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Chapter 1

Introduction

The aim of these lectures is a description of the construction and the main phenomenological
implications of the Glashow-Weinberg-Salam unified theory of weak and electromagnetic in-
teractions (universally referred to as the standard model.) Basic knowledge in quantum field
theory [1],][2] and elementary group theory [3] is assumed, as well as familiarity with the funda-
mental phenomenology of weak interactions [4].

No attempt will be made to give a full list of references. Such a list can be found in any
standard text book of particle physics; see for example refs. [4]-]8].



Chapter 2

Construction of the standard model

2.1 A gauge theory of weak interactions

Our starting point is the effective lagrangian that describes weak interaction processes at low
energies. This lagrangian (often called the Fermi lagrangian) has the form of a sum of products
of vector and axial vector currents. For example, the terms responsible for nucleon 5 decay and
for muon decay are!

Go_ ~ Gw_ _
L= VoL (1 —avs)neya(l — vs)ve — 75 (1 —y5)eva(l — 75)ve. (2.1.1)

From the experimental values of the muon and neutron lifetimes, one obtains
GM ~ 116639 x 107> GeV~ %, G¥W ~GW =Gy, (2.1.2)

while the value
a=1.239 £+ 0.09 (2.1.3)

can be extracted from hyperon decays.

The field theory defined by the interaction in eq. (2.1.1) is manifestly not renormalizable,
since it contains operators with mass dimension 6 (a necessary condition for perturbative renor-
malizability is that the lagrangian density contains operators with mass dimension less than or
equal to 4, see Appendix 4.1), and it gives rise to a non-unitary S matrix (see Appendix 4.2).
However, it contains all the physical information needed to build a renormalizable and unitary
theory of weak interactions.

The idea is that of building a theory with local invariance under the action of some group
of field transformations, a gauge theory, in analogy with quantum electrodynamics (see Ap-
pendix 4.3). We will then require that the new theory reduce to eq. (2.1.1) in the low-energy
limit, in the sense that the local four-fermion interaction of the Fermi lagrangian will be inter-
preted as the interaction vertex that arises from the exchange of a massive vector boson with

!Throughout these lectures, particle fields will be denoted by the symbol usually adopted for the corresponding
particle: e for the electron, v, for the electron neutrino, and so on.



momentum much smaller than its mass. In this way, both problems of renormalizability and
unitarity will be solved, since gauge theories are known to be renormalizable, and the mass of
the intermediate vector boson will act as a cut-off that stops the growth of cross sections with
energy, thus ensuring unitarity of the scattering matrix.

In order to complete this program, we must choose the group of local invariance, and then
assign particle fields to representations of this group. Both these steps can be performed with
the help of the information contained in the Fermi lagrangian. Let us first consider the electron
and the electron neutrino. They participate in the weak interaction via the current

(1= s)e. (2.1.4)
We would like to rewrite .J, in the form of a Noether current,

Uiy Tj5 5, (2.1.5)

where ; are the components of some multiplet of the (as yet unknown) gauge group, and TZ;‘
are the corresponding generators. In the case of .J,, this can be done in the following way. We
observe that the current .J, can be written as

J, =Ly, "L, (2.1.6)
where
o 1 Ve _ Ver,
L= 5(1 - ’}/5) ( e ) = ( er ) 5 (217)
1 . 01
Tt = 5(7'1 +iTmp) = [ 00 ] , (2.1.8)
and 7; are the usual Pauli matrices. The hermitian conjugate current
iy - _1 :
Jy = Lyt Ly T = 5(7'1 — iTp) (2.1.9)

will also participate in the interaction. The currents are in one-to-one correspondence with
the generators of the symmetry group, which, in turn, form a closed set with respect to the
commutation operation: the commutator of two generators is also a generator. Therefore, the
current

JY = Ly*[rt,77]L = Ly* 3L (2.1.10)

will also be present. No other current must be introduced, since
(13, 7%] = 277, (2.1.11)

We have thus interpreted the current J, as one of the three conserved currents of a theory with
SU(2) gauge invariance, the Pauli matrices being the generators of SU(2) in the fundamental
representation, and we have assigned the left-handed neutrino and electron fields to an SU(2)
doublet. The right-handed neutrino and electron components, v.p and eg, do not take part in
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the weak-interaction phenomena described by the Fermi lagrangian, so they must be assigned
to the singlet (or scalar) representation. Of course, this is not the only possible choice, but it
is the simplest possibility (and also the correct one, as we will see) since it does not require the
introduction of fermion fields other than the observed ones.

The current J%' is a neutral current: it contains creation and annihilation operators of particles
with the same charge (actually, of the same particle). Neutral currents do not appear in the
Fermi lagrangian; no neutral current phenomenon is observed in low-energy weak interactions.
As we will see, the experimental observation of phenomena induced by weak neutral currents is a
crucial test of the validity of the standard model. Notice also that the neutral current J§ cannot
be identified with the only other neutral current we know of, the electromagnetic current. This
is for two reasons: first, the electromagnetic current involves both left-handed and right-handed
fermion fields with the same weight; and second, the electromagnetic current does not contain a
neutrino term, the neutrino being chargeless. We will come back later to the problem of neutral
currents, that will end up with the inclusion of the electromagnetic current in the theory. For the
moment, we go on with the construction of our SU(2) gauge theory. We must introduce vector
meson fields W} one for each of the three SU(2) generators, and build a covariant derivative

D = " — igWI'T;, (2.1.12)

where we have introduced, as is customary in gauge theories, a coupling constant g. The matrices
T; are generators of SU(2) in the representation of the multiplet the covariant derivative is acting
on. For example, when D* acts on the doublet L, we have T; = 7;/2, and when it acts on the
gauge singlet ep we have 7; = 0. We are now ready to write the gauge-invariant lagrangian for
the fermion fields (which we assume massless for the time being):

L = izsz+iveRlDVeR+i€RlD€R

where )= ~,D". The lagrangian £ contains the usual kinetic term for massless fermions,
Ekin :’iZ@L—i"iveR@VeR—i‘iéR@eR, (2114)
plus an interaction term L, + £,,, where
— WHETA w12
L. = gW{ LyﬂgL + gWs L’yﬂgL (2.1.15)
corresponds to charged-current interactions, and
W T3 g Wwo(— —
L, =gW; L%EL = §W3 (TerVYuVer — ELYu€L) (2.1.16)

to neutral current interactions. The charged-current term L. is usually expressed in terms of

the fields
wE =

1

1 . 2
(W5 iW?). (2.1.17)

S
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We find g g
L= ELV”TJFLWJ + ﬁLv“T_LWH_. (2.1.18)

We have already observed that the neutral current .J5 = Ly*73L cannot be identified with
the electromagnetic current, and correspondingly that the gauge vector boson W{' cannot be
interpreted as the photon. The construction of the model can therefore proceed in two different
directions: either we modify the multiplet structure of the theory, in order to make J§ equal to
the electromagnetic current; or we admit the possibility of the existence of weak neutral currents,
and we extend the gauge group in order to accommodate also the electromagnetic current in
addition to J{'. We proceed to describe the second possibility, which is the one that turns out
to be correct, after the discovery of weak processes induced by neutral currents. Nevertheless,
it should be kept in mind that this was not at all obvious to physicists before the observation of
weak neutral-current effects.

The simplest way of extending the gauge group SU(2) to include a second neutral generator
is to include an abelian factor U(1):

SU(2) - SU(2) @ U(1). (2.1.19)
We will require our lagrangian to be invariant also under the U(1) gauge transformations

W — 1 = exp [ig'a@] VY, (2.1.20)

where 1 is a generic field of the theory, ¢’ is the coupling constant associated with the U(1)
factor of the gauge group, and Y () is a quantum number, usually called the weak hypercharge,
to be specified for each field 1. Since the SU(2) factor of the gauge group acts in a different
way on left-handed and right-handed fermions (it is a chiral group), it is natural to allow for the
possibility of assigning different hypercharge quantum numbers to the left and right components
of the same fermion field. A new gauge vector field B* must be introduced, and the covariant
derivative becomes

Y
D" = 0" — igW/'T; — ig' S B, (2.1.21)

where Y is a diagonal matrix with the hypercharge values in its diagonal entries. Y being
diagonal, only the term £, is modified. We have now

g _ _
En = EW; (VeL’VuVeL - eL’VueL)
g _ _ _ _
+ EBﬂ Y(L) (TepVuVer +Ervuer) + Y (Ver)VerVuer + Y (er)ervuer] . (2.1.22)

This can be written as v
L, =g0y,T30 Wi+ 4 Wyugxlf B*, (2.1.23)

where V¥ is a column vector formed with all left-handed and right-handed fermionic fields in the
theory, and T3 = £1/2 for v,y and ey respectively, and T3 = 0 for v.p and eg. We can now



assign the quantum numbers Y in such a way that the electromagnetic interaction term appear
in eq. (2.1.22). To do this, we first perform a rotation by an angle 6, in the space of the two
neutral gauge fields W¥', B¥:

B* = A*cos by, — Z" sin B, (2.1.24)
Wi = A¥sin by, + Z" cos by, . (2.1.25)

In terms of the new vector fields A*, Z¥, eq. (2.1.23) takes the form
. . Y , . Y , .
Ly, =Yy, (g sin 0y, 13 + 59 cos 0W> U A" + Wy, (g cos Oy, 15 — 59 sin 9W> v ZE (2.1.26)

In order to identify one of the two neutral vector fields, say A*, with the photon field, we must
choose Y (L), Y (v.r) and Y (er) so that A* couples to the electromagnetic current

Jhy = —e (@rY'er + e er) = eVY'QU, (2.1.27)

where () is the electromagnetic charge matrix in units of the positron charge e. In other words,
it must be

Y
T3gsin9W+Eg'COSHW =e(. (2.1.28)

The weak hypercharges Y appear in eq. (2.1.28) only through the combination Yg¢': thus, we
have the freedom of rescaling the hypercharges by a common factor K, provided we rescale ¢
by 1/K. This freedom can be used to fix arbitrarily the value of one of the three hypercharges
Y(L),Y (ver),Y (er). The conventionally adopted choice is

Y (L) = —1. (2.1.29)

With this choice, eq. (2.1.28) restricted to the doublet of left-handed leptons is

1 1
+39 sin 0y, — 591 cos By, =0 (2.1.30)
1 1
—59 sin 6y, — ig' cos by, = —e, (2.1.31)
which gives
gsinfy, = g’ cos b, = e. (2.1.32)

(For a generic doublet of fermions with charges @); and @5 the r.h.s. of eq. (2.1.32) becomes
e(@Q1—Q2), but gauge invariance of the charged coupling requires Q1 — @2 = 1.) Equation (2.1.28)
then reduces to

Y
T5 + 3= Q, (2.1.33)
which is valid for any fermion. For example, we find

Y(ver) =0;  Y(ep) = —2. (2.1.34)



This completes the assignments of weak hypercharge values to all fermion fields. Notice that the
right-handed neutrino has zero charge and zero hypercharge, and it is an SU(2) singlet: it does
not take part in electroweak interactions.

The second term in eq. (2.1.26) defines the weak neutral current coupled to the other neutral
vector boson Z,. It can be written as

eV, Q7Y 7", (2.1.35)
where
Rz = S (Tg — @ sin? GW) : (2.1.36)
cos 0, sin 0y,

The extension of the theory to more lepton doublets is straightforward.
We must now include hadrons in the theory. We will do this in terms of quark fields, taking
as a starting point the hadronic current responsible for 5 decay and strange particle decays:

1 1
Thaa = €08 0w 5 (1 — 75)d + sin 6. @y 5 (1 - 75)s, (2.1.37)

where 6. is the Cabibbo angle (6, ~ 13°) and u, d, s are the up, down and strange quark fields
respectively. We are tempted to proceed as in the case of leptons: define

1 u ur,
Q= 5(1 —v) | d | =] dg (2.1.38)
S SL
and
0 cosf,. sinf,
TH=10 0 0 , (2.1.39)
0 0 0
so that B
Thaa = QV"TTQ. (2.1.40)

This leads to a system of currents which is in contrast with experimental observations. Indeed,
we find that

1 0 0
Ts=[T",T7]=|0 —cos’f, —cosf.sinf. |. (2.1.41)
0 —cosf,.sinf, —sin? .

