

assume that v

2

is real and positive.

We an reparameterize � in the following way:

� =

1

p

2

e

i�

i

�

i

(x)=v

 

0

v +H(x)

!

; (2.2.34)

with �

i

(x) and H(x) real. This parametrization is not suited for renormalizable gauges, beause

it is non-linear and ontains all powers of the �elds �

i

. It is onvenient, however, if we work in

the unitary gauge; in fat, it is apparent that the �elds �

i

an be transformed away by an SU(2)

gauge transformation. In this setion, we will use the unitary gauge �

i

= 0. The standard model

lagrangian in a generi renormalizable gauge is given in Appendix 4.4.

The salar potential takes the form

V =

1

2

(2�v

2

)H

2

+ �vH

3

+

1

4

�H

4

; (2.2.35)

the Higgs salar H has a squared mass m

2

H

= 2�v

2

. The term (D

�

�)

y

D

�

� an be worked out

using eq. (2.2.34) with �

i

= 0. We get

D

�

� =

 

�

�

� i

g

2

�

i

W

i

�

� i

g

0

2

B

�

!

1

p

2

 

0

H(x) + v

!

=

1

p

2

 

0

�

�

H

!

�

i

2

(H + v)

1

p

2

 

g(W

�

1

� iW

�

2

)

�gW

�

3

+ g

0

B

�

!

=

1

p

2

 

0

�

�

H

!

�

i

2

(H + v)

 

gW

�

+

�

q

(g

2

+ g

0

2

)=2Z

�

!

; (2.2.36)

where in the last step we have used eqs. (2.1.17), (2.1.24), (2.1.25) and (2.1.32). We have

therefore

(D

�

�)

y

D

�

� =

1

2

�

�

H�

�

H +

�

1

4

g

2

W

�

+

W

�

�

+

1

8

(g

2

+ g

0

2

)Z

�

Z

�

�

(H + v)

2

: (2.2.37)

We see that the W and Z bosons have aquired masses

m

2

W

=

1

4

g

2

v

2

(2.2.38)

m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

: (2.2.39)

Note that the photon stays massless. With the salar �eld � transforming as a doublet of SU(2),

there is always a linear ombination of B

�

and W

�

3

that does not reeive a mass term, but only

if Y (�) = 1 (or �1) does this linear ombination oinide with the one in eq. (2.1.24). The

lagrangian in a generi renormalizable gauge is muh more ompliated, sine it also involves

kineti and interation terms for non-physial Higgs salars, the would-be Goldstone bosons. It

is desribed in Appendix 4.4.
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The value of v, the vauum expetation value of the neutral omponent of the Higgs doublet,

an be obtained ombining eqs. (2.2.3) and (2.2.38), and using the measured valued of the Fermi

onstant. We get

v =

s

1

G

F

p

2

' 246:22 GeV: (2.2.40)

The value of the Higgs quarti oupling � (or equivalently the Higgs mass) is not �xed by our

present knowledge.

Masses for hadrons and avour-mixing

Fermion masses are also forbidden by the gauge symmetry of the standard model. In fat, the

mass term for a fermion �eld  has the form

�m  = �m( 

L

 

R

+  

R

 

L

); (2.2.41)

and annot be invariant under a hiral transformation, that is, a transformation that ats di�er-

ently on left-handed and right-handed �elds. The gauge transformations of the standard model

are preisely of this kind. Again, this diÆulty an be irumvented by means of the Higgs

doublet �.

We �rst onsider the hadroni setor. We have seen in setion 2.1 that the interation

lagrangian is not diagonal in terms of quark �elds with de�nite avours. Let us all u

0

f

and

d

0

f

the �elds that bring the interation terms diagonal (the index f runs over the n fermion

generations); in priniple, there is no reason why only down-type quarks should be rotated. We

also de�ne

Q

0

f

=

 

u

0

f

L

d

0

f

L

!

U

0

f

= u

0

f

R

D

0

i

= d

0

f

R

: (2.2.42)

A Yukawa interation term an be added to the lagrangian:

L

hadr

Y

= �(

�

Q

0

�h

0

D

D

0

+

�

D

0

�

y

h

0

y

D

Q

0

)� (

�

Q

0

�



h

0

U

U

0

+

�

U

0

�

y



h

0

y

U

Q

0

); (2.2.43)

where h

0

U

and h

0

D

are generi n� n onstant omplex matries in the generation spae, and

�



=

 

�

0

�

��

�

!

: (2.2.44)

It easy to hek that L

hadr

Y

is Lorentz-invariant, gauge-invariant

2

and renormalizable, and there-

fore it an (atually, it must) be inluded in the lagrangian. The matries h

0

U

and h

0

D

an be

diagonalized by means of bi-unitary transformations:

h

U

� V

U

L

y

h

0

U

V

U

R

(2.2.45)

h

D

� V

D

L

y

h

0

D

V

D

R

; (2.2.46)

2

If � transforms as an SU(2) doublet, so does �



= ��

�

, where � is the antisymmetri tensor; hek it as an

exerise.
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where V

U;D

L;R

are unitary matries, hosen so that are diagonal with real, non-negative entries.

Now, we de�ne new quark �elds u and d by

u

0

L

= V

U

L

u

L

; u

0

R

= V

U

R

u

R

(2.2.47)

d

0

L

= V

D

L

d

L

; d

0

R

= V

D

R

d

R

; (2.2.48)

In the unitary gauge, eq. (2.2.43) beomes

L

hadr

Y

= �

1

p

2

(v +H)

n

X

f=1

(h

f

D

�

d

f

d

f

+ h

f

U

�u

f

u

f

); (2.2.49)

where h

f

U;D

are the diagonal entries of the matries h

U;D

. We an now identify the quark masses

with

m

f

U

=

vh

f

U

p

2

; m

f

D

=

vh

f

D

p

2

: (2.2.50)

Sine the matries V

U;D

L;R

are onstant in spae-time, eqs. (2.2.47,2.2.48) are obviously global

symmetry transformations of the free quark lagrangian. They also leave unhanged the neutral-

urrent interation term, beause of the universality of the ouplings of fermions of di�erent

families to the photon and the Z. The only term in the lagrangian whih is a�eted by

eqs. (2.2.47,2.2.48) is the harged-urrent interation, beause the up and down omponents

of the same left-handed doublet are transformed in a di�erent way. Indeed, we �nd

J

�

hadr

=

n

X

f=1

�

Q

0f



�

�

+

Q

0

f

=

n

X

f;g=1

�u

f

L



�

V

fg

d

g

L

; (2.2.51)

where

V = V

U

L

y

V

D

L

: (2.2.52)

The matrix V is usually alled the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitary

matrix, and its unitarity guarantees the suppression of avour hanging neutral urrents, as we

already disussed in setion 2 in the ase of two fermion families. The matrix V enters the

standard model lagrangian as a fundamental parameter, on the same step as masses and gauge

ouplings. The values of its entries must be determined from experiments.

To onlude this subsetion, we now determine the number of independent parameters in the

CKM matrix. A generi n � n unitary matrix is formed with n

2

independent real parameters.

Some (n

A

) of them an be thought of as rotation angles in the n-dimensional spae of generations,

and there are as many as the oordinate planes in N dimensions:

n

A

=

 

n

2

!

=

1

2

n(n� 1): (2.2.53)

The remaining parameters are just omplex phases; their number is

n̂

P

= n

2

� n

A

=

1

2

n(n+ 1): (2.2.54)
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Some of the n̂

P

omplex phases, however, an be eliminated by rede�ning the left-handed quark

�elds. This means that 2n � 1 phases are eliminable: in fat, there are n up-type quarks and

n down-type quarks, that an be rotated to eliminate the phase of one row and one olumn of

V , and the �1 aounts for the fat that the entry orresponding to the intersetion of the row

and the olumn annot be rotated twie. The number of really independent omplex phases in

V is therefore

n

P

= n̂

P

� (2n� 1) =

1

2

(n� 1)(n� 2): (2.2.55)

Observe that, with one or two fermion families, the CKM matrix an be made real. The �rst

ase with non-trivial phases is n = 3, whih orresponds to n

P

= 1. In the standard model with

three fermion families, the CKM matrix has four independent parameters: three rotation angles

and one omplex phase. In the general ase, the total number of independent parametersi in the

CKM matrix is

n

A

+ n

P

= (n� 1)

2

: (2.2.56)

Masses for leptons

The same proedure an be applied to the leptoni setor. Everything is formally unhanged:

up-quarks are replaed by neutrinos and down-quarks are replaed by harged leptons (e

�

, �

�

and �

�

). There is however an important di�erene, whih leads to onsiderable simpli�ations:

as we have seen, right-handed neutrinos have no interations. Therefore, there is no Yukawa

oupling involving the onjugate salar �eld �



, and there is only one matrix of Yukawa ouplings,

h

0

E

:

L

lept

Y

= �(L

0

�h

0

E

E

0

+ E

0

�

y

h

0

y

E

L

0

) ; (2.2.57)

whih an be diagonalized by means of a biunitary transformation

h

E

= V

E

L

y

h

0

E

V

E

R

: (2.2.58)

The di�erene with respet to the ase of quarks is that now we have the freedom of rede�ning

the left-handed neutrino �elds using the same matrix V

E

L

that rotates harged leptons:

�

0

L

= V

E

L

�

L

(2.2.59)

e

0

L

= V

E

L

e

L

; e

0

R

= V

E

R

e

R

: (2.2.60)

This puts the Yukawa interation in diagonal form,

L

lept

Y

= �

n

X

f=1

h

f

E

(

�

L

f

� e

f

R

+ �e

f

R

�

y

L

i

); (2.2.61)

but, ontrary to what happens in the quark setor, leaves the harged interation term un-

hanged, sine

J

�

lept

=

�

L

0



�

�

+

L

0

=

�

L

�

�

+

L =

n

X

f=1

��

f

L



�

e

f

L

: (2.2.62)
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In other words, in the leptoni setor there is no mixing among di�erent generations, beause

the Yukawa oupling matrix an be diagonalized by a global transformation under whih the

full lagrangian is invariant. As a onsequene, not only the overall leptoni number, but also

individual leptoni avors are onserved. This is due to the absene of right-handed neutrinos.

The values of the Yukawa ouplings h

f

E

are determined by the values of the observed lepton

masses. In fat, using eq. (2.2.34), we �nd

L

lept

Y

= �

n

X

f=1

h

f

E

p

2

(v +H)�e

f

e

f

; (2.2.63)

thus allowing the identi�ations

m

f

E

=

vh

f

E

p

2

: (2.2.64)

As in the ase of vetor bosons, in renormalizable gauges there are also interation terms between

quarks and non-physial salars; the details are given in Appendix 4.4.
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2.3 Summary

To summarize, the standard model lagrangian in the unitary gauge is given by

L

SM

= L

kin

+ L

em

+ L



+ L

n

+ L

YM

+ L

Higgs

+ L

Y ukawa

; (2.3.1)

where

� L

kin

is the free fermion lagrangian:

L

kin

=

n

X

f=1

h

��

f

i�= �

f

+ �e

f

(i�=�m

f

E

) e

f

+ �u

f

(i�=�m

f

U

) u

f

+

�

d

f

(i�=�m

f

D

) d

f

i

: (2.3.2)

The index f labels the n fermion families. Neutrinos are assumed massless.