The corresponding neutral current contains flavour-changing terms, such as e.g. d;7*s., with a
weight of the same order of magnitude of flavour-conserving ones. These terms induce processes
at a rate which is not compatible with experimental observation. For example, the ratio of the
decay rates for the processes

Kt — n’ety, (2.1.42)
Kt — rfete (2.1.43)



is approximately

sin 6 2 1
r [sin 0. cos Gc] cos2 0, ’ ( )
while observations give
Fexp =~ 1.3 x 10°, (2.1.45)

that is, the charged-current process (s — w) is enhanced by five orders of magnitude with respect
to the neutral-current (s — d) one. Our theory should therefore be modified in order to avoid
the introduction of flavour-changing neutral currents. The solution to this puzzle was found
by S. Glashow, J. Iliopoulos and L. Maiani. They suggested to introduce a fourth quark ¢ (for
charm) with charge 2/3 like the up quark, and to assume that its couplings to down and strange
quarks are given by

1 1
Jihg = cos GCﬂy“i(l — 75)d + sin GCUfy“i(l — 75)s
1 1
— sin 9067“5(1 — ¥5)d + cos 9667“5(1 — 5)S. (2.1.46)

The ¢ quark being not observed at the time, they had to assume that its mass was much larger
than those of u, d and s quarks, and therefore outside the energy range of available experimental

devices. The current J} , can still be put in the form (2.1.40), where now

ur,
Q= ZL (2.1.47)
L

SL

and
cosf. sinf,

00
0 0 —sinf,. cosd
+ _ c c
= 00
00

0 0 (2.1.48)
0 0
No flavour-changing neutral current is now present. In fact,
1 0 0 0
01 0 0
e
T, T7] = 00 -1 0 | (2.1.49)
00 0 -1

thanks to the fact that the upper right 2 x 2 block of T has been cleverly chosen to be an
orthogonal matrix. The existence of the quark ¢ was later confirmed by the discovery of the J/
particle. The current J}' , is usually written in the following form, analogous to the corresponding
leptonic current:

T = (@rdy )y ( Z,L > + (Es,) vt ( L > , (2.1.50)
L

ST,
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where
(d:L>:V<dL>, vz[ c0s b SmHC]. (2.1.51)
s ST, —sinf,. cosf,

The pairs (u,d), (c,s) are called quark families. Actually, there is a correspondence between
quark and lepton families, whose origin will be investigated in section 3.3. The structure outlined
above can be extended to an arbitrary number of quark families. With n families, V' becomes an
n X n matrix, and it must be unitary in order to ensure the absence of flavour-changing neutral
currents.

The final form of the charged-current interaction term, including n families of leptons and
quarks, is then

g

L, = NG S (Zpy'r "Ly +Qy"m Q) W, + hoc, (2.1.52)
f=1

Lf:<”€LL><’Z‘LL> (2.1.53)
Qf=<z,§><gi> (2.1.54)

An equivalent (and often more useful) form of eq. (2.1.52) is

where

Le = % (Z LY el + D0l Vi, d%) W+ h.c. (2.1.55)
f=1

f9=1

The neutral-current lagrangian in eq. (2.1.23) is directly generalizable to include quark fields.
To conclude the construction of the standard model lagrangian, we must consider the pure

Yang-Mills term

1 v 1 ) v

where
B¥ = otBY — 0¥ B*
Wil“/ —= auWiy — aVVI/iIJ‘ + ng]kW]ﬂW]g (2157)

The corresponding expression in terms of the physical fields Wﬂi, Z, and A, can be easily worked
out with the help of egs. (2.1.17), (2.1.24) and (2.1.25), which we rewrite here:

1 ~
W, = ﬁ(W: +W,) (2.1.58)
i ~
Wy = E(W; -w,) (2.1.59)
W) = Aysinby, + Z, cos by, (2.1.60)
B, = A, cosby — Z,sinb,,. (2.1.61)

10



1 . .
W), = % Wik, + g sin 0, (W,F A, — W,FA,) +ig cos b (W, Z, — W5 Z,)] +hec.
Wi, = % [W;’V +ig sin Oy (WA, — W A,) +ig cos by (W, Z, — WVJFZ”)] + h.c.
W, = Fusinby + Z,, cos 0y —ig(W, W, —W, W)
B,, = Fcosby —Z,,sinb,, (2.1.62)
where
Fr = gAY — 9" AH (2.1.63)
M = ghgY — 7P (2.1.64)
Wi = WY — "W (2.1.65)
It follows that
L = ! Fr ! Ve 1W+W“V 2.1.66
YM — _Z uv _Z uy _5 v’V — ( )

+igsin by, (WL WEAY — W, WLAY + F,, WEW?Y)
tigeos Oy (WhHWEZY — W, WEZY + 7, WEW?)
2

g 4 a vo ag U
-5 (29" g7 — g"Pg"7 — g"?¢"?)

1
WIW, (A, Agsin® 0y, + Z,Z, cos” Oy + 2A,Z, sin by, cos Oy,) — 5W;WJW;W;

2.2 DMasses

Masses for the gauge bosons

We will now show that, in order to make contact with the Fermi theory, which is known to
correctly describe low-energy weak interactions, the gauge vector bosons of weak interactions
must have a non-zero mass. We will also be able to set a lower bound to the mass of the W
boson. Let us consider the amplitude for down-quark 3 decay. In the Fermi theory, it is simply
given by

G
— 2y (1 = 95)dEYu(l — Vs )ve. (2.2.1)

V2
In the context of the standard model, the same process is induced by the exchange of a W boson,

with amplitude
1

Y o g 9 - 2.2.2
(\/iuL’V L> q2 _m%/ (\/ieL’leaVEL>7 ( = )

(we are neglecting Cabibbo mixing for simplicity). The virtuality ¢* of the exchanged vector
boson is bounded from above by the square of the neutron-proton mass difference, ¢*> < (my —
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mp)? ~ (1.3 MeV)2. For eq. (2.2.2) to be equal to the Fermi amplitude in the ¢*> — 0 limit, m,,

must be non zero, and
GF qg 2 1
— = =) —. 2.2.3

5= (23) n (2:2:)

Recalling that g = e/sinfy,, eq. (2.2.3) gives us the lower bound

my > 37.3 GeV, (2.2.4)
quite a large value, if compared with the present upper bound on the photon mass,

m, <2-107' eV, (2.2.5)

So, we know since the beginning that if weak interactions are to be mediated by vector bosons,
these must be very heavy. On the other hand, we also know that gauge theories are incompatible
with mass terms for the vector bosons. One possibility is to break gauge invariance explicitly
and insert a mass term for the WW boson by hand, but this leads to a non-renormalizable theory.
Let us investigate this point in more detail. Consider for simplicity the lagrangian of a pure
abelian gauge theory, with a mass term for the gauge vector field:

Looi v oo 1
L=—2(0"A" = 0" A") (0,4, — 0,A,) + 5mIA"A,, (2.2.6)

and work out the propagator A*” for A" in momentum space. We get

w1 o R
A 7k2_m2< ¢+ ) (2.2.7)

v

The propagator A" has not the correct behaviour for large values of the momentum k: for
k — oo it becomes a constant, rather than vanishing as k=2, thus violating power-counting and
making the theory unrenormalizable.

A related problem of a massive vector boson theory, such as the one defined by eq. (2.2.6),
is again unitarity of the scattering matrix. The amplitude for a generic physical process which
involves the emission or the absorption of a vector boson with four-momentum £ and polarization
vector €(k) has the form

M = MPe, (k). (2.2.8)

A massive vector (contrary to a massless one) may be polarized longitudinally. In this case,
choosing the z axis along the direction of the 3-momentum of the vector boson, the polarization
is given by

e, = (k/m,,0,0, E/m,) = k/m, + O(m?2/E?), (2.2.9)

where we have imposed the transversity condition p-e = 0 and the normalization condition € =
—1. Clearly, the amplitude M will grow indefinitely with the energy F, unless some mechanism
takes place to cut off this growth, and unitarity of the scattering matrix will eventually be
violated.

12



To see how one can introduce a mass term for gauge vector bosons without spoiling renor-
malizability and unitarity, we first consider a simple example where this happens, and then we
generalize our considerations to the standard model. The simple theory we consider is scalar
electrodynamics, that is, a gauge theory based on U(1) invariance, coupled to one complex scalar
field ¢ with charge e. The lagrangian is given by

L= —%F“”FW + (D*$)'D,p — V (), (2.2.10)

where D# = 0" —ie A", and V' (¢) is the so-called scalar potential, which is constrained by gauge
invariance and renormalizability to be of the form

Vig)=m* o+ [0 ]". (2.2.11)

We look for field configurations that minimize the energy of the system. Because of the require-
ment of translational invariance, they must be constant configurations, so we can neglect the
derivative terms and look for the minimum of the potential V. Now, if m? > 0, then V has a
minimum for ¢ = 0. If, on the other hand, m? < 0, then m? can no longer be interpreted as a
mass squared for the field ¢; furthermore, the potential has now an infinite number of degenerate
minima, given by all those field configurations for which

2
m 1,

2 _
| ¢ [>= — o =37 (2.2.12)
All these minimum configurations (in the language of quantum theory, all these ground states)
are connected by gauge transformations, that change the phase of the complex field ¢ without
affecting its modulus. The system will choose one of the infinite possible minimum configura-
tions. This phenomenon is usually called spontaneous breaking of the gauge symmetry, but the
symmetry is not actually broken. In fact, the Lagrangian is still gauge invariant, and all the
properties connected with this invariance (such as, for example, current conservation) are still
there. It is important to stress this point, because at the quantum level this is essentially what
guarantees the renormalizability of the theory, which would instead be lost in the case of an
explicit breaking of the gauge symmetry.
Let us now expand the field ¢ around one of the infinite minimum configurations; we choose
the one for which ¢ is real at the minimum, but of course any other choice would be equivalent.
We introduce real scalar fields H(z) and G(x) by

1 )
Oa) = 5 [+ () +iG ()], (2.2.13)

where v is defined in eq. (2.2.12). In principle, the field G could have been removed from the
lagrangian by an appropriate gauge transformation. In fact, we could have first applied a local
gauge transformation to ¢ in order to make it real, and then shift it according to ¢ = (v+H)/v/2.
For the moment, we keep both H and G in the lagrangian; we will come back to this point later.
Up to an irrelevant constant, the scalar potential takes the form

1 1
V() = (mPv+ )H +5(m* + 3\ H + 2 (m” + Ao)G?
+MH(H? + G?) + %(H2 + G?)*. (2.2.14)

13



Using eq. (2.2.12), \v?> = —m?, we see that the terms proportional to H and G? vanish, which

means that the field G is massless. The coefficient of the H? term is now (—2m?)/2, and has

therefore the correct sign to be interpreted as a mass term (remember that m? is negative).
After the reparametrization eq. (2.2.13), the |D¢|* term takes the following form:

1 1 1
(D"6)! Dy = O"HOH + 50"GO,G + 3¢ (H + G + 20H) AV A,

— €A, (HO'G — Go*H) — evA'0,G + %eQUQA“Au. (2.2.15)

We see that the gauge field A, has acquired a mass m., = ev, precisely the result we were looking
for. The term —evA*d,G is unpleasant, because it mixes the gauge vector field A* with the
unphysical field G; we will see in a moment how to get rid of it.