� L

em

is the eletromagneti oupling:

L

em

= e

n

X

f=1

�

��e

f



�

e

f

+

2

3

�u

f



�

u

f

�

1

3

�

d

f



�

d

f

�

A

�

; (2.3.3)

� L



is the harged-urrent interation term:

L



=

g

2

p

2

2

4

n

X

f=1

��

f



�

(1� 

5

) e

f

+

n

X

f;g=1

�u

f



�

(1� 

5

)V

fg

d

g

3

5

W

+

�

+

g

2

p

2

2

4

n

X

f=1

�e

f



�

(1� 

5

) �

f

+

n

X

f;g=1

�

d

f



�

(1� 

5

)V

�

fg

u

g

3

5

W

�

�

: (2.3.4)

� L

n

is the neutral-urrent interation term:

L

n

=

e

4 os �

W

sin �

W

n

X

f=1

"

��

f



�

(1� 

5

) �

f

+ �e

f



�

�

�1 + 4 sin

2

�

W

+ 

5

�

e

f

+ �u

f



�

�

1�

8

3

sin

2

�

W

� 

5

�

u

f

+

�

d

f



�

�

�1 +

4

3

sin

2

�

W

+ 

5

�

d

f

#

Z

�

:(2.3.5)

� L

YM

is the pure Yang-Mills lagrangian:

L

YM

= �

1

4

F

��

F

��

�

1

4

Z

��

Z

��

�

1

2

W

+

��

W

��

�

(2.3.6)

+ig sin �

W

(W

+

��

W

�

�

A

�

�W

�

��

W

�

+

A

�

+ F

��

W

�

+

W

�

�

)

+ig os �

W

(W

+

��

W

�

�

Z

�

�W

�

��

W

�

+

Z

�

+ Z

��

W

�

+

W

�

�

)

�

g

2

2

(2g

��

g

��

� g

��

g

��

� g

��

g

��

)

�

W

+

�

W

�

�

(A

�

A

�

sin

2

�

W

+ Z

�

Z

�

os

2

�

W

+ 2A

�

Z

�

sin �

W

os �

W

)�

1

2

W

+

�

W

+

�

W

�

�

W

�

�

�

where

F

��

= �

�

A

�

� �

�

A

�

; Z

��

= �

�

Z

�

� �

�

Z

�

; W

��

�

= �

�

W

�

�

� �

�

W

�

�

: (2.3.7)
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� The Higgs setor provides a term

L

Higgs

=

1

2

�

�

H �

�

H+

�

m

2

W

W

�

+

W

�

�

+

1

2

m

2

Z

Z

�

Z

�

��

1 +

H

v

�

2

�

1

2

m

2

H

H

2

��vH

3

�

1

4

�H

4

:

(2.3.8)

� The Yukawa oupling L

Y ukawa

is given by

L

Y ukawa

= �

1

p

2

H

v

n

X

f=1

(m

f

D

�

d

f

d

f

+m

f

U

�u

f

u

f

+m

f

E

�e

f

e

f

): (2.3.9)

The parameters appearing in L

SM

are not all independent. The gauge-Higgs setor is entirely

spei�ed by the four parameters

g; g

0

; v; m

H

; (2.3.10)

sine

m

2

W

=

1

4

g

2

v

2

; m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

; � =

m

2

H

2v

2

; tan �

W

=

g

0

g

(2.3.11)

and g sin �

W

= g

0

os �

W

= e. However, g; g

0

; v are often eliminated in favour of the eletromag-

neti oupling �

em

, the Fermi onstant G

F

and the Z

0

mass m

Z

, whih are measured with high

auray. We have

�

em

=

g

2

g

0

2

4�(g

2

+ g

0

2

)

; G

F

=

1

p

2v

2

; m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

: (2.3.12)

The free parameters in the fermioni setor are the 3n masses m

f

U

; m

f

D

; m

f

E

, and the (n � 1)

2

independent parameters in the Cabibbo-Kobayashi-Maskawa matrix V . This gives a total of 17

free parameters for the standard model with three fermion generations.
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Chapter 3

Speial topis

3.1 The salar setor beyond the tree level

E�etive ation and e�etive potential

In this setion we will study the salar setor of the standard model, and in partiular the

phenomenon of spontaneous breaking of the gauge symmetry, beyond the lassial level. This is

most onveniently done in the ontext of the generating funtional formalism, whih we briey

reall. One introdues the funtional

Z[J ℄ = h0jTe

i

R

d

4

xJ(x)�(x)

j0i = h0j0i

J

; (3.1.1)

where J(x) is a lassial soure with the appropriate gauge transformation properties (we are

only interested in the salar setor, so we do not introdue here soures for the other �elds in

the theory). Funtional derivatives of Z[J ℄ with respet to J at J = 0 give the Green's funtions

of the theory; for this reason, Z[J ℄ is alled the generating funtional. It an be shown that the

funtional

W [J ℄ = �i logZ[J ℄ (3.1.2)

is the generating funtional for onneted Green's funtions. One then de�nes the lassial �eld

�



as

�



(x) =

ÆW [J ℄

ÆJ(x)

=

h0j�(x)j0i

J

h0j0i

J

(3.1.3)

and the e�etive ation �[�



℄ as

�[�



℄ = W [J ℄�

Z

d

4

x J(x)�



(x): (3.1.4)

The e�etive ation has an expansion in powers of the lassial �eld,

�[�



℄ =

1

X

n=0

1

n!

Z

d

4

x

1

: : : d

4

x

n

�



(x

1

) : : : �



(x

n

)�

n

(x

1

; : : : x

n

); (3.1.5)
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whose oeÆients �

n

(x

1

; : : : x

n

) an be shown to be the onneted, one-partile irreduible

Green's funtions of the theory. The funtional �[�



℄ is the appropriate tool to study spon-

taneous symmetry breaking. In fat, the ondition for spontaneous symmetry breaking is that

�



is di�erent from zero even when the soure J is set equal to zero, as an be read o� eq. (3.1.3).

On the other hand, for J = 0, one has

Æ�[�



℄

Æ�



= 0: (3.1.6)

We onlude that spontaneous symmetry breaking takes plae when the lassial �eld that

minimizes the e�etive ation is di�erent from zero.

Consider now the Fourier transforms of the funtions �

n

(x

1

; : : : x

n

):

�

n

(x

1

; : : : x

n

) =

Z

d

4

p

1

(2�)

4

: : :

d

4

p

n

(2�)

4

e

i(p

1

x

1

+:::p

n

x

n

)

(2�)

4

Æ(p

1

+ : : :+ p

n

)

~

�

n

(p

1

; : : : p

n

); (3.1.7)

and expand

~

�

n

in powers of momenta around p

i

= 0,

~

�

n

(p

1

; : : : ; p

n

) =

~

�

n

(0) + : : : : (3.1.8)

The e�etive ation beomes

�[�



℄ =

1

X

n=0

1

n!

Z

d

4

x

1

: : : d

4

x

n

�



(x

1

) : : : �



(x

n

)

Z

d

4

p

1

(2�)

4

: : :

d

4

p

n

(2�)

4

e

i(p

1

x

1

+:::p

n

x

n

)

Z

d

4

x e

�ix(p

1

+:::+p

n

)

h

~

�

n

(0) + : : :

i

=

Z

d

4

x

1

X

n=0

1

n!

~

�

n

(0)�

n



(x) + : : : : (3.1.9)

The �rst term in this expansion is usually written as

�

Z

d

4

x V (�



); (3.1.10)

where

V (�



) = �

1

X

n=0

1

n!

~

�

n

(0)�

n



(3.1.11)

is alled the e�etive potential of the theory, sine it does not ontain derivatives of the lassial

�eld. The following terms, originating from higher powers of momenta in the expansion of

~

�

n

,

ontain instead two or more derivatives of �



. The minimum ondition eq. (3.1.6) redues to

Æ

Æ�



Z

d

4

x V (�



) =

dV (�



)

d�



= 0 (3.1.12)

if we require translational invariane of the vauum state.
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E�etive potential for a real salar �eld

The e�etive potential an be omputed diretly, by taking the sum of all diagrams with an

arbitrary number of external salar lines and zero external momenta. Consider for example a

theory with a single real salar �eld �, and a tree-level potential given by

V

0

(�) =

1

2

m

2

�

2

+

1

4

��

4

: (3.1.13)

The one-loop Green's funtions at zero external momenta are given by

~

�

2n

(0) = �i S

n

 

�4!

i�

4

!

n

Z

d

4

k

(2�)

4

 

i

k

2

�m

2

+ i�

!

n

; (3.1.14)

while Green's funtions with an odd number of external lines are obviously zero. The ombina-

torial fator S

n

is

S

n

=

(2n)!

2

n

2n

; (3.1.15)

and an be determined in the following way: there are (2n)! ways of assigning the external

momenta to the verties; this number must be divided by 2

n

beause there are two external lines

for eah vertex, and by 2n beause there are 2n idential verties in the diagram. The one-loop

orretion to the salar potential is therefore given by

V

1

(�



) =

i

2

1

X

n=1

�

3��

2



�

n

1

n

Z

d

4

k

(2�)

4

1

(k

2

�m

2

+ i�)

n

: (3.1.16)

One sees immediately that the terms orresponding to n = 1 and n = 2 are divergent. This is

no surprise: these terms are proportional to �

2



and �

4



respetively, and the divergenes must

undergo the usual proedure of mass and oupling onstant renormalization. Let us �rst take

are of the �nite part. The loop integrals an be performed using eq. (4.5.2); we �nd

V

�nite

1

=

i

2

i

(4�)

2

1

X

n=3

�

3��

2



�

n

(�1)

n

n

�(n� 2)

�(n)

m

4�2n

; (3.1.17)

or, using the properties of the � funtion and de�ning z = 3��

2



=m

2

,

V

�nite

1

= �

m

4

32�

2

1

X

n=3

(�1)

n

z

n

n(n� 1)(n� 2)

= �

m

4

64�
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X

n=3

(�1)

n

z

n

�

1

n

�

2

n� 1

+

1

n� 2

�

: (3.1.18)

It is now easy to sum the series by shifting the summation index to n+1 and n+2 in the seond

and third term, and by adding and subtrating the missing n = 1; 2 terms. We get

V

�nite

1

=

m

4

64�

2

�

(1 + z)

2

log(1 + z)� z �
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2
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#

:

(3.1.19)
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Let us now onsider the divergent part:

V

div

1

i

2

"

�

3��
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�

Z

d

4

k

(2�)

4

1

k

2
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+ i�

+

1

2

�
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4

k

(2�)

4

1

(k

2

�m

2

+ i�)

2

#

: (3.1.20)

The renormalization proedure requires that a regularization presription is given in order to give

mathematial meaning to the divergent integrals. Then, one must add suitable ounterterms in

order to anel the divergenes; the renormalizability of the theory manifests itself in the fat

that the only divergent diagrams orrespond to terms whih are already present in the bare

lagrangian. The �nite parts of the ounterterms are arbitrary; di�erent hoies orrespond to

di�erent renormalization shemes, and onsequently to di�erent de�nitions of the renormalized

parameters.

We notie that the �rst term in eq. (3.1.20) is quadratially divergent: if we were to regularize

the integrals by simply imposing an ultraviolet ut-o� � on the modulus of the loop momentum

k, we would �nd a term proportional to ��

2

�

2



, whih orresponds to a quadratially divergent

radiative orretion to the mass of the salar �eld �



. This fat is harateristi of salar mass

parameters.

In general, after regularization, the divergent part of the one-loop potential takes the form

V

div

1

= A�

2



+B�

4



; (3.1.21)

where A and B are funtions of �, m and of some parameter whih de�nes the regularization

presription; both are divergent in the physial limit, e.g. �!1 for the ut-o� regularization,

or d ! 4 in dimensional regularization. We must give some renormalization presription to �x

the �nite ounterterms. For example, we ould require that

~

�

2

(0) = �m

2

;

~

�

4

(0) = �6�: (3.1.22)

Sine eqs. (3.1.22) hold for the tree-level potential, and sine the �nite part of the one-loop

orretions starts with �

6



, this presription simply means that the ounterterms must be exatly

equal and opposite to the divergent part, namely

V

t

1

= �A�

2



� B�

4



; (3.1.23)

so that in this ase

V

1

= V

�nite

1

: (3.1.24)

Another possibility is to perform the so-alled minimal subtration (MS). This presription

amounts to omputing the divergent part in dimensional regularization, and then �xing the

ounterterms in suh a way that only the pole in d� 4 is subtrated. A modi�ed version of this

renormalization presription (MS) onsists in subtrating the term proportional to

1

�

�  + log(4�); (3.1.25)

where the spae-time dimension is d = 4 � 2�. In this ase, we have to ompute expliitly the

loop integrals in eq. (3.1.20). Using again eq. (4.5.2), we �nd

V
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= �

1

64�
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�  + log(4�) + log
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!#

; (3.1.26)
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where � is an arbitrary mass parameter whih must be introdued in dimensional regularization

in order to keep the oupling onstant � dimensionless. Now, we simply subtrat the term

proportional to 1=��  + log(4�). Adding all together, we �nd

V

MS

1

=

1

64�

2

�

m

2

+ 3��

2



�

2

"

log

m

2

+ 3��
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�

2

�

3

2

#

; (3.1.27)

where we have used the identity

6��
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m

2

+

3

2

��

2



�

=

�

m

2

+ 3��

2



�

2

�m

4

(3.1.28)

and we have dropped onstant terms.

In more ompliated theories, like the standard model, the e�etive potential reeives ontri-

butions also from fermion and vetor loops. These ontributions an be omputed in the same

way as the salar one, but the alulations are quite tedious and ompliated. Fortunately, there

is a muh leverer tehnique, whih allows one to obtain all ontributions to the one-loop salar

potential in a very simple way. Consider a new theory, obtained from the original one by shifting

the salar �eld by an arbitrary quantity !:

�! �+ !: (3.1.29)

The orresponding e�etive potential is

V
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(�



) = �

1

X

n=0

1

n!

~
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n

(0) (�



+ !)

n

= �

1
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1

n!

~

�

0

n

(!; 0)�

n



; (3.1.30)

where the Green's funtions

~

�

0

n

an be omputed in terms of

~

�

n

. From eq. (3.1.30) we �nd

~

�

0

1

(!; 0) =

1

X

n=1

1

n!

~

�

n

(0)n!

n�1

(3.1.31)

and therefore

Z

�



0

d!

~

�

0

1

(!; 0) =

1

X

n=0

1

n!

~

�

n

(0)�

n



= �V (�



): (3.1.32)

Equation (3.1.32) tells us that the e�etive potential of the original theory an be obtained by

omputing the one-partile (or tadpole) amplitude of the shifted theory and integrating it with

respet to the shift. Let us see expliitly how this works. The tree-level potential of the shifted

theory is

V

0

0

(�) =

1

2

m

2

(�+ !)

2

+

1

4

�(�+ !)

4

: (3.1.33)

The tree-level tadpole is therefore

�m

2

! � �!

3

; (3.1.34)

whih, integrated in ! between 0 and �



gives minus the tree-level potential (3.1.13) as expeted.

We now turn to the one-loop term. There is only one diagram to be omputed, with one external

28



line and one internal propagator. In the shifted theory, the mass of the �



�eld is m

2

+ 3�!

2

,

and the �

3



vertex is �3�! (the fator 3 is due to the fat that the three lines are idential), and

therefore

~

�

0

1

(!; 0) = �3�!

Z

d

d

k

(2�)

d

i

k

2

�m

2

� 3�!

2

: (3.1.35)

Using the results of appendix 4.5 we readily �nd
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+O(�); (3.1.36)

where � is the renormalization sale introdued by dimensional regularization. After performing

the MS subtration, we �nd
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: (3.1.37)

whih is the same result obtained with the diret alulation, eq. (3.1.27).

The e�etive potential in the standard model

The proedure outlined at the end of the previous subsetion an be applied to the standard

model. The salar �eld is now a omplex doublet, whih we write in terms of four real salar

�elds �

i

:

� =

1

p

2

 

�

1

+ i�

2

�

3

+ i�

4

!

: (3.1.38)

In the standard model, the e�etive potential reeives ontributions from the salar setor, the

vetor boson setor, the Faddeev-Popov ghost setor and the fermion setor:

V

1

(�) = V

S

(�) + V

V

(�) + V

g

(�) + V

F

(�) (3.1.39)

(we drop the suÆx  on from now on).

The e�etive potential is a gauge-dependent quantity. It an be shown that the gauge

dependene of the e�etive potential is governed by the equation

"

�

�

��

+ C(�; �)

�

��

#

V (�; �) = 0 ; (3.1.40)

where � is the gauge parameter and C(�; �) is a funtion whih an be omputed order by order

in perturbation theory. Equation (3.1.40), in partiular, tells us that V is gauge-independent at
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its minimum, where �V=�� = 0. We will ompute V (�) in the Landau gauge � = 0; in this ase,

the ghost ontribution V

g

(�) vanishes.

We begin by omputing the salar ontribution. After the shift �

i

! �

i

+ !

i

, the tree-level

potential

V

0

(�) = m

2

j�j

2

+ � j�j

4

(3.1.41)

beomes

V
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i
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4

�(�
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2

; (3.1.42)

where !

2

= !

i

!

i

. It is immediate to hek that integrating the tree-level tadpole with respet to

!

i

and summing over the index i gives bak the tree-level potential. The one-loop ontribution

is obtained in the same way as in the ase of the real salar �eld, that is by omputation of the

one-loop tadpole diagram. A ompliation arises here, due to the fat that the mass term in

eq. (3.1.42) is not diagonal. A simple way to irumvent this diÆulty is to hoose !

i

= 0 for

all i exept one of them, say !

3

= ! (the reason of this hoie will beome lear later; of ourse,

it does not a�et the �nal result). This hoie simpli�es onsiderably the alulation, sine now

eq. (3.1.42) desribes three real salars, �

1

, �

2

and �

4

, with mass m

2

+ �!

2

, and one real salar,

�

3

, with mass m

2

+ 3�!

2

. The trilinear ouplings �

3

�

j

�

j

are simply ��! for i 6= 3 and �3�!

for j = 3. The alulation is now exatly analogous to that of a single salar �eld, exept that

all four ontributions must be taken into aount. The result is therefore
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; (3.1.43)

where �

2

= �

i

�

i

. Some omments are in order. First of all, we observe that the same result

ould have been obtained without any spei� assumption about the shift variables !

i

. Seondly,

we stress the fat that the result in eq. (3.1.43) (as well as all the other ontributions, to be

omputed below) is independent of the values of m

2

and �. More spei�ally, this result holds

in both the m

2

> 0 and m

2

< 0 ases. In the �rst ase, there is no spontaneous breaking of

the gauge symmetry, the vauum expetation values of the �elds �

i

are all zero, and the salar

masses are all equal to m

2

. In the m

2

< 0 ase, the minimum of the tree-level potential lies at

�

2

= v

2

, and eq. (3.1.43) is easily intrerpreted: there is a ontribution oming from the physial

Higgs boson, with massm

2

+3�v

2

, and a ontribution from the three would-be Goldstone bosons,

whose masses vanish at the minimum of the tree-level potential. In both ases, the one-loop

e�etive potential has the same form. Note that the masses of the unphysial salars vanish

beause we are working in the Landau gauge.

We now turn to the ontribution of vetor bosons, V

V

(�). The only term of the lagrangian we

need is the salar-salar-vetor-vetor term that appears in the squared ovariant derivative of

the Higgs doublet. In fat, after shifting the �elds �

i

, this term ontains both the mass terms for
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the vetor bosons and the salar-vetor-vetor verties needed to ompute the one-loop tadpole.

With the help of the results in 4.4 we �nd that the relevant term in the shifted lagrangian is

L = (!

i
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+ 2�
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i
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�

; (3.1.44)

where again we have hosen !

i

= 0 for i 6= 3 and !

3

= !. Therefore, the one-loop tadpole reeives

one ontribution from a loop of a W vetor boson with mass g

2

!

2

=4 and ouplings g

2

!

i

g

��

=2 to

the salar �elds �

i

, and a ontribution from the Z boson with mass (g

2

+ g

0

2

)!

2

=4 and ouplings

(g

2

+g

0

2

)!

i

g

��

=4. The orresponding ontributions to the e�etive potential are easily omputed

with the help of eq. (3.1.36), realling that a fator g

��

(�g

��

+ k

�

k

�

=k

2

) = �3 + 2� must now

be inluded beause of the form of the vetor boson propagators in the Landau gauge. The �nal

result is
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: (3.1.45)

Finally, we must onsider the ontribution of fermions. For simpliity, we onsider only

the ontribution of the top quark, sine all other Yukawa ouplings in the standard model are

negligibly small. With the hoie of ! adopted above, the relevant piee of the shifted lagrangian

is

L = �

h

t

p

2

(�

3

+ !)tt; (3.1.46)

and proeeding as above we �nd
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; (3.1.47)

where we have inluded a fator of three for the olour quantum number, and a minus sign

beause of the fermion loop.

To summarize our results, we have omputed the one-loop e�etive potential of the standard

model in the MS subtration sheme. The result is
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; (3.1.48)

where

H = m

2

+ 3��

2

; G = m
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; W =
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: (3.1.49)
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The quantities de�ned in eq. (3.1.49) are usually alled the �eld dependent squared masses

of the theory; there is one suh funtion for eah partile in the spetrum, and its value at

�

2

= v

2

equals the squared mass of the orresponding partile. We may denote these funtions

olletively with the symbol

M

2

i

(�

2

) (3.1.50)

with the index i running over all partiles in the theory, and rewrite the one-loop orretion to

the salar potential as
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; (3.1.51)

where s

i

is the spin of partile i, 

i

= 3=2 for salars and fermions, and 

i

= 5=6 for vetors.

A number of interesting things an be done with the one-loop e�etive potential (the original

work of S. Coleman and E. Weinberg is partiularly instrutive). We will onentrate on some

of them. Let us onsider for example the dependene on the renormalization sale �. From

eq. (3.1.11), we have

dV (�)

dt

= 0; (3.1.52)

where t = log�

2

. In fat, the one-partile irreduible Green's funtions obey the Callan-

Symanzik equations
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= 0; (3.1.53)

where
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; (3.1.54)
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; (3.1.55)
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= 2�
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; (3.1.56)

and �

�

, 

m

and  are funtions of the oupling onstants, and are omputable in perturbation

theory. Using eqs. (3.1.53) in eq. (3.1.11), eq. (3.1.52) is immediately obtained.

On the other hand, dV=dt an be omputed expliitly by di�erentiating eq. (3.1.48) with

respet to log�

2

and negleting two-loop e�ets. We �nd
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+ 2 �
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; (3.1.57)

and therefore

�
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+ 4� =
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4
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(3.1.58)



m

+ 2 =

12�

32�

2

: (3.1.59)
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Observe that eqs. (3.1.58,3.1.59) are not quite enough to ompute all the anomalous dimensions

of the salar setor, but almost so: infat, it is suÆient to ompute expliitly one of them, for

example , to obtain the others.