We must now check that the appearance of a mass term for A* via the spontaneous symme-
try breaking mechanism has not spoiled the renormalizability of our theory, contrary to what
happened when we tried to break the symmetry explicitly. It is well known that, in order to
quantize a gauge theory, a gauge-fixing term must be added to the lagrangian (obviously, this
was not necessary in the case of explicit gauge symmetry breaking). A convenient choice for the
gauge-fixing term is .

2€
where ¢ is an arbitrary constant (the gauge parameter). Equation (2.2.16) corresponds to the
gauge-fixing condition

Lop = (0" A, + evéG)?, (2.2.16)

o"A, = —evéG. (2.2.17)

The gauge-fixing lagrangian (2.2.16) has been carefully chosen in order to cancel the term pro-
portional to A*0,G in eq. (2.2.15). Indeed, eq. (2.2.16) contains a term —evd"AG, which after
partial integration cancels the unwanted term in eq. (2.2.15). Observe also that the gauge-fixing
lagrangian introduces a term

1 1
—§§e2v2G2 = _§§m3G2, (2.2.18)

which gives a squared mass {m?y to the unphysical field G.
Collecting the various terms, the lagrangian is given by:

1., . , 1 1
L= —5(0" A9, — AN + S AMA, — 2_6(6HA“)2
1 1 1 1
+§0“H8MH — Em%{HQ + EG“GONG — EfszQ

1
+§e2(H2 +G? + 20H)A*A, — eA,(HO"G — GO"H)
A
—MH(H? + G?) — Z(H2 + G?)?, (2.2.19)
where m. = ev and m3, = 2 \v?. The propagators can be worked out from the quadratic terms,
collected in the first two rows of eq. (2.2.19). We get
i (1— E)kPk

A = g [+

2.2.20
k2 — m?r k2 — {m?/ ( )
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for the photon propagator, and

M) = s Dol = s
v

Ep— (2.2.21)
for the two scalar propagators.

Observe that the photon propagator has now the correct behaviour 1/k* at large momenta.
However, in addition to the pole at k* = m?, an unphysical singularity at k> = £m? has now
appeared. This singularity is located at the mass squared of the unphysical scalar field G. One
can prove that the contributions of this term of the photon propagator to physical quantities
are exactly cancelled by the contributions of G exchange. It is easy to check this cancellation in
specific cases, such as e.g. Hy — H scattering at tree level. In order to perform this kind of

checks, it is useful to rewrite the propagator in eq. (2.2.20) in the form

KR\ kR
(—g’“’ + ) - - (2.2.22)

2 2 12 _ 2’
m3 m2 k* —&mZ

i

mry

AE (k) T k2 —m2
v

where the G' propagator appears explicitly.

When we let € tend to infinity, the photon propagator eq. (2.2.20) takes the form of eq. (2.2.7):

lim A (k) = — (—g“” + kW) (2.2.23)
£o0 & k? —m?2 m2 ) o
The theory is still renormalizable, but in a hidden way: renormalizability must arise as a con-
sequence of cancellations among different contributions to the same Green function, since the
propagator does not obey the power-counting rule. The limit £ — oo is called the unitary gauge.
The advantage of the unitary gauge is that the theory contains only physical degrees of free-
dom. In fact, when £ — oo the gauge-fixing condition reduces to G(z) = 0 (see eq. (2.2.16));
it corresponds to the gauge choice that eliminates G’ from the theory since the very beginning.
The drawback is that in the unitary gauge renormalizability is not manifest at each intermediate
step of a calculation.
Two common gauge choices are the Feynman gauge, £ = 1, which gives

ig"”

AW = ——— 2.2.24
and the Landau gauge, £ = 0, for which
y i ,  KMEY
v

One last observation about the field G(x). It looks like we lost a degree of freedom, since we
started with a complex scalar field and we end up with one real scalar. Actually, the number
of degrees of freedom stays the same, since the photon is now massive, and has therefore three
polarization states instead of two. The field G(z) is called a would-be Goldstone boson. This
terminology reflects the fact that, in the absence of gauge invariance and of the gauge-fixing
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term, G would have simply been a physical, zero-mass state, which is always present when
spontaneous symmetry breaking occurs. This mechanism is known as the Higgs mechanism. It
is possible to extend it to the standard model, with a few modifications that we now describe in
detail.

We have learned that, in order to break spontaneously a gauge symmetry, we must intro-
duce scalar fields in the game. How should we do this in the standard model? First, the scalar
field must transform non-trivially under that part of the gauge group that we want to undergo
spontaneous breaking. Secondly, we must be careful not to break the U(1) invariance corre-
sponding to electrodynamics, or, in other words, we want the photon to stay massless. This
means that spontaneous symmetry breaking must take place in three of the four “directions” of
the SU(2) x U(1) gauge group, the fourth one being that corresponding to electric charge. The
simplest way to do this is to assign the scalar field ¢ to a doublet representation of SU(2):

6= ( z; ) - (2.2.26)

The Higgs mechanism takes place in analogy with scalar electrodynamics. The most general
scalar potential consistent with gauge invariance and renormalizability is

Vig)=m*1o [P +A] 0", (2.2.27)
which has a minimum at
| ¢ |*= m 1y (2.2.28)
oy 20 2

The value of the hypercharge of the scalar doublet ¢ is fixed by the requirement that the minimum
configuration

1 v
o= ()i el = (2.2:29)

is left unchanged by electromagnetic gauge transformations, that correspond to the subgroup
U(1)em. This corresponds to the requirement

Jiea % ( " > _ % ( . ) | (2.2.30)

or equivalently

(%1 65)2)(:2):(1/231% —1/20+Y/2><z;>:<8>’ (2.2.31)

where )1, Q) are the electric charges of ¢, ¢9, and we have used eq. (2.1.33). There are two
possibilities:

1) vu=0, |w=v, Y=+1 (2.2.32)
2) vu=0, |n|=v, ¥Y=-L (2.2.33)
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We will adpot the first choice, with Y = 41 and therefore @)1 = 1,Qs = 0. We will further
assume that v, is real and positive.
We can reparameterize ¢ in the following way:

¢ — ﬁew 0*(x)/v ( - OH(x) > , (2234)

with #*(x) and H(z) real. This parametrization is not suited for renormalizable gauges, because
it is non-linear and contains all powers of the fields 6;. It is convenient, however, if we work in
the unitary gauge; in fact, it is apparent that the fields 6; can be transformed away by an SU(2)
gauge transformation. In this section, we will use the unitary gauge #; = 0. The standard model
lagrangian in a generic renormalizable gauge is given in Appendix 4.4.

The scalar potential takes the form

1 1
V= 5(2,\112)112 + \H? + ZAH‘*; (2.2.35)

the Higgs scalar H has a squared mass m? = 2\v®. The term (D*¢)'D, ¢ can be worked out
using eq. (2.2.34) with #* = 0. We get

ny — fon 9 i 9\ L 0
Dt¢ = (6 Z2TWH Z2B">\/§<H(aj)+v>
I O O ) 1 g =Wy
- \/§<8"H> 2(H+U)\/§<—9Wé‘+g’3“

1 (0 i gwet
- — 2 (H 2.2.36
Al )z (L ghigmme ) 20
where in the last step we have used eqgs. (2.1.17), (2.1.24), (2.1.25) and (2.1.32). We have
therefore

1 1 1
(D49)! Dy = SO"HOH + | 29" W" W, + (g + g’Z)Z“ZN] (H +v)% (2.2.37)

8

We see that the W and Z bosons have acquired masses

1

m2, = 19%2 (2.2.38)
1

m? = i 24 g0t (2.2.39)

Note that the photon stays massless. With the scalar field ¢ transforming as a doublet of SU(2),
there is always a linear combination of B* and W' that does not receive a mass term, but only
if Y(¢) = 1 (or —1) does this linear combination coincide with the one in eq. (2.1.24). The
lagrangian in a generic renormalizable gauge is much more complicated, since it also involves
kinetic and interaction terms for non-physical Higgs scalars, the would-be Goldstone bosons. It
is described in Appendix 4.4.
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The value of v, the vacuum expectation value of the neutral component of the Higgs doublet,
can be obtained combining egs. (2.2.3) and (2.2.38), and using the measured valued of the Fermi

constant. We get
1
v = ~ 246.22 GeV. 2.2.40
\/ a3 ( )

The value of the Higgs quartic coupling A (or equivalently the Higgs mass) is not fixed by our
present, knowledge.

Masses for hadrons and flavour-mixing

Fermion masses are also forbidden by the gauge symmetry of the standard model. In fact, the
mass term for a fermion field ¢) has the form

—mp = —m(P R + YrYL), (2.2.41)

and cannot be invariant under a chiral transformation, that is, a transformation that acts differ-
ently on left-handed and right-handed fields. The gauge transformations of the standard model
are precisely of this kind. Again, this difficulty can be circumvented by means of the Higgs
doublet ¢.

We first consider the hadronic sector. We have seen in section 2.1 that the interaction
lagrangian is not diagonal in terms of quark fields with definite flavours. Let us call ' I and
d'’ the fields that bring the interaction terms diagonal (the index f runs over the n fermion
generations); in principle, there is no reason why only down-type quarks should be rotated. We

also define
1f

Q' = ( i > v =y Di=df (2.2.42)
A Yukawa interaction term can be added to the lagrangian:
ol = (Q ¢h, D'+ D' ¢ 'L Q) — (Q po by U + U L 1] @), (2.2.43)

where hj; and A/, are generic n x n constant complex matrices in the generation space, and

P = ( _¢;_ > : (2.2.44)

It easy to check that £{99" is Lorentz-invariant, gauge-invariant? and renormalizable, and there-
fore it can (actually, it must) be included in the lagrangian. The matrices hj, and h', can be
diagonalized by means of bi-unitary transformations:

hy = VT VY (2.2.45)
hp = VPR, VP, (2.2.46)

2If ¢ transforms as an SU(2) doublet, so does ¢. = ep*, where € is the antisymmetric tensor; check it as an
exercise.
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where V";" are unitary matrices, chosen so that are diagonal with real, non-negative entries.
Now, we define new quark fields « and d by

up =Viug, up=V]ug (2.2.47)
L =VPldy, dp=V.dg, (2.2.48)

In the unitary gauge, eq. (2.2.43) becomes

1 LA
Lhadr — —ﬁ(v + H)Y (b, dd! + hl wl ), (2.2.49)
f=1

where hé, p are the diagonal entries of the matrices hyy p. We can now identify the quark masses
with
vh

i

vhé
ok
Since the matrices V;> are constant in space-time, eqs. (2.2.47,2.2.48) are obviously global
symmetry transformations of the free quark lagrangian. They also leave unchanged the neutral-
current interaction term, because of the universality of the couplings of fermions of different
families to the photon and the Z. The only term in the lagrangian which is affected by
eqs. (2.2.47,2.2.48) is the charged-current interaction, because the up and down components
of the same left-handed doublet are transformed in a different way. Indeed, we find

mi = mi, = (2.2.50)

S

M= Q@ = 3 al vy, dl, (2.2.51)

/=1 f9=1

where

V=v've, (2.2.52)

The matrix V' is usually called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitary
matrix, and its unitarity guarantees the suppression of flavour changing neutral currents, as we
already discussed in section 2 in the case of two fermion families. The matrix V' enters the
standard model lagrangian as a fundamental parameter, on the same step as masses and gauge
couplings. The values of its entries must be determined from experiments.