We will now study the behaviour of the e�etive potential for large values of the lassial

�elds �

i

. We will be interested in disovering under whih onditions V (�)! +1 for large �

2

,

a neessary ondition for the existene of a minimum of V (�) for �nite �

2

. We therefore assume

that �

2

� �

2

, where � is some energy sale muh larger than the eletroweak sale. Under this

assumptions, the e�etive potential is approximately given by

V (�) '

1

4
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4
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16�
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log
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#

; (3.1.60)

or, using eqs. (3.1.58,3.1.59),

V (�) '
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�+ (�
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+ 4�) log
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2

#

+
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m
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2
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2

#

: (3.1.61)

We now observe that the renormalization group equations (3.1.54-3.1.56) have the approximate

solutions

�(�) ' �+ �

�

log

�

2

�

2

(3.1.62)

m

2

(�) ' m

2
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m

log

�

2
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2

!

(3.1.63)

�
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(�) ' �
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1 + 2 log

�

2

�

2

!

; (3.1.64)

with � = �(�), m

2

= m

2

(�), �

2

= �

2

(�). It is now immediate to show that eq. (3.1.61) is just

the expansion of the renormalization group improved e�etive potential

V

RG

(�) =

1

2

m

2

(�)�

2

(�) +

1

4

�(�)�

4

(�): (3.1.65)

We see that the stability ondition for the potential is simply the positivity of the running

oupling onstant �(�) at large sales.

The stability ondition an be translated into a lower limit for the Higgs boson mass. To see

this, we need the expliit form of the one-loop renormalization group equation for �(�):

d�

dt

=

1

16�
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�
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+

3
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4

+
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16
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� 3�g
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2
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2
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0

2

) + 6�h

2

t

�

: (3.1.66)

This equation must be solved together with the one-loop renormalization group equations for

gauge and Yukawa oupling onstants, whih in the standard model are given by

dg

dt

=

1

32�

2

�

�

19

6

g

3

�

(3.1.67)
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=

1

32�

2

41

6

g

0

3

(3.1.68)
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) (3.1.69)
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+
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2

�

h

t

�

; (3.1.70)

where g

S

is the strong interation oupling onstant, and the MS sheme is adopted. This system

of oupled �rst-order di�erential equations an be easily solved numerially. The result for �(�)

is shown in �g. 3.1 for di�erent values of the initial ondition �(� = m

Z

). Namely, we have

hosen �(m

Z

) orresponding to m

H

= 60; 100; 130; 150; 190 and 210 GeV, where

m

2

H

' 2�(m

Z

)v

2

: (3.1.71)

The interpretation of �g. 3.1 in onnetion with the problem of the stability of the e�etive

Figure 3.1: The running oupling onstant �(�) for di�erent values of �(m

Z

), as ex-

plained in the text.

potential is as follows. We see that if the initial ondition at � = v is small, then �(�) beomes

negative for some value of the renormalization sale. Conversely, the requirement that �(�)

stay positive at least up to a given value of �, � � �, translates into a lower limit on �(v), or

equivalently on m

H

. This lower bound depends on �; we see for example that if we ask �(�) > 0

up to the grand uni�ation sale, � 10

16

GeV, the Higgs boson mass annot go below � 150 GeV

(�g. 3.1 is obtained for m

t

= 175 GeV). This lower limit beomes less stringent if we require

�(�) > 0 in a smaller range of �.

There is another lesson to be learned from �g. 3.1. We observe that, for large values of the

Higgs boson mass, the oupling onstant � grows with inreasing �, and eventually leaves the
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perturbative domain, � < 1. This is beause the solution of the renormalization group equation

for � has a singularity in �, known as the Landau singularity. Also in this ase, for the theory to

make sense up to a given sale �, we must ask �(�) < 1 (or something like that) for � � �. This

in turns implies an upper bound on the Higgs boson mass, whih is approximately 180 GeV for

� � 10

16

GeV and m

t

= 175 GeV.

The upper limit on the standard model Higgs boson mass is often referred to as the triviality

limit. The reason for this is that the existene of a Landau singularity in the running oupling

onstant � would imply �(v) = 0 if we require that the theory be valid for all values of the sale

�, that is, the theory would be non-interating, or trivial, in the salar setor. Therefore, we are

fored to require the onsisteny of the theory only up to some �nite value of �, and to assume

that some new phenomena beome relevant at higher energy sales. Notie however that no

rigorous proof of the triviality of the standard model has been given so far; there are only some

indiations of this, oming from studies and lattie simulations of simpli�ed theories.

Both the triviality upper bound and the stability lower bound on the Higgs mass are shown

in �g. 3.2, as funtions of �. As � inreases, the allowed range form

H

beomes narrower. Reent

Figure 3.2: Theoretial upper and lower bounds on the Higgs mass.

LEP and SLD preision data allow to estimate, although with a large unertainty, the value of

the standard model Higgs mass, that a�ets various observables (like the W boson mass, or

forward-bakward asymmetries) through radiative orretions. The entral values of these �ts

are between 100 and 200 GeV. It is interesting to notie that a value of m

H

in this range is

ompatible with � lose to the uni�ation sale, � 10

16

GeV.
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3.2 The SU(2) ustodial symmetry

We have seen in setion 3 that in the standard model at tree level the weak vetor boson masses

m

W

and m

Z

are related by

� �

m

2

W

m

2

Z

os

2

�

W

= 1: (3.2.1)

Equation (3.2.1) ould in priniple be modi�ed at higher orders in perturbation theory. Atually,

the measured value of � is very lose to 1:

�

exp

= 1:0048� 0:0022; (3.2.2)

thus suggesting that some symmetry property prevents the quantity � from reeiving large

radiative orretions. We will now show that this is indeed the ase.

Preliminarly, we observe that, even after the inlusion of radiative orretions, the most

general vetor boson mass term is given by

L
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=

1

2

m

2
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�
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: (3.2.3)

Furthermore, the ondition that the photon stays massless gives us M

02

= MM

00

, and M

2

+

M

002

= m

2

Z

. Therefore, the mass matrix in the neutral setor is ompletely �xed by the value of

one parameter, say M

2

, and it is diagonalized by a rotation of an angle �

W

given by

tan �

W

=

q

m

2

Z

�M

2

M

: (3.2.4)

This in turn implies that

� =

m

2

W

m

2

Z

os

2

�

W

=

m

2

W

M

2

; (3.2.5)

that is, � = 1 only if M

2

= m

2

W

.

Next we notie that the salar potential

V (�) = m

2

j � j

2

+� j � j

4

(3.2.6)

is invariant under a group of transformations whih is larger than the standard model SU(2)

L

�

U(1)

Y

. In fat, de�ning

� =

1

p

2

 

�

1

+ i�
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�
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4

!

(3.2.7)

we see that

j � j

2

=

1

2

(�

2

1

+ �

2

2

+ �

2

3

+ �

2

4

) (3.2.8)

an be interpreted as the squared length of a real four vetor. Therefore, the salar potential

has an O(4) � SU(2)� SU(2) invariane. This symmetry property an be implemented in the

following way. We de�ne a 2� 2 matrix

H =

"

�

+

�

0

�

�

0

��

�

#

: (3.2.9)
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Realling that the �eld �



= (�

0

�

;��

�

)

T

transforms as an SU(2) doublet, it follows that, under

the ation of a generi SU(2)

L

transformation U , we have

H ! UH: (3.2.10)

On the other hand, it is easy to hek that the salar potential an be written in terms of H as

V (�) =

1

2

m

2

Tr

�

H

y

H

�

+

1

2

�Tr

�

H

y

H

�

2

; (3.2.11)

whih is invariant under the SU(2)

L

� SU(2) transformation

H ! UHV

y

; (3.2.12)

where V is a seond SU(2) onstant matrix, independent of U . This is possible beause the

struture of H in eq. (3.2.9) is preserved also by right multipliation with an SU(2) matrix.

Equation (3.2.12) is a representation of the O(4) symmetry we mentioned above. Is it possible

to write also the kineti term for the �eld � in an O(4)-invariant way? The natural andidate is

of ourse

1

2

Tr (D

�

H)

y

D

�

H; (3.2.13)

whih is invariant under the transformations (3.2.12) sine D

�

! UD

�

U

y

. However, one readily

realizes that (3.2.13) is not equal to (D

�

�)

y

D

�

� (prove this statement as an exerise); this is

beause � and �



have opposite values of the hyperharge quantum number. We onlude that

the O(4) symmetry is violated by the hyperharge interation term ontained in the ovariant

derivative. Let us therefore neglet for the moment the hyperharge fator of the gauge group,

whih amounts to setting g

0

= 0, in order to work with an O(4)-invariant theory.

Due to spontaneous breaking of SU(2)

L

, the ground state is not invariant under O(4); how-

ever, there is a residual O(3) � SU(2) symmetry under transformations of the kind

H ! UH(�

1

U

y

�

1

); (3.2.14)

that leave the vauum expetation value < H >=

p

2v�

1

unhanged (U is now x-independent).

We are almost at the end of the road: in fat, it is easy to hek that the only mass term for the

W

i

�

�elds allowed by the symmetry in eq. (3.2.14) is of the formW

i

�

W

�

i

, that is, a salar produt

in O(3). In other words, M

2

= m

2

W

in the notation of eq. (3.2.3).

We have proven that � = 1 is a onsequene of the so-alled ustodial SU(2) symmetry

de�ned in eq. (3.2.14), and therefore it is not spoiled by radiative orretions. The inlusion of

the hyperharge interation, that breaks O(4) expliitly, does not hange this onlusion, sine

radiative orretions to � due to the hyperharge oupling are very small.

Of ourse, fermion mass terms do not preserve the ustodial symmetry; we expet orretions

to eq. (3.2.1) of the order of G

�

m

2

f

. More preisely, one �nds

� ' 1 +

3G

�

m

2

t

8�

2

p

2

; (3.2.15)

where we have inluded only the ontribution from the top quark, for obvious reasons.
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3.3 Axial anomaly anellation

We have seen in the previous setions that the renormalizability of the standard model is stritly

onneted with gauge invariane. In partiular, we have seen that the massive vetor boson prop-

agators show unphysial singularities, that are anelled by the presene of would-be Goldstone

bosons. In turn, gauge invariane manifests itself in the form of identities between Green fun-

tions, alled Slavnov-Taylor identities, that are onsequenes of urrent onservation, and that

must hold at all perturbative orders for the theory to be renormalizable. In this setion, we will

show that this might not be the ase for theories with axial urrents, as the standard model

itself. It might happen that urrent onservation is spoiled at the quantum level, unless the

spetrum of the theory satis�es partiular onditions. In the language of quantum �eld theory,

terms that spoil the validity of Slavnov-Taylor identities are alled anomalies. We will illustrate

the problem of anomalies in the ontext of a simple example, and we will then state under whih

onditions the standard model is anomaly-free and renormalizable.

We onsider quantum eletrodynamis with one massive fermion,  with eletri harge e

and mass m. We onsider the operators

J

�

V

=  

�

 (3.3.1)

J

�

A

=  

�



5

 (3.3.2)

J

P

=  

5

 : (3.3.3)

It is easy to show, using the equations of motion, that

�

�

J

�

V

= 0 (3.3.4)

�

�

J

�

A

= 2imJ

P

: (3.3.5)

The interpretation of eqs. (3.3.4) and (3.3.5) is well known. Equation (3.3.4) is simply the

onservation of the eletromagneti urrent, whih reets the gauge-invariane of the theory.

The urrent J

�

A

, on the other hand, is assoiated with axial transformations,

 ! e

i�

5

 : (3.3.6)

The lagrangian of massive QED is not invariant under axial transformations beause of the

presene of the mass term, and as a onsequene the assoiated urrent J

�

A

is not onserved.

Equation (3.3.5) preisely states this fat. Exat axial-urrent onservation is obviously reovered

in the m! 0 limit.

Now onsider the Green funtion
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whih an be easily shown to be related to the matrix element of the axial urrent between the

vauum state and a two-photon state by the relation
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Formally, it obeys the Slavnov-Taylor identities
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= 0 (3.3.9)
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where q = k
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The identities in eqs. (3.3.9,3.3.10) an be worked out by exploiting eqs. (3.3.4) and (3.3.5), and

the anonial ommutation relations. We will now hek expliitly whether eqs. (3.3.9,3.3.10)

are satis�ed in perturbation theory or not. At the one-loop order, the diagrams to be omputed

are those of �g. 3.3. We have

Figure 3.3: Diagrams ontributing to T
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and
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The overall minus sign is due to the presene of a fermion loop.

The loop integrals in eqs. (3.3.14) and (3.3.15) are super�ially divergent. We must therefore

hoose a regularization sheme before proeeding. Dimensional regularization is not suited here,

beause of the presene of 

5

, whih has an intrinsially four-dimensional meaning and annot

be generalized to other spae-time dimensions in a simple way. We will make a di�erent hoie,

keeping in mind, however, that it is possible, although quite ompliated, to treat this problem

within dimensional regularization. The regularization sheme we hoose is the following. We

subtrat from eah integrand in eqs. (3.3.14) and (3.3.15) the same expression, but with m re-

plaed by an arbitrary regularization parameterM . In the limitM !1 the original expression

is reovered, while, for �nite M , the integrals are now onvergent. We will indiate with a

subsript M the regularized quantities.

Equations (3.3.9), that state the onservation of the vetor urrent, are satis�ed by T

���

as

given in eqs. (3.3.12) and (3.3.14). In fat, writing
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(and similarly in the regularizing part of the integrands), we �nd
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(3.3.20)

Now, shifting k ! k + k

2

in the �rst term and shifting k ! k � k

1

+ k

2

in the seond one,

they anel against the fourth and seond terms, respetively. We have therefore

[k

�

1

T

���

℄

M

= 0; (3.3.21)

and also

[k

�

2

T

���

℄

M

= 0 (3.3.22)

by an analogous argument. The limit M ! 1 an then be taken safely, thus obtaining the

announed results.

We may use a similar proedure to hek the identity in eq. (3.3.10). Using
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�m) (3.3.23)
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and
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�m) (3.3.24)
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respetively (and making similar replaements in the terms with m!M),

we get

[q

�

T

���

℄

M

= [2mT

��

℄

M

+ [R

��

℄

M

; (3.3.25)

where

R

��

=

Z

d

4

k

(2�)

4

Tr

"

i

k=+ k=

1

�m



5



�

i

k=�m



�

�

i

k=� k=

2

�m



5



�

i

k=�m



�

+

i

k=+ k=

2

�m



5



�

i

k=�m



�

�

i

k=� k=

1

�m



5



�

i

k=�m



�

#

:

(3.3.26)

It is now easy to see that [R

��

℄

M

vanishes. In fat, by shifting the loop momentum k to k + k

2

in the seond term, and to k + k

1

in the fourth, they anel against the third and the �rst

respetively. The important point here is that these shifts in the integration variable an be

performed only after regularizing the integrals. Therefore,

[q

�

T

���

℄

M

= [2mT

��

℄

M

: (3.3.27)

Let us now ompute [2mT

��

℄

M

expliitly. Using the Feynman parametrization

1
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1
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: : : d

�

n
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�(�
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n

)

�
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: : :

Z

1

0
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n

x

�

1

�1

1

: : : x

�

n

�1

n

Æ(1� x

1

� : : :� x

n

)

(x

1

d

1

+ : : :+ x

n

d

n

)

�

1

+:::+�

n

;

(3.3.28)

we �nd

[2mT

��

1

℄

M

= 2

Z

1

0

dx

Z

1�x

0

dy

Z

d

4

k

(2�)

4

"

�8im

2

�

����

k

�

1

k

�

2

[k

2

+ 2k(k

1

x� k

2

y)�m

2

℄

3

� (m!M)

#

; (3.3.29)

where we have set k

2

1

= k

2

2

= 0. The simple expression in the numerator is obtained by dropping

all produts of 

5

with two, three and �ve  matries, and exploiting the antisymmetry of �

����

.

The integration over the loop momentum k an be easily performed by shifting the integration

variable

k ! k � k

1

x + k

2

y (3.3.30)

with the result

[2mT

��

℄

M

=

1

�

2

�

����

k

�

1

k

�

2

Z

1

0

dx

Z

1�x

0

dy

"

m

2

m

2

� q

2

xy

�

M

2

M

2

� q

2

xy

#

: (3.3.31)
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Notie that the RHS of eq. (3.3.31) is �nite when M !1. The limit an now be taken safely,

giving

q

�

T

���

= 2mT

��

�

1

2�

2

�

����

k

�

1

k

�

2

: (3.3.32)

The e�et of the regularization is that the Slavnov-Taylor identity in eq. (3.3.10) is spoiled by

an anomalous term, whih is usually alled the axial anomaly, or the Adler-Bardeen-Jakiw

anomaly. This term arises beause of the impossibility of regularizing the theory in a way that

preserves both the vetor and axial vetor lassial urrent divergene relations; one of the two

must be given up. The anomalous term is �nite; however, a regularization proedure is needed

in order to prove the anellation of integrals with two propagators, whih are divergent.

The anomalous term an be taken into aount by modifying eq. (3.3.5) at the one-loop level

in the following way:

�

�

J

�

A

= 2imJ

P

+

1

(4�)

2

�

����

F

��

F

��

; (3.3.33)

where F

��

is the �eld-strength tensor of QED. In other words, the axial urrent is not onserved,

at the quantum level, even ifm = 0. Notie in fat that the anomaly is independent of the fermion

mass. Furthermore, it an be proved that higher-order orretions do not modify the one-loop

expression of the anomaly.

The result in eq. (3.3.33) an be immediately generalized to a theory with n fermion �elds

 

i

, i = 1; : : : ; n with masses m

i

, vetor harges Q

i

and axial harges Q

5

i

:

�

�

J

�

A

=

n

X

i=1

Q

5

i

Q

2

i

"

2im

i

J

i

P

+

1

(4�)

2

�

����

F

��

F

��

#

; (3.3.34)

where now

J

�

A

=

n

X

i=1

Q

5

i

 

i



�



5

 

i

; J

i

P

=  

i



5

 

i

: (3.3.35)

The above onsiderations an be extended to the ase of a theory with non-abelian gauge

invariane. In this ase, also fermion loops with four and �ve internal lines ontribute to the

anomaly. It an be shown that the anomalous term of the axial vetor urrent in a non-abelian

theory is proportional to

Tr (fT

a

; T

b

gT



); (3.3.36)

where T

a

are the gauge group generators. In the standard model, fermions are either in the

doublet or in the singlet representation of SU(2); this means that the four quantities

Tr (f�

a

; �

b

g�



) (3.3.37)

Tr (f�

a

; �

b

gY ) (3.3.38)

Tr (Y

2

�



) (3.3.39)

Tr (Y

3

) (3.3.40)

must all vanish, for the axial anomaly to be anelled. The �rst quantity is obviously zero:

Tr (f�

a

; �

b

g�



) = 2Æ

ab

Tr (�



) = 0: (3.3.41)
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The seond quantity requires more are. Sine �

a

= 0 for right-handed fermions, we have

Tr (f�

a

; �

b

gY ) = 2Æ

ab

Tr (Y

L

); (3.3.42)

where Y

L

is the hyperharge matrix restrited to left-handed fermions. Sine Y = 1=3 for the

doublets of left-handed quarks, and Y = �1 for the doublets of left-handed leptons, we �nd

Tr (Y

L

) = n

q

� 3� 2�

1

3

+ n

l

� 2� (�1) = 2(n

q

� n

l

); (3.3.43)

where n

q

(n

l

) is the number of quark (lepton) families. The fator of 3 in front of the quark term

is due to the olour degree of freedom, and the overall fator of 2 is due to the fat that left-

handed fermions are SU(2) doublets. We see that the anellation of the axial anomaly requires

that the numbers of quark and lepton families are equal! This is an important predition of the

standard model, whih has been reently on�rmed by the disovery of the top quark.

The third ondition, Tr (Y

2

�



) = 0, is again trivially satis�ed, sine Y has the same value

for both omponents of eah doublet, and Tr (�



) = 0 (for singlets, we have simply �



= 0).

The last ondition, Tr (Y

3

) = 0, is also satis�ed provided n

q

= n

l

. To show this, it is

onvenient to write the axial urrent as

�

 

�



5

 =

�

 

�

1

2

(1 + 

5

) �

�

 

�

1

2

(1� 

5

) : (3.3.44)

In this way, it is lear that left-handed fermions and right-handed fermions ontribute to the

axial anomaly with opposite signs. We have therefore

Tr (Y

3

) = Tr (Y

3

L

)� Tr (Y

3

R

): (3.3.45)

Using Y = 2(Q� T

3

) we �nd

Tr (Y

3

L

) = 6n

q

�

1

3

�

3

+ 2n

l

(�1)

3

(3.3.46)

Tr (Y

3

R

) = 3n

q

"

�

4

3

�

3

+

�

�

2

3

�

3

#

+ n

l

(�2)

3

; (3.3.47)

and therefore

Tr (Y

3

) = �6(n

q

� n

l

): (3.3.48)

It is easy to prove that, beause of the axial anomaly, the urrents assoiated with the leptoni

and baryoni numbers,

L

�

=

n

l

X

i=1

[�e

i



�

e

i

+ ��

i



�

�

i

℄ (3.3.49)

B
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1

3

n

q

X

i=1

h

�u

i



�

u

i

+

�

d

i



�

d

i

i

(3.3.50)
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are anomalous. In order to prove this statement, let us onsider the ase of only one generation

(the extension to more than one generation is trivial), and let us rewrite the leptoni urrent as

L

�

= L

�

L

+ L

�

R

; (3.3.51)

where

L

�

L

= (��

L

; �e

L

)

�

 

�

L

e

L

!

(3.3.52)

L

�

R

= �e

R



�

e

R

: (3.3.53)

We now onsider triangle diagrams with L

�

L

or L

�

R

on one vertex, and weak vetor bosons on the

the two remaining verties. Clearly, only left-handed (right-handed) fermions irulate in the

loop with L

�

L

(L

�

R

). This is easily seen by working out the Dira struture of the loop integrand:
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: (3.3.54)

Thus,
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: (3.3.55)

The minus sign arises beause 

5

appears in L

�

L

with a minus sign. Using Y

L

= �1 and the

antiommutation relations among the Pauli matries, we �nd

�

�

L

�
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= �

1

(4�)

2
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����

h
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2
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��
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2
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��
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: (3.3.56)

By a similar argument, we get
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; (3.3.57)

sine Y

R

= �2, and therefore
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2
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��

B

��
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2
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��
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��
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: (3.3.58)

This results in a (numerially negligible) non-onservation of leptoni and baryoni numbers L

and B, due to instanton e�ets. The di�erene B � L is however onserved. Indeed, we may

write for the baryoni urrent

B

�

= B

�

L

+B

�

R

; (3.3.59)

where

B

�
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=

1

3

(�u
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�

d
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u

L

d

L

!