To conclude this subsection, we now determine the number of independent parameters in the
CKM matrix. A generic n X n unitary matrix is formed with n? independent real parameters.
Some (n4) of them can be thought of as rotation angles in the n-dimensional space of generations,
and there are as many as the coordinate planes in N dimensions:

n 1
na = ( 5 ) = in(n —1). (2.2.53)
The remaining parameters are just complex phases; their number is
o, 1
np=n°—ny = En(n +1). (2.2.54)
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Some of the np complex phases, however, can be eliminated by redefining the left-handed quark
fields. This means that 2n — 1 phases are eliminable: in fact, there are n up-type quarks and
n down-type quarks, that can be rotated to eliminate the phase of one row and one column of
V', and the —1 accounts for the fact that the entry corresponding to the intersection of the row
and the column cannot be rotated twice. The number of really independent complex phases in
V' is therefore

np=np—(2n—1) = %(n —1)(n—2). (2.2.55)

Observe that, with one or two fermion families, the CKM matrix can be made real. The first
case with non-trivial phases is n = 3, which corresponds to np = 1. In the standard model with
three fermion families, the CKM matrix has four independent parameters: three rotation angles
and one complex phase. In the general case, the total number of independent parametersi in the
CKM matrix is

na+np=(n—1)>2~ (2.2.56)

Masses for leptons

The same procedure can be applied to the leptonic sector. Everything is formally unchanged:
up-quarks are replaced by neutrinos and down-quarks are replaced by charged leptons (e, pu~
and 77). There is however an important difference, which leads to considerable simplifications:
as we have seen, right-handed neutrinos have no interactions. Therefore, there is no Yukawa
coupling involving the conjugate scalar field ¢., and there is only one matrix of Yukawa couplings,
h'y:
£t — —(Tohly B + Botn' L), (2.2.57)
which can be diagonalized by means of a biunitary transformation
hi = VE L VE. (2.2.58)

The difference with respect to the case of quarks is that now we have the freedom of redefining
the left-handed neutrino fields using the same matrix V;” that rotates charged leptons:

v, =VFy (2.2.59)
e, =VFrer, ep=VFeg. (2.2.60)
This puts the Yukawa interaction in diagonal form,
L = 3" (L peh + e o' LY, (2.2.61)
f=1

but, contrary to what happens in the quark sector, leaves the charged interaction term un-
changed, since

Ty =LAt =Ly 77 L= v +"e]. (2.2.62)
F=1
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In other words, in the leptonic sector there is no mixing among different generations, because
the Yukawa coupling matrix can be diagonalized by a global transformation under which the
full lagrangian is invariant. As a consequence, not only the overall leptonic number, but also
individual leptonic flavors are conserved. This is due to the absence of right-handed neutrinos.

The values of the Yukawa couplings hé are determined by the values of the observed lepton
masses. In fact, using eq. (2.2.34), we find

n pf

h
L= % 7%(@ + H)érey, (2.2.63)
f=1

thus allowing the identifications

mip = —£. (2.2.64)

As in the case of vector bosons, in renormalizable gauges there are also interaction terms between
quarks and non-physical scalars; the details are given in Appendix 4.4.
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2.3 Summary

To summarize, the standard model lagrangian in the unitary gauge is given by

ESM = Ekm + Eem + Lc + En + Ly + EHiggs + LYukawa;
where
® Ly, is the free fermion lagrangian:
Liin =Y [Prigv! + (i —mp) !+ (i — mb) u! + & (ip — m) &'].
f=1
The index f labels the n fermion families. Neutrinos are assumed massless.
e L., is the electromagnetic coupling:
" 2 1-
Lem =€ Z (—ef o el + gﬂf Yu ul — gdf Yu df> A*
=1
o L. is the charged—current interaction term:
L. = 9_ ZV PF1l—rs)e +Zu M1 —ys) Vig d? W:
2\/_ f9=1 i
+ J Ze Pl =) v +de 1—75)Vfg W,
2\/_ f9=1 i
e [, is the neutral-current interaction term:
e n
- - - 7 _ faaf _ in2 f
L, = Tcos by, sind, ; [V Yu(l =) v + €', ( 1+ 4sin” 6y, —1—75) e

8 - 4
+ aly, (1 - gsin2 O —75> ul +d -y, <—1 + gsin2 O +75> df] Z".

e Ly is the pure Yang-Mills lagrangian:

1 1 1
Lym = = FuF" = 12, 2" — SW W™
g sin by (W5 WHEAY — W JWEAY 4 F WEWY)
+ig cos By (WHWHZY — WWW¢Z” + Z,WEWY)
2

g 4 a vo ag U
-5 (29" g7 — g g"" — g"?¢"?)

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

1
W,IW, (A, Agsin® 0y, + Z,Z, cos” Oy, + 24,2, sin by, cos fy,) — 5W;WJW;W;

where

P = grAY — P A, ZM = Q1Y — 9 2% WY = WY — YT
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e The Higgs sector provides a term

1 1 H\?* 1 1
Liggs = 3 O"H 0, H+ (mfv WHTW, + 5 m? Z“ZH> <1 + ?> -3 mi; Hz—AvHLZAH‘*.
(2.3.8)
e The Yukawa coupling Ly ykawe 1S given by
VH G~ f gt o f o fof o off
EYukawa:_ﬁ_Z(de d’ +mi; v’ +myelel). (2.3.9)
v

f=1

The parameters appearing in Lgy; are not all independent. The gauge-Higgs sector is entirely
specified by the four parameters

g, 9, v, muy, (2.3.10)
since . ,
1 1 2 m g

m2, = 19%2, m? = Z( g, A= 2—;, tan @, = = (2.3.11)

and gsin @y, = ¢’ cosfy,, = e. However, ¢, ¢’,v are often eliminated in favour of the electromag-
netic coupling o, the Fermi constant G and the Z° mass m,, which are measured with high
accuracy. We have

9%q"” 1 )
99 Gr=——\ m
Ar(g® + ¢”) SRVoTE

Qem, =

1
2 _ Z(g2 + g2 (2.3.12)

The free parameters in the fermionic sector are the 3n masses m{], me, mé, and the (n — 1)?

independent parameters in the Cabibbo-Kobayashi-Maskawa matrix V. This gives a total of 17
free parameters for the standard model with three fermion generations.

23



Chapter 3

Special topics

3.1 The scalar sector beyond the tree level

Effective action and effective potential

In this section we will study the scalar sector of the standard model, and in particular the
phenomenon of spontaneous breaking of the gauge symmetry, beyond the classical level. This is
most conveniently done in the context of the generating functional formalism, which we briefly
recall. One introduces the functional

Z[J] = (0|T¢' ] @'z /@@y = (0|0),, (3.1.1)

where J(x) is a classical source with the appropriate gauge transformation properties (we are
only interested in the scalar sector, so we do not introduce here sources for the other fields in
the theory). Functional derivatives of Z[.J] with respect to J at J = 0 give the Green’s functions
of the theory; for this reason, Z[.J] is called the generating functional. It can be shown that the

functional
W1J] = —ilog Z[J] (3.1.2)

is the generating functional for connected Green’s functions. One then defines the classical field

P as
_ W] _ (0]o(x)[0)s

(1) = - 3.1.3
2= 5w T o (313
and the effective action I'[¢,] as
6] = W[J] - / d*z J (2)e(x). (3.1.4)
The effective action has an expansion in powers of the classical field,
> 1
Plod =Y — /d4a:1 e d T Be(31) - Se(30) T (@1, - - ), (3.1.5)

n=0
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whose coefficients I',,(z1,...2,) can be shown to be the connected, one-particle irreducible
Green’s functions of the theory. The functional I'[¢.] is the appropriate tool to study spon-
taneous symmetry breaking. In fact, the condition for spontaneous symmetry breaking is that
b is different from zero even when the source .J is set equal to zero, as can be read off eq. (3.1.3).
On the other hand, for J = 0, one has

T [¢c]
0c
We conclude that spontaneous symmetry breaking takes place when the classical field that

minimizes the effective action is different from zero.
Consider now the Fourier transforms of the functions I',(x1, ... 2,):

= 0. (3.1.6)

d4p1 d* p =~
T, (z,.... 1, :/ D0 itpantpnen) (97046 (py + .+ po)Cn (Pl D 3.1.7
(‘Tla T ) (27’(’)4 (271') ( 7T) (pl + +p ) (pla p )7 ( )

and expand I',, in powers of momenta around p; = 0,

Co(piy. . pn) =0n(0) + ... . (3.1.8)

The effective action becomes
|
F[¢c] = Z m /d4-771 .- -d4$n ¢c(x1) - ¢c(l‘n)
n=0 """

d4p1 d p (p1 1+...p ) 4 ' [
N n Ti+...PnTn d —iz(p1+...+pn) r,0 -
/ (27r)4 (27r) / re [ ( )+ ]

- /d4 W(0)™(z) + ... . (3.1.9)
The first term in this expansion is usually written as

—/d4x V(o). (3.1.10)

where 1
E — 3.1.11

is called the effective potential of the theory, since it does not contain derivatives of the classical
field. The following terms, originating from higher powers of momenta in the expansion of I';,
contain instead two or more derivatives of ¢.. The minimum condition eq. (3.1.6) reduces to

0 _dVi(ge)
5¢C/d4a;V(¢c) = =0 (3.1.12)

if we require translational invariance of the vacuum state.
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Effective potential for a real scalar field

The effective potential can be computed directly, by taking the sum of all diagrams with an
arbitrary number of external scalar lines and zero external momenta. Consider for example a
theory with a single real scalar field ¢, and a tree-level potential given by

Vo(6) = 5t + Aot (3.1.13)

The one-loop Green’s functions at zero external momenta are given by

[y (0) = —i S, (-4! %)n/ (;Z:; <k2 - n; " Z,n)n, (3.1.14)

while Green’s functions with an odd number of external lines are obviously zero. The combina-
torial factor S, is

(2n)!
2n2n’
and can be determined in the following way: there are (2n)! ways of assigning the external
momenta to the vertices; this number must be divided by 2" because there are two external lines
for each vertex, and by 2n because there are 2n identical vertices in the diagram. The one-loop
correction to the scalar potential is therefore given by

i & w1 [ d 1
Vi(ge) = Eg(zﬂd)i) = B e T (3.1.16)

One sees immediately that the terms corresponding to n = 1 and n = 2 are divergent. This is
no surprise: these terms are proportional to ¢? and ¢? respectively, and the divergences must
undergo the usual procedure of mass and coupling constant renormalization. Let us first take
care of the finite part. The loop integrals can be performed using eq. (4.5.2); we find

: -1)"I'(n—2) ,
finite __ 2 4—2n
yfinite — e Z (3\07 ) T R (3.1.17)
or, using the properties of the I" function and deﬁning z = 3\p?/m?,
(—1)ne"

Sy = (3.1.15)

Vﬁnlte _
! 327r2z (n—1)(n—2)
1 2 1
- _647r2 7;,,(_ n n—1 n—Q}' (3.1.18)

It is now easy to sum the series by shifting the summation index to n+1 and n+ 2 in the second
and third term, and by adding and subtracting the missing n = 1,2 terms. We get
4

. 3
finite _ 2 T2
Vi = Gan (14 2)%log(l+2)— 2 57 ]
1 , N2, m?+ 3\p? 5 5 3 o9
= oo l(m +3X¢7) log —— 5~ — 3AgZm® — 5 (37027

(3.1.19)
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Let us now consider the divergent part:

1 d*k 1 1 2 d*k 1

ity [(3A¢3) / oy iy T2 () / ey G —meyay) G
The renormalization procedure requires that a regularization prescription is given in order to give
mathematical meaning to the divergent integrals. Then, one must add suitable counterterms in
order to cancel the divergences; the renormalizability of the theory manifests itself in the fact
that the only divergent diagrams correspond to terms which are already present in the bare
lagrangian. The finite parts of the counterterms are arbitrary; different choices correspond to
different renormalization schemes, and consequently to different definitions of the renormalized
parameters.

We notice that the first term in eq. (3.1.20) is quadratically divergent: if we were to regularize
the integrals by simply imposing an ultraviolet cut-off A on the modulus of the loop momentum
k, we would find a term proportional to AA%¢?, which corresponds to a quadratically divergent
radiative correction to the mass of the scalar field ¢.. This fact is characteristic of scalar mass
parameters.

In general, after regularization, the divergent part of the one-loop potential takes the form

ViV = A¢? + Bo?, (3.1.21)

where A and B are functions of A, m and of some parameter which defines the regularization
prescription; both are divergent in the physical limit, e.g. A — oo for the cut-off regularization,
or d — 4 in dimensional regularization. We must give some renormalization prescription to fix
the finite counterterms. For example, we could require that

[5(0) = —m?%  T4(0) = —6). (3.1.22)

Since eqgs. (3.1.22) hold for the tree-level potential, and since the finite part of the one-loop
corrections starts with ¢®, this prescription simply means that the counterterms must be exactly
equal and opposite to the divergent part, namely

Vet = —A¢? — Bgy, (3.1.23)
so that in this case .
Vi =yt (3.1.24)

Another possibility is to perform the so-called minimal subtraction (M.S). This prescription
amounts to computing the divergent part in dimensional regularization, and then fixing the
counterterms in such a way that only the pole in d — 4 is subtracted. A modified version of this
renormalization prescription (MS) consists in subtracting the term proportional to

1
€

where the space-time dimension is d = 4 — 2¢. In this case, we have to compute explicitly the
loop integrals in eq. (3.1.20). Using again eq. (4.5.2), we find
1

Vdiv — _
! 6472

3 1 ?
[6)\¢§m2 + 6AG? <m2 + §A¢3> (— — 7+ log(4) + log = 2>] . (3.1.26)
€
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where g is an arbitrary mass parameter which must be introduced in dimensional regularization
in order to keep the coupling constant A\ dimensionless. Now, we simply subtract the term
proportional to 1/e — v + log(4m). Adding all together, we find

== 1 m? +3\p? 3
MS c
VS = — (m? + 3\¢? ) Pog———:;r————-i : (3.1.27)
where we have used the identity
2 2, 3\ 2 2 2\ 2 4
6A¢C<WL—%§A¢€>::(WL—%3A¢J —m (3.1.28)

and we have dropped constant terms.

In more complicated theories, like the standard model, the effective potential receives contri-
butions also from fermion and vector loops. These contributions can be computed in the same
way as the scalar one, but the calculations are quite tedious and complicated. Fortunately, there
is a much cleverer technique, which allows one to obtain all contributions to the one-loop scalar
potential in a very simple way. Consider a new theory, obtained from the original one by shifting
the scalar field by an arbitrary quantity w:

b — ¢+ w. (3.1.29)

The corresponding effective potential is

o0

Z ) (P +w)"™ i

o (3.1.30)

C?

1
_v

where the Green’s functions I”, can be computed in terms of T',. From eq. (3.1.30) we find

=3 =10 (0) nw" (3.1.31)

n=1 n.

and therefore

/ dw T (w il T,(0) 6" = —V (o0). (3.1.32)

Equation (3.1.32) tells us that the effective potential of the original theory can be obtained by
computing the one-particle (or tadpole) amplitude of the shifted theory and integrating it with
respect to the shift. Let us see explicitly how this works. The tree-level potential of the shifted
theory is

Vi(6) = (64 W) + A6+ )" (3.1.33)

The tree-level tadpole is therefore

—m?w — \w?, (3.1.34)

which, integrated in w between 0 and ¢, gives minus the tree-level potential (3.1.13) as expected.
We now turn to the one-loop term. There is only one diagram to be computed, with one external
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line and one internal propagator. In the shifted theory, the mass of the ¢, field is m? + 3 w?,
and the ¢? vertex is —3\w (the factor 3 is due to the fact that the three lines are identical), and
therefore

[ (w,0) = —SAw/ A ! (3.1.35)
e (2m)4 k2 —m?2 — 3 \w? o
Using the results of appendix 4.5 we readily find
8 Ar)e
["(w,0) = —3\w 547732 D(—1+ €)(m? + 3 w?)' ¢
3\ 1 2 4 3 w?
- (4—7:;)2(m2 + 3Mw?) l? —  + log(47) — log ”“;72“’ + 1] + O(e), (3.1.36)

where p is the renormalization scale introduced by dimensional regularization. After performing
the MS subtraction, we find

Vl((ﬁc) = (471T)2 /Od’c dw 3)\w(m2 + 3)\(,02) (log

m? + 3 \w?
— 1
m? + 3?2 3)

_ ! 2 212
= 647r2(m + 3)¢7) (log e 5

(3.1.37)
which is the same result obtained with the direct calculation, eq. (3.1.27).

The effective potential in the standard model

The procedure outlined at the end of the previous subsection can be applied to the standard
model. The scalar field is now a complex doublet, which we write in terms of four real scalar

fields ¢z
¢:_1 <¢1+i¢2> (3.1.38)
V2 \ ¢3+igy ) o

In the standard model, the effective potential receives contributions from the scalar sector, the
vector boson sector, the Faddeev-Popov ghost sector and the fermion sector:

Vi(9) = Vs(0) + Vv (9) + Vy(9) + Vi (0) (3.1.39)

(we drop the suffix ¢ on from now on).
The effective potential is a gauge-dependent quantity. It can be shown that the gauge
dependence of the effective potential is governed by the equation

0 0

where £ is the gauge parameter and C(¢, ) is a function which can be computed order by order
in perturbation theory. Equation (3.1.40), in particular, tells us that V' is gauge-independent at

] Vi(g,€) =0, (3.1.40)
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its minimum, where 9V /0¢ = 0. We will compute V' (¢) in the Landau gauge £ = 0; in this case,
the ghost contribution V,(¢) vanishes.
We begin by computing the scalar contribution. After the shift ¢; — ¢; + w;, the tree-level
potential
Vo(¢) = m* 9" + Aol (3.1.41)

becomes
Vi(p) = ¢iwi(m® + Iw?) + % [(m2 + Aw?)d;; + 2)\wiwj] bid;
1
+)\wi¢i¢j¢j + 1)\(¢l¢l)2, (3.1.42)

where w? = w;w;. It is immediate to check that integrating the tree-level tadpole with respect to
w; and summing over the index 7 gives back the tree-level potential. The one-loop contribution
is obtained in the same way as in the case of the real scalar field, that is by computation of the
one-loop tadpole diagram. A complication arises here, due to the fact that the mass term in
eq. (3.1.42) is not diagonal. A simple way to circumvent this difficulty is to choose w; = 0 for
all 7 except one of them, say w3 = w (the reason of this choice will become clear later; of course,
it does not affect the final result). This choice simplifies considerably the calculation, since now
eq. (3.1.42) describes three real scalars, @1, ¢» and ¢4, with mass m? + Aw?, and one real scalar,
¢3, with mass m? + 3Aw?. The trilinear couplings ¢3¢;¢; are simply —\w for i # 3 and —3\w
for 7 = 3. The calculation is now exactly analogous to that of a single scalar field, except that
all four contributions must be taken into account. The result is therefore

24302 3
_ 2 a2 1o T3N3
V(o) 647r2(m + 3\p°%) log e 5
‘9?3

2 22 1 mTAY 9 1.4

+647r2(m + Ap7) log o 5| (3.1.43)

where ¢? = ¢;¢;. Some comments are in order. First of all, we observe that the same result
could have been obtained without any specific assumption about the shift variables w;. Secondly,
we stress the fact that the result in eq. (3.1.43) (as well as all the other contributions, to be
computed below) is independent of the values of m? and A\. More specifically, this result holds
in both the m? > 0 and m? < 0 cases. In the first case, there is no spontaneous breaking of
the gauge symmetry, the vacuum expectation values of the fields ¢; are all zero, and the scalar
masses are all equal to m?. In the m? < 0 case, the minimum of the tree-level potential lies at
$? = v?, and eq. (3.1.43) is easily intrerpreted: there is a contribution coming from the physical
Higgs boson, with mass m?+3Av?, and a contribution from the three would-be Goldstone bosons,
whose masses vanish at the minimum of the tree-level potential. In both cases, the one-loop
effective potential has the same form. Note that the masses of the unphysical scalars vanish
because we are working in the Landau gauge.

We now turn to the contribution of vector bosons, Vi, (¢). The only term of the lagrangian we
need is the scalar-scalar-vector-vector term that appears in the squared covariant derivative of
the Higgs doublet. In fact, after shifting the fields ¢;, this term contains both the mass terms for

30



the vector bosons and the scalar-vector-vector vertices needed to compute the one-loop tadpole.
With the help of the results in 4.4 we find that the relevant term in the shifted lagrangian is

1

1
. FWHW, + =(¢* +¢%)2"2,] (3.1.44)

E = (wiwi + 2@%) 8

where again we have chosen w; = 0 for 7 # 3 and w3 = w. Therefore, the one-loop tadpole receives
one contribution from a loop of a W vector boson with mass g?w?/4 and couplings g*w;g,, /2 to
the scalar fields ¢;, and a contribution from the Z boson with mass (g2 + ¢g'*)w?/4 and couplings
(¢*+¢' Z)wi guv/4. The corresponding contributions to the effective potential are easily computed
with the help of eq. (3.1.36), recalling that a factor g,,(—g¢g" + k*k”/k?) = —3 + 2¢ must now
be included because of the form of the vector boson propagators in the Landau gauge. The final
result is

3 1 2 2+ g%)9*/4 5
Wio) = ¢ [Z( 2+g'2)¢2] [log g +g)¢ /4 +‘Zz)¢/ — 6].
2 2 42
b (10007) s -3, (3145

Finally, we must consider the contribution of fermions. For simplicity, we consider only
the contribution of the top quark, since all other Yukawa couplings in the standard model are
negligibly small. With the choice of w adopted above, the relevant piece of the shifted lagrangian
is

hy _
L= —ﬁ(% + w)it, (3.1.46)

and proceeding as above we find

V() = 12 (%h?qﬁZ)Z [log R /2 _ 5] , (3.1.47)

6472 2 2

where we have included a factor of three for the colour quantum number, and a minus sign
because of the fermion loop.

To summarize our results, we have computed the one-loop effective potential of the standard
model in the MS subtraction scheme. The result is

V(g) = m’6 + N

where

1 1 1
H=m?+3)\* G=m>+\p*; W= Z92¢2; = Z(g2 +¢%) % T = §hf¢2. (3.1.49)



The quantities defined in eq. (3.1.49) are usually called the field dependent squared masses
of the theory; there is one such function for each particle in the spectrum, and its value at
¢»* = v? equals the squared mass of the corresponding particle. We may denote these functions
collectively with the symbol

M3 (p?) (3.1.50)
with the index 7 running over all particles in the theory, and rewrite the one-loop correction to
the scalar potential as

Vi(o

M) _ ci] , (3.1.51)

647r2 Z )% (2s; + 1)M;(¢?) [log ;2
where s; is the spin of particle i, ¢; = 3/2 for scalars and fermions, and ¢; = 5/6 for vectors.

A number of interesting things can be done with the one-loop effective potential (the original
work of S. Coleman and E. Weinberg is particularly instructive). We will concentrate on some
of them. Let us consider for example the dependence on the renormalization scale p. From

eq. (3.1.11), we have

dv(¢)
=0 3.1.52
g, (3.1.52)
where t = logu®. 1In fact, the one-particle irreducible Green’s functions obey the Callan-
Symanzik equations
a+52+ 9 ) =0 (3.1.53)
ot A %namQ T)Ee = o
where
d)\
= B, (3.1.54)
dm 9
— = y,m?, 1.
o = Ymin (3.1.55)
d¢2
=2 1.
= =2, (3.0.56)

and By, v, and v are functions of the coupling constants, and are computable in perturbation
theory. Using egs. (3.1.53) in eq. (3.1.11), eq. (3.1.52) is immediately obtained.