(3.3.60)
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�

u
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+

1

3

�

d

R



�

d

R

; (3.3.61)
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and ompute �

�

B

�

as in the ase of the leptoni urrent. We �nd
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: (3.3.62)

The global fator of 1=3 is anelled by a fator of 3 from olor. Using the known values of quark

hyperharges
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(3.3.63)

we get
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(3.3.64)

whih is exatly equal to �

�

L

�

. This shows that the urrent B

�

� L

�

is onserved.

3.4 Aidental symmetries

The need for a Yukawa interation term of fermion �elds with salar �elds an be motivated in

a di�erent way. Consider the standard model with only one generation of quarks and leptons,

and no salar �elds. The lagrangian for fermion �elds an be written in the following ompat

form:

L =

5

X

k=1

�

 

k

D= 

k

; (3.4.1)

where the sum runs over the �ve di�erent irreduible representations of SU(2)

L


 U(1)

Y

of the

fermions in a generation:

 

1

= e

R

� (1;�2)

 

2

= L � (2;�1)

 

3

= u

R

� (1; 4=3)

 

4

= d

R

� (1;�2=3)

 

5

= Q � (2; 1=3):

Here, the symbol � means \transforms as", and the two numbers in brakets stand for the SU(2)

representation (2 for the doublet, 1 for the salar) and for the hyperharge quantum number,

respetively. Mass terms are forbidden by the gauge symmetry.

In addition to the assumed gauge symmetry, the lagrangian in eq. (3.4.1) is manifestly in-

variant under a large lass of global transformations: namely, the fermion �elds within eah

representation an be multiplied by an arbitrary onstant phase

 

k

! e

i�

k

 

k

(3.4.2)
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without a�eting L. This [U(1)℄

5

global symmetry was not imposed at the beginning: it is just

a onsequene of the assumed gauge symmetry and of the renormalizability ondition. It is

therefore alled an aidental symmetry.

Let us take a loser look to the aidental symmetry. The �ve onserved urrents orrespond-

ing to the global transformations (3.4.2) are
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= �e
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u
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�

d

L



�

d

L

Equivalently, one ould de�ne the aidental symmetry transformations in suh a way that the

orresponding urrents are �ve independent linear ombinations of J

�

1

; : : : ; J

�

5

. Consider for

example the hoie
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5
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�
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5

d:

The urrent J

Y

is the hyperharge urrent, whih orresponds to a loal invariane of the theory.

The true aidental symmetry is therefore [U(1)℄

4

, rather than [U(1)℄

5

.

The urrents J

`

and J

b

are immediately reognized to be the leptoni and baryoni number

urrents, respetively. The invariane of the lagrangian under the orresponding global symme-

tries is ertainly good news, sine baryoni and leptoni number are known to be onserved to

an extremely high auray.

On the other hand, experiments show no sign of the onservation of J

`5

and J

b5

; in a realisti

theory, the orresponding symmetries should be broken. In fat, they are inompatible with

mass terms, and they are broken by the Yukawa interation terms that generate fermion masses

via the Higgs mehanism.

When the theory is extended to inlude more fermion generations, the aidental symmetry

gets muh larger, sine also mixing among di�erent generation is allowed. The Yukawa intera-

tion terms of the previous subsetion break this larger aidental symmetry too, leaving however

baryoni and leptoni numbers onserved. Individual leptoni numbers are separately onserved,

while only the total baryoni number is onserved, beause of avour mixing.

To onlude this subsetion, let us briey review the most important experimental evidenes

of baryon and lepton number onservation. The most obvious test of baryon number onservation

is proton stability. The experimental lower bound on the proton lifetime is at present

�

p

> 1:6 � 10

25

y : (3.4.3)
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The most aurate tests of lepton number onservation are provided by the following observables:

B(�! e) � 1:2 � 10

�11

(3.4.4)

B(�! 3e) � 1 � 10

�12

(3.4.5)

�(�T i! e T i)

�(�T i! all)

� 4 � 10

�12

(3.4.6)

B(� ! �) � 2:7 � 10

�6

: (3.4.7)
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Chapter 4

Appendies

4.1 Renormalizability and power ounting

In this appendix, we desribe the power-ounting riterion for renormalizability of loal �eld

theories. Consider a Feynman diagram ontaining

{ L loops;

{ V verties;

{ I

f

internal fermioni lines;

{ E

f

external fermioni lines;

{ I

b

internal bosoni lines;

{ E

b

external bosoni lines.

Let us assume that there are di�erent types of verties, eah type being labelled by the index

i, and that

V =

X

i

V

i

; (4.1.1)

where V

i

is the number of verties of type i. Finally, let n

i

f

, n

i

b

, d

i

be the number of fermioni

lines, bosoni lines and �eld derivatives in type-i verties, respetively. The following relations

hold:

2I

f

+ E

f

=

X

i

n

i

f

V

i

(4.1.2)

2I

b

+ E

b

=

X

i

n

i

b

V

i

: (4.1.3)

The number L of loops is equal to the number of independent internal momenta, whih in turn

is equal to the total number of internal lines I = I

f

+ I

b

minus the number of independent

momentum onservation equations. Therefore, we have

L = I

f

+ I

b

� (V � 1): (4.1.4)

We now de�ne the degree of super�ial divergene D of the diagram as the power of momenta

in the numerator minus the power of momenta in the denominator of the Feynman diagram.
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Clearly,

D = dL� I

f

� 2I

b

+

X

i

d

i

V

i

; (4.1.5)

sine fermion propagators behave as k

�1

, boson propagator behave as k

�2

, eah �eld derivative

orresponds to one power of momentum, and d powers of momentum are arried by eah loop

integration in d-dimensional spae-time. Now, replaing eqs. (4.1.1) and (4.1.4) in eq. (4.1.5)

and eliminating I

f

and I

b

via eqs. (4.1.2) and (4.1.3), we �nd

D = d�

d� 1

2

E

f

�

d� 2

2

E

b

+

X

i

V

i

 

d

i

+

d� 1

2

n

i

f

+

d� 2

2

n

i

b

� d

!

: (4.1.6)

If D � 0, the Feynman amplitude will be ultraviolet divergent. On the other hand, D < 0

is not a suÆient ondition for onvergene, sine there an still be subdiagrams with D � 0.

However, we notie that D dereases with inreasing number of external lines. Therefore, if the

last term in the r.h.s. of eq. (4.1.6) is zero or negative, then only a �nite number of diagrams

have D � 0, and the whole theory an be made �nite by renormalizing only these primitively

divergent amplitudes, at any order in perturbation theory. The ondition for renormalizability

then beomes

d

i

+

d� 1

2

n

i

f

+

d� 2

2

n

i

b

� d (4.1.7)

and it must hold for eah i separately (a diagram an ontain only verties of one type). Notie

that the l.h.s. of eq. (4.1.7) is just the mass dimension of the operator that orresponds to

type i verties: in fat, fermion �elds have dimension 3=2, boson �elds have dimension 1 and

derivatives have dimension 1. For this reason, the ondition in eq. (4.1.7) an be rephrased in

terms of oupling onstant dimensionality: a renormalizable theory an ontain only onstants

with mass dimension � 0.

50



4.2 Non-unitarity of the Fermi theory

In this Appendix we will work out the restritions imposed on sattering amplitudes by the

unitarity ondition of the sattering matrix, and we will show that the Fermi theory violates

this unitarity bound at suÆiently high energy. Writing the sattering matrix as

S = I + iT; (4.2.1)

the unitarity ondition S

y

S = I gives

T

y

T = �i(T � T

y

): (4.2.2)

For generi states a; b we have

hajT

y

T jbi = �i

�

hajT jbi � hajT

y

jbi

�

: (4.2.3)

Now de�ne the invariant amplitudeM

af

for the proess a! f by

hf jT jai =M

af

(2�)

4

Æ

(4)

(P

a

� P

f

); (4.2.4)

and insert the identity operator between T

y

and T in the l.h.s. of eq. (4.2.3):

I =

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

jfihf j (4.2.5)

where P

f

i

is the momentum of partile i in the state f . We get

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

) (2�)

4

Æ

(4)

(P

b

�

X

i

P

f

i

)M

bf

M

�

af

= �i (M

ba

�M

�

ab

) (2�)

4

Æ

(4)

(P

a

� P

b

); (4.2.6)

or

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

)M

bf

M

�

af

= �i (M

ba

�M

�

ab

) : (4.2.7)

For a = b, eq. (4.2.7) gives

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

) jM

af

j

2

= 2 ImM

aa

; (4.2.8)

whih is the so-alled optial theorem: the total ross setion for the proess a ! f is propor-

tional to the imaginary part of the forward invariant amplitudeM

aa

.

Let us now assume that jai is a state of two partiles of the same speies, with momenta

p

1

; p

2

; furthermore, let us assume that only elasti sattering is allowed. Under these onditions,

the states jfi are also two-partile states of the same speies as those in jai, and the amplitudes
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M

af

depend on the initial and �nal states through the two independent Mandelstam variables

s; t:

M

af

�M(s; t); (4.2.9)

where

s = (p

1

+ p

2

)

2

; t = (p

1

� P

1

)

2

: (4.2.10)

In the enter-of-mass frame,

t = �

s

2

(1� os �) ! os � = 1 +

2t

s

; (4.2.11)

where � is the sattering angle. Thus, for a given value of the enter-of mass squared energy

s, the amplitude M(s; t) is a funtion of os � only, and an be expanded on the basis of the

Legendre polynomials

P

J

(z) =

1

J !2

J

d

J

dz

J

(z

2

� 1)

J

: (4.2.12)

The Legendre polynomials obey the orthogonality onditions

Z

1

�1

dz P

J

(z)P

K

(z) =

2

2J + 1

Æ

JK

(4.2.13)

and the normalization onditions

P

J

(1) = 1: (4.2.14)

We �nd

M(s; t) = 16�

X

J

(2J + 1) a

J

(s)P

J

(os �); (4.2.15)

where the partial-wave amplitudes a

J

are given by

a

J

(s) =

1

32�

Z

1

�1

d os � P

J

(os �)M(s; t): (4.2.16)

Replaing eq. (4.2.15) in the l.h.s. of eq. (4.2.8) we get

Z

d

3

P

1

(2�)

3

2E

1

d

3

P

2

(2�)

3

2E

2

(2�)

4

Æ

(4)

(p

1

+ p

2

� P

1

� P

2

) jM(s; t)j

2

=

1

16�

Z

1

�1

d os �

"

16�

X

J

(2J + 1) a

J

(s)P

J

(os �)

# "

16�

X

K

(2K + 1) a

�

K

(s)P

K

(os �)

#

= 32�

X

J

(2J + 1) ja

J

(s)j

2

; (4.2.17)

while the r.h.s. is given by

2 ImM(s; 0) = 32�

X

J

(2J + 1) Ima

J

(s); (4.2.18)
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where we have set t = 0, or equivalently os � = 1, as appropriate for a forward amplitude, and

we have used the normalization ondition (4.2.14). Therefore, unitarity of the sattering matrix

requires

ja

J

(s)j

2

= Im a

J

(s) (4.2.19)

for all partial amplitudes. Equation (4.2.19) provides the unitarity bound

ja

J

(s)j � 1: (4.2.20)

Let us now onsider a spei� proess, namely the sattering

e

�

(p

1

) + �

�

(p

2

)! �

�

(P

1

) + �

e

(P

2

) (4.2.21)

within the Fermi theory. The relevant amplitude is

M(s; t) = �

G

F

p

2

�u(P

2

) 

�

(1� 

5

) u(p

1

) �u(P

1

) 

�

(1� 

5

) u(p

2

); (4.2.22)

whih gives

jM(s; t)j

2

=

G

2

F

2

Tr

h



�

(1� 

5

) p=

1



�

(1� 

5

) k=

2

i

Tr [

�

(1� 

5

) p=

2



�

(1� 

5

) k=

1

℄

= 32G

2

F

s

2

; (4.2.23)

where a sum over polarizations is understood. We see that only the partial amplitude a

0

(s) is

nonzero, sine there is no t dependene at all. Using the de�nition eq. (4.2.16) we obtain

ja

0

(s)j =

G

F

s

2

p

2�

: (4.2.24)

The unitarity bound eq. (4.2.20) is therefore violated at

p

s =

v

u

u

t

2

p

2�

G

F

' 875GeV: (4.2.25)

From eq. (4.2.23) we obtain the total ross setion

� =

G

2

F

s

2�

: (4.2.26)

Let us now repeat the same alulation in the ontext of a theory with an interating vetor

boson W with mass m

W

and oupling g=(2

p

2) to left-handed fermions (the oupling g is dimen-

sionless; the numerial fator is onventional). The squared amplitude in this theory is obtained

from the result in eq. (4.2.23) by performing the replaement

�

G

F

p

2

!

g

2

8

1

t�m

2

W

: (4.2.27)
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We get

jM(s; t)j

2

= 32

 

g

2

p

2

8

1

t�m

2

W

!