On the other hand, dV/dt can be computed explicitly by differentiating eq. (3.1.48) with
respect to log 2 and neglecting two-loop effects. We find

dV(¢) 1 4{ { 2,3 4, 39, 20 4”
— - Ay — 1202 + = = —3h
o 12\ AN - g9+ gl t97) :
1, ., 12
- m : 1.
oo l” 327r2] (3.1.57)
and therefore
By + 4Ny = ! {12A2+3 + 3( +g"%)? —3h4} (3.1.58)
AT T 8y T16Y -
12
m+ 2y = . 1.
Y+ 27 = o (3.1.59)
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Observe that eqs. (3.1.58,3.1.59) are not quite enough to compute all the anomalous dimensions
of the scalar sector, but almost so: infact, it is sufficient to compute explicitly one of them, for
example ~, to obtain the others.

We will now study the behaviour of the effective potential for large values of the classical
fields ¢;. We will be interested in discovering under which conditions V' (¢) — +oo for large ¢?,
a necessary condition for the existence of a minimum of V(¢) for finite ¢*. We therefore assume
that ¢? ~ A%, where A is some energy scale much larger than the electroweak scale. Under this
assumptions, the effective potential is approximately given by

V(g) ~ Tetrg — [12A2+§ 132y ’2)2—3h4]1o A
! 1672 g9 TV Y t] 082
1, ., 12\ A?
- 1+ -2 log = 1.
—|—2m¢ [ +327r2 og'u2 , (3.1.60)
or, using egs. (3.1.58,3.1.59),
1, A2l 1, A2
V(g) = 10 )\+(5A+4)\'y)logﬁ +5mg 1+(7m—|—27)10g? : (3.1.61)

We now observe that the renormalization group equations (3.1.54-3.1.56) have the approximate
solutions

A(A) >~ A+ By log A—z (3.1.62)
H A2
m?(A) ~ m? (1 + Vi log E) (3.1.63)
A2
¢*(A) ~ ¢* (1 + 2vlog ?) : (3.1.64)

with A = A(u), m? = m?(n), ¢* = ¢*(n). It is now immediate to show that eq. (3.1.61) is just
the expansion of the renormalization group improved effective potential

1 1
Vi(9) = 5 (A)F(A) + TAA)6(A). (3.1.65)
We see that the stability condition for the potential is simply the positivity of the running
coupling constant A(A) at large scales.

The stability condition can be translated into a lower limit for the Higgs boson mass. To see
this, we need the explicit form of the one-loop renormalization group equation for A(u):

d\ 1 3 3 3
A 1202+ 20t 1+ 2 (g2 + g% — 3h* —3Mg% — (g2 + ') + 6AR2] . 3.1.66
= = o +39 +16(9 +97) h 9 -3 (9° +9"7) + 6R; ( )

This equation must be solved together with the one-loop renormalization group equations for
gauge and Yukawa coupling constants, which in the standard model are given by

dg 1 19
- ha (-20) o
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dg 1 41 g4

= - 3.1.68
it~ 3272 67 (3.165)
dgg 1
= W(_7gg) (3.1.69)
dh 1 9 9 17
d—tt = 353 §h§ - <89§' + 192 + ﬁgﬂ) ht} ; (3.1.70)

where gg is the strong interaction coupling constant, and the MS scheme is adopted. This system
of coupled first-order differential equations can be easily solved numerically. The result for ()
is shown in fig. 3.1 for different values of the initial condition A(x = m,). Namely, we have
chosen A(m) corresponding to my = 60, 100, 130, 150,190 and 210 GeV, where

m3; =~ 2\(my,)v?. (3.1.71)

The interpretation of fig. 3.1 in connection with the problem of the stability of the effective

1.0 T T T T T T T T

[T I I ]
0.8 — —
06 — —
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= 04 — —
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0.0 M

C | ! ! ! ! ! | 1 I

103 108 10° 101% 1015
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Figure 3.1: The running coupling constant \(u) for different values of A(my), as ex-
plained in the text.

potential is as follows. We see that if the initial condition at x4 = v is small, then A(x) becomes
negative for some value of the renormalization scale. Conversely, the requirement that A(u)
stay positive at least up to a given value of u, u ~ A, translates into a lower limit on A(v), or
equivalently on my. This lower bound depends on A; we see for example that if we ask A(x) > 0
up to the grand unification scale, ~ 10'6 GeV, the Higgs boson mass cannot go below ~ 150 GeV
(fig. 3.1 is obtained for m; = 175 GeV). This lower limit becomes less stringent if we require
A(p) > 0 in a smaller range of p.

There is another lesson to be learned from fig. 3.1. We observe that, for large values of the
Higgs boson mass, the coupling constant A\ grows with increasing u, and eventually leaves the
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perturbative domain, A < 1. This is because the solution of the renormalization group equation
for A has a singularity in x, known as the Landau singularity. Also in this case, for the theory to
make sense up to a given scale A, we must ask A(x) < 1 (or something like that) for 4 < A. This
in turns implies an upper bound on the Higgs boson mass, which is approximately 180 GeV for
A ~ 10" GeV and m; = 175 GeV.

The upper limit on the standard model Higgs boson mass is often referred to as the triviality
lzmit. The reason for this is that the existence of a Landau singularity in the running coupling
constant A would imply A(v) = 0 if we require that the theory be valid for all values of the scale
i, that is, the theory would be non-interacting, or trivial, in the scalar sector. Therefore, we are
forced to require the consistency of the theory only up to some finite value of y, and to assume
that some new phenomena become relevant at higher energy scales. Notice however that no
rigorous proof of the triviality of the standard model has been given so far; there are only some
indications of this, coming from studies and lattice simulations of simplified theories.

Both the triviality upper bound and the stability lower bound on the Higgs mass are shown
in fig. 3.2, as functions of A. As A increases, the allowed range for my becomes narrower. Recent

400 | T T | T T | T T | T T |
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=
[
e
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—
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Figure 3.2: Theoretical upper and lower bounds on the Higgs mass.

LEP and SLD precision data allow to estimate, although with a large uncertainty, the value of
the standard model Higgs mass, that affects various observables (like the W boson mass, or
forward-backward asymmetries) through radiative corrections. The central values of these fits
are between 100 and 200 GeV. It is interesting to notice that a value of my in this range is
compatible with A close to the unification scale, ~ 106 GeV.
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3.2 The SU(2) custodial symmetry

We have seen in section 3 that in the standard model at tree level the weak vector boson masses

my, and m, are related by

m2

— =1. 3.2.1
m2 cos? 0, ( )

P

Equation (3.2.1) could in principle be modified at higher orders in perturbation theory. Actually,
the measured value of p is very close to 1:

Pexp = 1.0048 £ 0.0022, (3.2.2)

thus suggesting that some symmetry property prevents the quantity p from receiving large
radiative corrections. We will now show that this is indeed the case.

Preliminarly, we observe that, even after the inclusion of radiative corrections, the most
general vector boson mass term is given by

1 1 M2 MW
Lomass = gmiy (WHW, + WHWE 4 (W5 BY) [ N l ( B, | (3.2.3)
Furthermore, the condition that the photon stays massless gives us M = MM", and M? +
M" = m?2. Therefore, the mass matrix in the neutral sector is completely fixed by the value of
one parameter, say M?, and it is diagonalized by a rotation of an angle ,, given by

yms — M (3.2.4)

tan 8y, = A
This in turn implies that
2 2
mW mW
— - : 3.2.5
P m2 cos? By,  M? ( )

that is, p = 1 only if M? =m?,.
Next we notice that the scalar potential

V(g)=m*| ¢ "+ ] o [ (3.2.6)

is invariant under a group of transformations which is larger than the standard model SU(2) x
U(1)y. In fact, defining

_ L 1+ i
oo (i) b2
we see that 1
6= S(67 + 63 + 63+ 1) (3.2.8)

can be interpreted as the squared length of a real four vector. Therefore, the scalar potential
has an O(4) ~ SU(2) x SU(2) invariance. This symmetry property can be implemented in the
following way. We define a 2 x 2 matrix

H= l f; _¢; ] : (3.2.9)
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Recalling that the field ¢, = (¢°7, —¢~)* transforms as an SU(2) doublet, it follows that, under
the action of a generic SU(2),, transformation U, we have

H — UH. (3.2.10)

On the other hand, it is easy to check that the scalar potential can be written in terms of H as
1, + 1 F )2
V(#) = gm* Tr (H'H) + SATr (H'H), (3.2.11)
which is invariant under the SU(2), x SU(2) transformation

H— UHVT, (3.2.12)

where V' is a second SU(2) constant matrix, independent of U. This is possible because the
structure of H in eq. (3.2.9) is preserved also by right multiplication with an SU(2) matrix.
Equation (3.2.12) is a representation of the O(4) symmetry we mentioned above. Is it possible
to write also the kinetic term for the field ¢ in an O(4)-invariant way? The natural candidate is
of course

1
ST (D,H)' D"H, (3.2.13)

which is invariant under the transformations (3.2.12) since D* — UD*U'. However, one readily
realizes that (3.2.13) is not equal to (D,@)'D*¢ (prove this statement as an exercise); this is
because ¢ and ¢, have opposite values of the hypercharge quantum number. We conclude that
the O(4) symmetry is violated by the hypercharge interaction term contained in the covariant
derivative. Let us therefore neglect for the moment the hypercharge factor of the gauge group,
which amounts to setting ¢’ = 0, in order to work with an O(4)-invariant theory.

Due to spontaneous breaking of SU(2),, the ground state is not invariant under O(4); how-
ever, there is a residual O(3) ~ SU(2) symmetry under transformations of the kind

H— UH(nU'n), (3.2.14)

that leave the vacuum expectation value < H >= v/2v7; unchanged (U is now z-independent).
We are almost at the end of the road: in fact, it is easy to check that the only mass term for the
W fields allowed by the symmetry in eq. (3.2.14) is of the form WJW/*, that is, a scalar product
in O(3). In other words, M? = m?, in the notation of eq. (3.2.3).

We have proven that p = 1 is a consequence of the so-called custodial SU(2) symmetry
defined in eq. (3.2.14), and therefore it is not spoiled by radiative corrections. The inclusion of
the hypercharge interaction, that breaks O(4) explicitly, does not change this conclusion, since
radiative corrections to p due to the hypercharge coupling are very small.

Of course, fermion mass terms do not preserve the custodial symmetry; we expect corrections
to eq. (3.2.1) of the order of G;m%. More precisely, one finds

3G, m?
872/2’

where we have included only the contribution from the top quark, for obvious reasons.

p~1+ (3.2.15)
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3.3 Axial anomaly cancellation

We have seen in the previous sections that the renormalizability of the standard model is strictly
connected with gauge invariance. In particular, we have seen that the massive vector boson prop-
agators show unphysical singularities, that are cancelled by the presence of would-be Goldstone
bosons. In turn, gauge invariance manifests itself in the form of identities between Green func-
tions, called Slavnov-Taylor identities, that are consequences of current conservation, and that
must hold at all perturbative orders for the theory to be renormalizable. In this section, we will
show that this might not be the case for theories with axial currents, as the standard model
itself. It might happen that current conservation is spoiled at the quantum level, unless the
spectrum of the theory satisfies particular conditions. In the language of quantum field theory,
terms that spoil the validity of Slavnov-Taylor identities are called anomalies. We will illustrate
the problem of anomalies in the context of a simple example, and we will then state under which
conditions the standard model is anomaly-free and renormalizable.

We consider quantum electrodynamics with one massive fermion, ¢ with electric charge e
and mass m. We consider the operators

Ty =9y (3.3.1)
Th = Py st (3.3.2)
Tp = Pysib. (3:3.3)

It is easy to show, using the equations of motion, that

o Jyy =0 (3.3.4)
0,.J% = 2imJp . (3.3.5)
The interpretation of eqgs. (3.3.4) and (3.3.5) is well known. Equation (3.3.4) is simply the

conservation of the electromagnetic current, which reflects the gauge-invariance of the theory.
The current J%, on the other hand, is associated with axial transformations,

W — €, (3.3.6)

The lagrangian of massive QED is not invariant under axial transformations because of the
presence of the mass term, and as a consequence the associated current J is not conserved.
Equation (3.3.5) precisely states this fact. Exact axial-current conservation is obviously recovered
in the m — 0 limit.

Now consider the Green function

THP(ky, ky) =i / d*ad* zae™ Ttk (0| T JE (21) TV (25) J5(0)]]0) (3.3.7)

which can be easily shown to be related to the matrix element of the axial current between the
vacuum state and a two-photon state by the relation

(v(ky, e1)y (ke 1) T5(0)[0) = 2ie® (61)" (€3)” Tuvp(ka, k2) - (3.3.8)
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Formally, it obeys the Slavnov-Taylor identities

KTy = k5 Ty = 0 (3.3.9)
Ty, =2mT,,, (3.3.10)

where ¢ = k1 + ko and
TH (ky, ko) = i / d 'z d*aae™ TR (0TI (1) JY (22) Jp(0)]]0) . (3.3.11)

The identities in eqgs. (3.3.9,3.3.10) can be worked out by exploiting eqs. (3.3.4) and (3.3.5), and
the canonical commutation relations. We will now check explicitly whether egs. (3.3.9,3.3.10)
are satisfied in perturbation theory or not. At the one-loop order, the diagrams to be computed
are those of fig. 3.3. We have

Yu Yv
ky ko
k+k, k+ky
7p75 7p75
k k
k_kz k_k1
ko k,
Ty M
Yu Vv
k, ko
k+k, k+k,
7s 7s
— k — k
k—k, k—k,
kp k,
Vv Yu

Figure 3.3: Diagrams contributing to TP (k1, k) and TH (ky, k2).

Tﬂl/p(kl, I{Ig) - T{Wp(kl, k2) + T;Vp(kl, I{Ig) (3312)
T (ky, ks = TH (v, k) + T8 (v, k), (3.3.13)
where
d*k ) ) )
T = —i/ Tr l ’ v N] 3.3.14
1 (27_‘_)4 k+k1_m775k_k2_m7k_m7 ( )
d*k ) ) )
™ = —i/ Tr l v ﬂ] 3.3.15
1 (27_‘_)4 k‘i‘kl_mf)%k_kQ_m’yk_m’y ( )
and
T3" (K, ko) = T (ks k1) (3.3.16)
Tzﬂy(kl,kg) = leﬂ(kg,kl). (3317)
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The overall minus sign is due to the presence of a fermion loop.

The loop integrals in egs. (3.3.14) and (3.3.15) are superficially divergent. We must therefore
choose a regularization scheme before proceeding. Dimensional regularization is not suited here,
because of the presence of 75, which has an intrinsically four-dimensional meaning and cannot
be generalized to other space-time dimensions in a simple way. We will make a different choice,
keeping in mind, however, that it is possible, although quite complicated, to treat this problem
within dimensional regularization. The regularization scheme we choose is the following. We
subtract from each integrand in eqgs. (3.3.14) and (3.3.15) the same expression, but with m re-
placed by an arbitrary regularization parameter M. In the limit M — oo the original expression
is recovered, while, for finite M, the integrals are now convergent. We will indicate with a
subscript M the regularized quantities.

Equations (3.3.9), that state the conservation of the vector current, are satisfied by T#"* as
given in egs. (3.3.12) and (3.3.14). In fact, writing

fr = (k+ K —m)— (k—m) (3.3.18)
in 71", and
fr=(F—m)—(F—F—m) (3.3.19)
in 74" (and similarly in the regularizing part of the integrands), we find
d*k 1 1 1
KTl = =i [ 5T ,
Wl = =1 | oy ™ l%%l—m%%%—%g—W F—mh

e T T T

m =)

:/ﬂTT[V% i o L i YoVs ! ¥
(2m)? PP —fo—m T —m fr ki —m = —m

? 1 1 ?
+ v
k+k2_m7p’y5k_kl_m7 k"—kQ_mep’ysk_m

Y — (m — M)l )
(3.3.20)

Now, shifting & — k + ks in the first term and shifting k¥ — k — k; + ko in the second one,
they cancel against the fourth and second terms, respectively. We have therefore

k) = 0, (3.3.21)

and also
[k;Tu,,p]M =0 (3.3.22)

by an analogous argument. The limit M — oo can then be taken safely, thus obtaining the
announced results.
We may use a similar procedure to check the identity in eq. (3.3.10). Using

s = 2mys + (F+ 1 — m)ys + (K — K2 — m) (3.3.23)
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and
s = 2mys + (F+ K2 — m)ys + (K — F1 — m) (3.3.24)

in ¢, 77" and ¢,74"" respectively (and making similar replacements in the terms with m — M),
we get

[T ]y = [2mTH ] + [B* ]y (3.3.25)
where
d*k 7 7 7
R,uu — / Tr v wo_ v I
(2m)* l%ﬂh m T —m T —m ™ F—m

%+%2_m757 —m %_%1_m’m"%_m7
(3.3.26)

It is now easy to see that [R*],, vanishes. In fact, by shifting the loop momentum & to &k + k
in the second term, and to k + k; in the fourth, they cancel against the third and the first
respectively. The important point here is that these shifts in the integration variable can be
performed only after regularizing the integrals. Therefore,

[qpT"7] = [2mT™],, . (3.3.27)

Let us now compute [2m71"],, explicitly. Using the Feynman parametrization

1 _ F(a1+...+an)
d?l C d%" B F(Oél) F(Oén)
:L‘al 1.“3;.04”—15(1_:1;1_“._3: )
d / d 1 n n ,
X / Ly - 331d1 + ...+ aj‘ndn)a1+...+an
(3.3.28)
we find
1-x d4]{1 Qinn2 ,jak;p]{;U
[QmTW]M = 2/ dl"/ dy/ l 8im €, s — (m— M)|, (3.3.29)
k% + 2k(kix — koy) — m?]

where we have set k% = k3 = 0. The simple expression in the numerator is obtained by dropping
all products of 5 with two, three and five v matrices, and exploiting the antisymmetry of €,,4/,.
The integration over the loop momentum £ can be easily performed by shifting the integration
variable
k—k —Fkx+kyy (3.3.30)
with the result
1— :1: M2
p
2mT,],, = ewpgk kg / dx / [ i VR

(3.3.31)
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Notice that the RHS of eq. (3.3.31) is finite when M — oo. The limit can now be taken safely,
giving
212ewgk"k” (3.3.32)
The effect of the regularization is that the Slavnov-Taylor identity in eq. (3.3.10) is spoiled by
an anomalous term, which is usually called the azial anomaly, or the Adler-Bardeen-Jackiw
anomaly. This term arises because of the impossibility of regularizing the theory in a way that
preserves both the vector and axial vector classical current divergence relations; one of the two
must be given up. The anomalous term is finite; however, a regularization procedure is needed
in order to prove the cancellation of integrals with two propagators, which are divergent.

The anomalous term can be taken into account by modifying eq. (3.3.5) at the one-loop level
in the following way:

q"Typ =2mT,, —

O, JY = 2imJp + (4—71r)26‘WPUFWFpU’ (3.3.33)
where F'* is the field-strength tensor of QED. In other words, the axial current is not conserved,
at the quantum level, even if m = 0. Notice in fact that the anomaly is independent of the fermion
mass. Furthermore, it can be proved that higher-order corrections do not modify the one-loop
expression of the anomaly.

The result in eq. (3.3.33) can be immediately generalized to a theory with n fermion fields

Y, = 1,...,n with masses m;, vector charges (); and axial charges Q?:
1
9, = ZQ5Q2 2im;J} + iy SR | (3.3.34)
1=1
where now .
Th = Qo st Tp = G (3.3.35)

i=1

The above considerations can be extended to the case of a theory with non-abelian gauge
invariance. In this case, also fermion loops with four and five internal lines contribute to the
anomaly. It can be shown that the anomalous term of the axial vector current in a non-abelian

theory is proportional to
Tre ({1, T°}T°), (3.3.36)

where 1T'* are the gauge group generators. In the standard model, fermions are either in the
doublet or in the singlet representation of SU(2); this means that the four quantities

Tr ({7, 7°}7°) (3.3.37)
Tr ({7%,7°}Y) (3.3.38)
Tr (V27°) (3.3.39)
Tr (V?) (3.3.40)

must all vanish, for the axial anomaly to be cancelled. The first quantity is obviously zero:
Tr ({7, 7°}7¢) = 20“Tr (7¢) = 0. (3.3.41)
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The second quantity requires more care. Since 7 = 0 for right-handed fermions, we have
Tr ({7%,7°}Y) = 26" Tr (Yz), (3.3.42)

where Y7 is the hypercharge matrix restricted to left-handed fermions. Since Y = 1/3 for the
doublets of left-handed quarks, and Y = —1 for the doublets of left-handed leptons, we find

1
Tr (Y,) =ny x 3 x2x 3 T x 2 x (—1) =2(ng — ), (3.3.43)

where n, (n;) is the number of quark (lepton) families. The factor of 3 in front of the quark term
is due to the colour degree of freedom, and the overall factor of 2 is due to the fact that left-
handed fermions are SU(2) doublets. We see that the cancellation of the axial anomaly requires
that the numbers of quark and lepton families are equal! This is an important prediction of the
standard model, which has been recently confirmed by the discovery of the top quark.

The third condition, Tr (Y?27¢) = 0, is again trivially satisfied, since Y has the same value
for both components of each doublet, and Tr (7¢) = 0 (for singlets, we have simply 7¢ = 0).

The last condition, Tr (Y?) = 0, is also satisfied provided n, = n;. To show this, it is
convenient to write the axial current as

Py ysyp = W“%(l + 95)1) — W“%(l — 7). (3.3.44)

In this way, it is clear that left-handed fermions and right-handed fermions contribute to the
axial anomaly with opposite signs. We have therefore

Tr (Y?) = Tr (Y?) — Tr (Y. (3.3.45)
Using Y = 2(Q — T3) we find
Tr (V3) = 6n, (%)3 +omy(=1)? (3.3.46)
Tr (Y3) = 3n, l(g) + (—%) ] + ny(—2)?, (3.3.47)
and therefore
Tr (Y?) = —6(n, — my). (3.3.48)

It is easy to prove that, because of the axial anomaly, the currents associated with the leptonic
and baryonic numbers,

n

Lt =" et e + vy (3.3.49)
i=1
1 Ja ,

B'=2Y (7" i + diy ] (3.3.50)

=1
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are anomalous. In order to prove this statement, let us consider the case of only one generation
(the extension to more than one generation is trivial), and let us rewrite the leptonic current as

Lt =L+ L%, (3.3.51)
where
o v
LY = (g, ep)y" ( 62 > (3.3.52)
LY = épy'er. (3.3.53)

We now consider triangle diagrams with L# or L% on one vertex, and weak vector bosons on the
the two remaining vertices. Clearly, only left-handed (right-handed) fermions circulate in the
loop with L¥# (L#). This is easily seen by working out the Dirac structure of the loop integrand:

VuPok(an” Py + by’ Py (a'y" P, + Uy Py) = ad'y, P k" k'y". (3.3.54)
Thus,
Y: Y] : . s
— vpa | 12 L 1L 2vrri
8;1[//; — _WG# p [g BuprU'Tr {7, 7} +g W”UWgO_TI' {5, ?}] . (3355)
The minus sign arises because 75 appears in L¥ with a minus sign. Using Y, = —1 and the
anticommutation relations among the Pauli matrices, we find
1 1 uvpo | 12 21771 i
8,L" = ~Ta 9B Byo + W, Wi, (3.3.56)
By a similar argument, we get
vpo 12 YR YR 2 vpo 12
aﬂLl}; == Wﬁﬂ P g’ Bw,BpO—TI' {7, 7} == Wﬁﬂ P g’ B;U/Bptra (3357)
since Yp = —2, and therefore
— vpo 2 2717t 7
Ot = e 9B Bys — "W, Wi, | (3.3.58)

This results in a (numerically negligible) non-conservation of leptonic and baryonic numbers L
and B, due to instanton effects. The difference B — L is however conserved. Indeed, we may
write for the baryonic current

B" = B + B, (3.3.59)
where
1 _
Bl = —(ug,dy)y" ( L ) (3.3.60)
3 dr
1 1-
Bg = guR’y“uR + ng’)/ﬂdR, (3361)
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and compute 0,B" as in the case of the leptonic current. We find

1 vpo | 12 Yo Yo 211/ j T 7l
A VT EA [g' BB Te {2 2 L4 WL T 5.5
| Y, Y, Y, Y,
i )26“”p‘7g'2BWBpg Tr{ o, 2R}+Tr {%%H (3.3.62)
T

The global factor of 1/3 is cancelled by a factor of 3 from color. Using the known values of quark
hypercharges

1 4 2
we get
0.0 = o |_gep g (ve o Yen Yin) gy g
[z - (47_‘.)26 -9 pv = po Q 2 - 9 -9 uv 'V po
1 vpo 2 % )
= Ty 47T)26“ # |9 B Bpo — g* Wi, Wi, | (3.3.64)

which is exactly equal to d,L*. This shows that the current B* — L* is conserved.