2

s

2

=

g

4

s

2

(t�m

2

W

)

2

: (4.2.28)

The total ross setion is now given by

� =

g

4

64�m

2

W

s

s+m

2

W

: (4.2.29)

For s � m

2

W

, this expression redues to the result obtained in the Fermi theory, eq. (4.2.26),

with the identi�ation

G

F

p

2

=

g

2

8m

2

W

: (4.2.30)

In this ase, however, the linear growth of the ross setion with s is ut o� at s � m

2

W

. At very

large energy we have

� !

g

4

64�m

2

W

=

G

2

F

m

2

W

2�

: (4.2.31)

The value of m

W

is related to the size of the oupling g through eq. (4.2.30). If m

W

were lose to

the energy at whih the Fermi theory breaks down, about 900 GeV, then g would take a value

lose to 10, far from the perturbative domain. The fat that the measured value m

W

is instead

muh smaller, m

W

' 80 GeV, is a signal of the fat that a theory of weak interations with an

intermediate vetor boson an be treated perturbatively: indeed, in this ase we get g � 0:7.
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4.3 Gauge theories

The abelian ase

The Dira free lagrangian for a massive fermion

L =  (i

^

� �m) (4.3.1)

is invariant under the global (or �rst kind) U(1) gauge transformation

 !  

0

= e

ie�

 

 !  

0

= e

�ie�

 ; (4.3.2)

where � is a real onstant. The onstant e plays the role of the onserved harge assoiated

with this invariane property. We want to promote this global symmetry to a loal one, that is,

we want to modify L in order to make it invariant under the �eld transformation (4.3.2) with

� = �(x). The derivative term is not invariant:

 �

�

 ! e

�ie�

 �

�

(e

ie�

 ) =  �

�

 + ie (�

�

�) : (4.3.3)

The ordinary derivative must be replaed by a ovariant derivative,

D

�

= �

�

� ieA

�

; (4.3.4)

where A

�

is a real vetor �eld. The transformation property of A

�

must be �xed in suh a way

that

D

�

 ! e

ie�

D

�

 : (4.3.5)

This gives

(�

�

� ieA

0

�

) 

0

= e

ie�

(�

�

� ieA

�

) 

(�

�

� ieA

0

�

)e

ie�

 = e

ie�

(�

�

� ieA

�

) 

�

�

 + ie(�

�

�) � ieA

0

�

 = �

�

 � ieA

�

 

(�

�

�) � A

0

�

 = �A

�

 (4.3.6)

whih implies

A

�

! A

0

�

= A

�

+ �

�

�: (4.3.7)

The lagrangian

L =  (i

^

D �m) (4.3.8)

is invariant under the loal (or seond kind) gauge transformation

 !  

0

= e

ie�(x)

 

 !  

0

= e

�ie�(x)

 ;

A

�

! A

0

�

= A

�

+ �

�

�(x): (4.3.9)
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Notie that the requirement of loal gauge invariane generates the interation term e 

�

 A

�

.

A kineti term, involving derivatives of the vetor �eld A

�

, must now be introdued. It

is uniquely �xed by the requirements of Lorentz and gauge invariane, and by assuming the

standard normalization of the propagator for A

�

. It is given by

L

YM

= �

1

4

F

��

F

��

; (4.3.10)

where

F

��

= �

�

A

�

� �

�

A

�

: (4.3.11)

Notie that

(D

�

D

�

�D

�

D

�

) = �ieF

��

 ; (4.3.12)

and that F

��

is invariant under a gauge transformation. Notie also that gauge invariane forbids

the presene of a mass term for the gauge �eld A

�

. Finally, we observe that no self-interation

term for the vetor �eld A

�

is present in the lagrangian. This is onneted with the abelian

nature of the invariane group.

The non-abelian ase

Let us onsider now the ase when the invariane group of the theory is non-abelian. For

de�niteness, we onsider the group SU(N) of N � N unitary matries with unit determinant.

This group has N

2

� 1 hermitian traeless generators t

A

, that obey the ommutation relations

[t

A

; t

B

℄ = if

ABC

t

C

; A; B; C = 1; :::; N

2

� 1; (4.3.13)

where f

ABC

is ompletely antisymmetri. A generi element U of SU(N) an be expressed in

terms of the generators t

A

and of a set of real funtions �

A

(x) by

U � U(�) = exp(ig�

A

t

A

); U

�1

= U

y

; (4.3.14)

where we have inserted a oupling onstant g in analogy with the abelian ase. The ovariant

derivative is now given by

D

�

= �

�

I � igA

�

; (4.3.15)

where I is the unity matrix in the representation spae, and the vetor �eld A

�

is now a hermitian

matrix

A

�

= A

�

A

t

A

: (4.3.16)

It is easy to show, in analogy with the abelian ase, that the transformation law

A

�

! A

0

�

= UA

�

U

�1

+

i

g

U(�

�

U

�1

) (4.3.17)

ensures that

D

�

! UD

�

U

�1

: (4.3.18)

56



Consider now an in�nitesimal gauge transformation

U(�) = I + ig�

A

t

A

+O(�

2

): (4.3.19)

To �rst order in �, eq. (4.3.17) beomes

A

0

�

= A

�

+ ig[�

A

t

A

; A

�

℄�

i

g

ig�

�

�

A

t

A

= A

�

C

t

C

� g�

A

A

�

B

f

ABC

t

C

+ �

�

�

C

t

C

; (4.3.20)

or

A

0

�

C

= A

�

C

� g�

A

A

�

B

f

ABC

+ �

�

�

C

: (4.3.21)

A kineti term for the gauge �elds an be built in analogy with the abelian ase. We have

Realling eq. (4.3.12), we de�ne a �eld tensor F

��

through

(D

�

D

�

�D

�

D

�

) = �igF

��

 ; (4.3.22)

where  is a multiplet of some SU(N) representation, and F

��

= F

��

A

t

A

. We �nd

F

��

= �

�

A

�

� �

�

A

�

� ig[A

�

; A

�

℄;

F

��

A

= �

�

A

�

A

� �

�

A

�

A

+ gf

ABC

A

�

B

A

�

C

: (4.3.23)

The kineti term is then given by

�

1

4

F

��

A

F

A

��

: (4.3.24)

In the non-abelian ase, self-interation terms among the gauge �elds are present. This is related

to the fat that, ontrary to the abelian ase, the �eld strength F

��

transforms non-trivially under

a gauge transformation:

F

��

! F

0

��

= UF

��

U

�1

: (4.3.25)

For an in�nitesimal gauge transformation, we �nd

F

0

��

A

= F

��

A

� gf

ABC

�

B

F

��

C

; (4.3.26)

whih means that the omponents F

��

A

form a multiplet in the adjoint representation of the

gauge group.
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4.4 The standard model lagrangian in renormalizable gauges

Let us onsider the following part of the standard model lagrangian:

L

D

� V (�) + L

GF

; (4.4.1)

where

L

D

= (D

�

�)

y

D

�

� (4.4.2)

V (�) = m

2

j�j

2

+ � j�j

4

(4.4.3)

L

GF

= �

1

2�

h

�

�

W

i

�

� �f

i

(�)

i

2

�

1

2�

[�

�

B

�

� �f(�)℄

2

: (4.4.4)

For the moment, we do not speify the value of the hyperharge quantum number Y of the Higgs

doublet �. We de�ne

� = �

1

+ �

2

; (4.4.5)

where

�

1

=

1

p

2

 

v

1

v

2

!

�

2

=

 

G

+

(H + iG)=

p

2

!

(4.4.6)

and v

1

; v

2

are arbitrary omplex numbers, only restrited by the minimization ondition

jv

1

j

2

+ jv

2

j

2

� v

2

= �

m

2

�

: (4.4.7)

We have

L

D

=

�

�

�

�

y

+

i

2

�

y

�

gW

�

i

�

i

+ g
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Y B
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� �
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�

�

�

�

� L

��
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��V V

+ L

��V

: (4.4.8)

The �rst term is simply the kineti term for �,

L

��

= (�

�

�)

y

�

�

� = �

�

G

+

�

�

G

�

+

1
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�
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�
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�

G�

�

G: (4.4.9)

Next, we onsider the ��V V term:
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��V V
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4
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�
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: (4.4.10)

Equation (4.4.10) ontains a mass term for the vetor �elds, that an be isolated by replaing �

with �

1

:

L

mass

= (W

�

i

B

�

)M

2

 

W

j�

B

�

!

; (4.4.11)
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where

M
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=

1

4

"
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2

�

y
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1

Æ

ij
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: (4.4.12)

Observe that the square mass matrix in eq. (4.4.11) has zero determinant:

detM

2

=

1

16

g

2

g

0

2
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2

j�
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j

4

�
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�
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�

1
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y

1

�
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�
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� j�

1

j

4

�

(4.4.13)

whih is seen to vanish by means of the identity

�

j

ab

�

j

d

= 2

�

Æ

ad

Æ

b

�

1

2

Æ

ab

Æ

d

�

: (4.4.14)

In other words, with only one salar doublet of any hyperharge, one of the four physial vetor

boson has always zero mass. This is beause it is always possible to �nd a U(1) subgroup of the

gauge group whih leaves the vauum expetation value �

1

invariant.

Let us now diagonalizeM

2

. This is easily done by hoosing v

1

= 0; v

2

= v, whih is allowed

beause all the degenerate vauum on�gurarions are onneted by gauge transformations. We

�nd

L

mass

=

1

4

g

2

v

2

W

+�

W

�

�

+

1

8
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2

(W

�

3

B

�

)

"

g

2

�gg
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: (4.4.15)

The �rst term is already in diagonal form, and tells us that the harged vetor bosons

W

�

�

=

1

p

2

(W

1

�

� iW

2

�

) (4.4.16)

are mass eigenstates, with masses

m

2

W

=

1

4

g

2

v

2

: (4.4.17)

The seond term in eq. (4.4.15) is diagonalized by the rotation

 

W

�

3

B

�

!

=

"

os � sin �
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# 

Z

�

A

�
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; (4.4.18)

where the ombination A

�

orresponds to the zero-mass vetor boson. We see immediately that,

for Y = 1, A

�

is preisely equal to the photon �eld oupled to the eletromagneti urrent, and

� � �

W

. The eigenvalue orresponding to Z

�

is

m

2

Z

=

1

4

(g

2

+ g

0

2

)v
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: (4.4.19)

In terms of W

�

�

, A

�

and Z

�

eq. (4.4.10) beomes
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2
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(4.4.20)

The third term in L

D

must be onsidered in onjuntion with the gauge-�xing term. We

have
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(4.4.21)

Exploiting the fat that �

�

�

1

= 0, we an integrate by parts the �rst row. Adding L

GF

, we �nd

L

��V

+ L

GF

= �

i

2

gW

i

�

h

(�

�

�

2

)

y

�

i

�

2

� �

y

2

�

i

�

�

�

2

i

�

i

2

g

0

B

�

h

(�

�

�

2

)

y

�

2

� �

y

2

�

�

�

2

i

+�

�

W

i

�

�

i

2

g(�

y

2

�

i

�

1

� �

y

1

�

i

�

2

) + f

i

(�)

�

+�

�

B

�

�

i

2

g

0

(�

y

2

�

1

� �

y

1

�

2

) + f(�)

�

�

1

2�

(�

�

W

i

�

)

2

�

1

2�

(�

�

B

�

)

2

�

1

2

�f

i

(�)f

i

(�)�

1

2

�f(�)f(�): (4.4.22)

With the hoies
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) (4.4.24)

the mixing between vetor bosons and salars disappears, and we remain with
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We see that the would-be Goldstone bosons G

�

and G have aquired squared masses equal to

�m

2

W

and �m

2

Z

, respetively, as is neessary in order to anel the unphysial singularities in the

vetor boson propagators. These masses vanish in the Landau gauge, � = 0.

The last term to be onsidered is the salar potential V (�). After some algebra, we �nd

V (�) =
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+ 2G
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; (4.4.26)

where

m

2

H

= 2�v

2

: (4.4.27)

We onsider now the interation between fermions and salars. From eqs. (2.2.43-2.2.46) and

the de�nition in eq. (2.2.52), we get
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and
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where sums over generation indies are understood.
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4.5 Dimensional regularization

A onvenient way of regularizing divergent integrals, like those appearing when omputing loop

diagrams in perturbation theory, is that of modifying the dimension of the integration spae

(spae-time in our ase): the integral of 1=(k

2

�m

2

)

2

is logarithmially divergent at large mo-

menta in four-dimensional spae-time, while it would be onvergent if spae-time dimensions are

lowered to 3, for example. More generally, one omputes the integral in a d-dimensional spae-

time, with d hosen in suh a way that the integral onverges, and then ontinues analityally the

result in the omplex d plane. Divergenes will therefore appear as poles in d� 4. Dimensional

regularization is partiularly useful beause it preserves Lorentz invariane and gauge invariane

of the theory.

In the following, I will show how to ompute ultraviolet-divergent loop integrals in dimen-

sional regularization. After Feynman redution of the denominators and appropriate shifts in

the loop variable, loop integrals an be redued to the form

Z

d

d
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d
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; (4.5.1)

where k is an even integer and m

2

is a funtion of external momenta, masses, and Feynman

parameters. For k = 0; 2; 4 we �nd
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where we have set, as usual,

d = 4� 2�: (4.5.5)

The Euler � funtion is de�ned by

�(z) =

Z

+1

0

dt e

�t

t

z�1

: (4.5.6)

The properties

�(z + 1) = z�(z); �(1) = 1; �(1=2) =

p

� (4.5.7)

follow from the de�nition. Furthermore, it an be shown that �(z) is analyti in the whole

ompex plane z, exept when z is 0 or a negative integer, where it has simple poles. One �nds

�(�n + �) =

(�1)

n

n!

�

1

�

+  (n+ 1) +O(�)
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; (4.5.8)
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where

 (s) =

d

ds

log �(s) (4.5.9)

and

 (n+ 1) = 1 +

1

2

+ : : :+

1

n

� ;

 (1) = � = �0:5772 : : : (4.5.10)

We now ompute expliitly the integral in eq. (4.5.2). Equations (4.5.3,4.5.4) (and similar

formulae with higher powers of q in the numerator) an be obtained by shifting q ! q + k and

taking derivatives with respet to k at k = 0. By virtue of the analitiity properties of the

integrand in the omplex q

0

plane, the q

0

integral along the losed path C shown in �g. 4.1 is

Figure 4.1: Integration in the omplex q

0

plane. Crosses indiate the singularities of

the Feynman integrands at q

0

= �(E � i�), with E =

p

~q

2
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2

.

equal to zero. We have therefore
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With the variable hange q

0

= iq

4

in the seond term of eq. (4.5.11), we �nd
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Notie that the +i� presription is now immaterial, sine the integration is performed along the

imaginary axis. We have therefore

Z

d

d

q

(2�)

d
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; (4.5.13)

where q in the r.h.s. is a vetor in a 4-dimensional Eulidean spae. We �rst observe that the

integrand does not depend on angular variables, whih an therefore be integrated diretly. The

integral over the d-dimensional solid angle an be obtained in the following way. We have
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where we have used polar oordinates and the de�nition of �(z). On the other hand, the usual

gaussian integration formula gives
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Thus,
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For d = 2; 3 the familiar results
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= 2�;
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3

= 4� are reovered. Using this result, we have

Z

d

d

q

(2�)

d

1

(q

2

+m

2

)

n

=

1

(2�)

d

2�

d=2

�(d=2)

1

2

Z

+1

0

dq

2

(q

2

)

d�2

2

(q

2

+m

2

)

n

: (4.5.17)

The integral an be performed with the hange of integration variable

x =
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; (4.5.18)

whih gives
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where we have used
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By replaing d = 4� 2�, we �nally obtain
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whih is the announed result. Notie in partiular that the integral vanishes when m

2

= 0.

This happens, for example, when one omputes on-shell amplitudes in a massless theory.

64



The use of dimensional regularization poses some speial problems in alulations where the



5

matrix is involved. In fat, 

5

(or equivalently the antisymmetri tensor �

����

) is a quantity

whose de�nition is stritly onneted to the fat that spae-time is four-dimensional, and a

de�nition in d dimensions requires speial are. It is tempting to de�ne 

5

simply by requiring

that its four-dimensional properties



2

5

= I; f

5

; 

�

g = 0 (4.5.22)

hold in d dimensions as well. It is easy to prove that this assumption, together with the irular

property of the trae operator, leads to inonsistent results. To see this important fat expliitly,

onsider the trae of 

5

times an even number of  matries:

T = Tr 

5



�

1

: : : 

�

2n

: (4.5.23)

We an use the antiommutation rules f

�

; 

�

g = 2g

��

to bring, for example, 

�

1

at the right of

the produt; this requires 2n� 1 steps, and at eah step a trae with 2n� 2  matries appears.

We denote by C

2n�1

the sum of suh terms. At the end of the proedure, using the irularity

property of the trae and eq. (4.5.22), the trae an brought to its original form, and we get

T = T + C

2n�1

(4.5.24)

or

C

2n�1

= 0: (4.5.25)

For n = 1 eq. (4.5.25) gives
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= 0 (4.5.26)

and, for n=2,
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Using eq. (4.5.26), eq. (4.5.27) implies

(d� 2)Tr 

5



�

1



�

2

= 0: (4.5.28)

Repeating the same proedure for n = 3 one gets

(d� 2)(d� 4)Tr 
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4

= 0: (4.5.29)

For d = 4, eq. (4.5.29) is satis�ed for any value of Tr 

5



�

1



�
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�

3



�

4

, whih in fat is non-zero

(and proportional to the axial urrent anomalous term, by the way); however, if we require

eq. (4.5.29) to hold for any value of d, then we are fored to onlude that

Tr 

5



�

1



�

2



�

3



�

4

= 0 (4.5.30)

whih is manifestly an inonsistent result, sine it does not give the orret answer when d tends

to 4. In partiular, one would onlude that there is no axial urrent anomaly! We onlude

that the de�nition of 

5

annot be based on eq. (4.5.22).
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The orret way to de�ne 

5

in dimensional regularization is the following. We deompose

all  matries into a four-dimensional and an extra-dimensional omponent:



�

= �

�

+ ̂

�

; (4.5.31)

where �

�

is non-zero only when � takes the ordinary values 0,1,2,3 and ̂

�

vanishes in the

ordinary dimensions. Correspondingly, the matrix tensor g

��

has a four-dimensional and an

extra-dimensional part,

g

��

= �g

��

+ ĝ

��

; (4.5.32)

mixed omponents obviously vanish. The antiommutation relations beome
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g = 0: (4.5.33)

Then, we simply de�ne 

5

as in four dimensions, that is
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: (4.5.34)

It is easy to hek that the de�nition (4.5.34) implies

f
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; �
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g = 0; [
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; ̂
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℄ = 0; (4.5.35)

or, in a more ompat form,
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5

̂
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: (4.5.36)

The identities

Tr 

5

= 0; Tr 

5
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�

= 0 (4.5.37)

an be shown to hold, regardless of the value of d (this result is nontrivial; it an be obtained

by the same way of reasoning that leads to eqs. (4.5.26) and (4.5.27). Prove it as an exerise).

Furthermore, one sees immediately that the quantity

Tr 
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(4.5.38)

vanishes if at least one of the indies has a value in the extra dimensions. We have therefore
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; (4.5.39)

whih is the orret four-dimensional result.

The use of the de�nition (4.5.34) requires speial attention, beause it introdues an expliit

violation of hiral invariane, whih must therefore be restored by means of �nite renormalization.

I will not disuss this point in detail here.

In the following, I will show that the omputation of the axial urrent anomaly, performed

in set. 3.3 in the Pauli-Villars regularization sheme, an also be performed in dimensional

regularization. I will present the omputation in the massless ase; the extension to massive

fermions is straightforward. From eq. (3.3.14) we have
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; (4.5.40)
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where the integral is made onvergent by dimensional regularization. The numerator of the

integrand ontains terms whih are linear, quadrati or ubi in the loop momentum k. The

linear term is onvergent, and it gives a vanishing ontribution:
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beause k
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= 0.

The quadrati term requires more work. We have
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: (4.5.42)

The �rst term ontributes to the �nal result with
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where
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The seond and third terms in eq. (4.5.42) involve the integral
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whih an be written in the form
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exploiting symmetry under k

1

$ k

2

and � $ �. It is lear from eq. (4.5.42) that only the term

Ag
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ontributes to the result. In order to ompute A, we observe that eq. (4.5.46) gives
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Now, using the identities k
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Solving the system (4.5.47), one gets
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Finally, we ome to the ubi term:
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sine the antiommutator term gives zero ontribution beause of antisymmetry. We must

therefore ompute
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and taking the produt I

�

k
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1

one easily obtains
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Colleting all our results, we �nally obtain
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where a fator of 2 has been inserted to take into aount the ontribution of T

���

2

. The �nal result

is ultraviolet-�nite: indeed, in dimensional regularization at one loop ultraviolet divergenes

manifest themselves as simple poles in d� 4, and there is a d� 4 fator in front of the divergent

integrals. It is now easy to ompute (d�4)I and (d�4)J for d = 4 with the help of the formulae

obtained earlier in this Appendix, and reover the result of eq. (3.3.33).
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