3.4 Accidental symmetries

The need for a Yukawa interaction term of fermion fields with scalar fields can be motivated in
a different way. Consider the standard model with only one generation of quarks and leptons,
and no scalar fields. The lagrangian for fermion fields can be written in the following compact
form:

L= U Dy, (3.4.1)
k=1

where the sum runs over the five different irreducible representations of SU(2), ® U(1)y of the
fermions in a generation:

1 =ep~ (1; —2)

¢2 =L~ (27 _]-)

1/)3 =Uur ~ (174/3)

gy =dp ~ (17 —2/3)

Y5 =@Q ~(2,1/3).
Here, the symbol ~ means “transforms as”, and the two numbers in brackets stand for the SU(2)
representation (2 for the doublet, 1 for the scalar) and for the hypercharge quantum number,
respectively. Mass terms are forbidden by the gauge symmetry.

In addition to the assumed gauge symmetry, the lagrangian in eq. (3.4.1) is manifestly in-

variant under a large class of global transformations: namely, the fermion fields within each
representation can be multiplied by an arbitrary constant phase

U — €y, (3.4.2)
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without affecting £. This [U(1)]° global symmetry was not imposed at the beginning: it is just
a consequence of the assumed gauge symmetry and of the renormalizability condition. It is
therefore called an accidental symmetry.

Let us take a closer look to the accidental symmetry. The five conserved currents correspond-
ing to the global transformations (3.4.2) are

Ji' = eryer
JY = vpytvp + epyfer
Ji = ugy"ug
Ji = dpy*dg
JE = agy ug + dpytdy
Equivalently, one could define the accidental symmetry transformations in such a way that the

corresponding currents are five independent linear combinations of JY, ... J¢. Consider for
example the choice

5
Y,
JE=3 g
k=1 2
J) = J+ JY = vytv + eyte
Jis = Ji' = J} = 0"y + eyt yse

1 1 -
g(J?l: + i+ JE) = 3 (@ u +dy"d)

Jie = J§ + T — J¢ = ay ysu + dyPysd.

Jp =

The current Jy is the hypercharge current, which corresponds to a local invariance of the theory.
The true accidental symmetry is therefore [U(1)]*, rather than [U(1)]>.

The currents J, and J, are immediately recognized to be the leptonic and baryonic number
currents, respectively. The invariance of the lagrangian under the corresponding global symme-
tries is certainly good news, since baryonic and leptonic number are known to be conserved to
an extremely high accuracy.

On the other hand, experiments show no sign of the conservation of Jy; and Jys; in a realistic
theory, the corresponding symmetries should be broken. In fact, they are incompatible with
mass terms, and they are broken by the Yukawa interaction terms that generate fermion masses
via the Higgs mechanism.

When the theory is extended to include more fermion generations, the accidental symmetry
gets much larger, since also mixing among different generation is allowed. The Yukawa interac-
tion terms of the previous subsection break this larger accidental symmetry too, leaving however
baryonic and leptonic numbers conserved. Individual leptonic numbers are separately conserved,
while only the total baryonic number is conserved, because of flavour mixing.

To conclude this subsection, let us briefly review the most important experimental evidences
of baryon and lepton number conservation. The most obvious test of baryon number conservation
is proton stability. The experimental lower bound on the proton lifetime is at present

7, > 1.6-10% y. (3.4.3)

46



The most accurate tests of lepton number conservation are provided by the following observables:

B(p—ey) <1.2-107" (3.4.4)

B(p—3e) <1-10" (3.4.5)
[(uTi — e Th) 19

<4-10 3.4.6

D(uTi— all) — (3.4.6)

B(T — py) <2.7-10°°, (3.4.7)
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Chapter 4

Appendices

4.1 Renormalizability and power counting

In this appendix, we describe the power-counting criterion for renormalizability of local field
theories. Consider a Feynman diagram containing

— L loops;

— V' vertices;

— Iy internal fermionic lines;

— Ey external fermionic lines;

— I, internal bosonic lines;

— E, external bosonic lines.

Let us assume that there are different types of vertices, each type being labelled by the index
7, and that

V=>Vy (4.1.1)
2

where V* is the number of vertices of type 7. Finally, let n, nj, d* be the number of fermionic
lines, bosonic lines and field derivatives in type-i vertices, respectively. The following relations
hold:

2[f+ Ep =Y nbV’ (4.1.2)
2I, + B, =Y _nmV". (4.1.3)

The number L of loops is equal to the number of independent internal momenta, which in turn
is equal to the total number of internal lines I = Iy + I, minus the number of independent
momentum conservation equations. Therefore, we have

L=I+1,—(V—1). (4.1.4)

We now define the degree of superficial divergence D of the diagram as the power of momenta
in the numerator minus the power of momenta in the denominator of the Feynman diagram.
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Clearly,
D=dL—1;—2L,+)Y dV', (4.1.5)

since fermion propagators behave as k!, boson propagator behave as k2, each field derivative
corresponds to one power of momentum, and d powers of momentum are carried by each loop
integration in d-dimensional space-time. Now, replacing eqgs. (4.1.1) and (4.1.4) in eq. (4.1.5)
and eliminating Iy and I, via egs. (4.1.2) and (4.1.3), we find

d—1

d—2 . d—1 . d—2 .
D=d- 5 Ef— 5 Eb—|—zvz<dl+ 5 nzf+ ni—d) (4.1.6)

If D > 0, the Feynman amplitude will be ultraviolet divergent. On the other hand, D < 0
is not a sufficient condition for convergence, since there can still be subdiagrams with D > 0.
However, we notice that D decreases with increasing number of external lines. Therefore, if the
last term in the r.h.s. of eq. (4.1.6) is zero or negative, then only a finite number of diagrams
have D > 0, and the whole theory can be made finite by renormalizing only these primitively
divergent amplitudes, at any order in perturbation theory. The condition for renormalizability
then becomes

d—1 d—2

2 2

and it must hold for each i separately (a diagram can contain only vertices of one type). Notice
that the Lh.s. of eq. (4.1.7) is just the mass dimension of the operator that corresponds to
type ¢ vertices: in fact, fermion fields have dimension 3/2, boson fields have dimension 1 and
derivatives have dimension 1. For this reason, the condition in eq. (4.1.7) can be rephrased in
terms of coupling constant dimensionality: a renormalizable theory can contain only constants
with mass dimension > 0.

d' +

n’ + ny <d (4.1.7)
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4.2 Non-unitarity of the Fermi theory

In this Appendix we will work out the restrictions imposed on scattering amplitudes by the
unitarity condition of the scattering matrix, and we will show that the Fermi theory violates
this unitarity bound at sufficiently high energy. Writing the scattering matrix as

S =1+, (4.2.1)
the unitarity condition STS = I gives
T'T = —i(T —T"). (4.2.2)
For generic states a, b we have
(a|T"T|b) = —i ((a|T|b) — (alT*[B)) . (4.2.3)

Now define the invariant amplitude M, for the process a — f by
(fIT|a) = My (2m)* 6W (P, — Py), (4.2.4)
and insert the identity operator between Tt and T in the Lh.s. of eq. (4.2.3):

B3P/

I = ZH/ @ny2i )£l (4.2.5)

where Pif is the momentum of particle ¢ in the state f. We get

d?P/
ZH/ 2 32Ef 2m) 6P, — pr ) (27)% 6@ ZP My M,
= —i (Mg — My,) (27) 5( (P, — By), (4.2.6)
o 3
ZH/ QZ :;Ef ™' ZP MypMap = =i (Mpg = M) . (4.2.7)
For a = b, eq. (4.2.7) gives
ZH/ d33P;:Ef ) 0D (Pa = 32 P Mol = 21m M, (4.2.8)

which is the so-called optical theorem: the total cross section for the process a — f is propor-
tional to the imaginary part of the forward invariant amplitude M.

Let us now assume that |a) is a state of two particles of the same species, with momenta
p1, p2; furthermore, let us assume that only elastic scattering is allowed. Under these conditions,
the states | f) are also two-particle states of the same species as those in |a), and the amplitudes
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M, depend on the initial and final states through the two independent Mandelstam variables
s, t:

M = M(s,t), (4.2.9)
where
s=(p+p)?, t=(—P) (4.2.10)
In the center-of-mass frame,
2t
t:—g(l—cosﬁ) — cosf =1+ —, (4.2.11)
S

where 6 is the scattering angle. Thus, for a given value of the center-of mass squared energy

s, the amplitude M(s,t) is a function of cosf only, and can be expanded on the basis of the

Legendre polynomials

P 1 4,
i(z) = ﬁ@('z

The Legendre polynomials obey the orthogonality conditions

—1)7. (4.2.12)

1 2
dz P P =—9 4.2.13
[ et = a2
and the normalization conditions
Py(1) =1. (4.2.14)
We find
M(s,t) =167 > (2J + 1) a;(s) Py(cosb), (4.2.15)
J
where the partial-wave amplitudes a; are given by
1 /1
ay(s) = —/ d cos 8 P;(cos 0) M(s, ). (4.2.16)
327 J1

Replacing eq. (4.2.15) in the Lh.s. of eq. (4.2.8) we get

d>P, d®P.
/ ( 1 - (2%)45(4)(191 +py— P — Py) [M(s, t)|2

277')3 2E1 (277')3 2E2

— 16% /11 dcosf l167r > (20 + 1) ays(s) Py(cos 9)] l167r > (2K + 1) aj(s) P (cosb)
= 327 %:(2(]—1— 1) las(s), (4.2.17)

while the r.h.s. is given by

2Im M(s,0) = 321 > (2J + 1) Imay,(s), (4.2.18)
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where we have set t = 0, or equivalently cos ) = 1, as appropriate for a forward amplitude, and
we have used the normalization condition (4.2.14). Therefore, unitarity of the scattering matrix
requires

las(s)[> = Imay(s) (4.2.19)

for all partial amplitudes. Equation (4.2.19) provides the unitarity bound
la;s(s)| < 1. (4.2.20)
Let us now consider a specific process, namely the scattering

e (p1) +vu(p2) = 1 (P1) + ve(P) (4.2.21)
within the Fermi theory. The relevant amplitude is

M(s, t) = —G—\/I%U(Pg) YL = 5) u(pr) w(Pr) Yo (1 — v5) u(pa2), (4.2.22)

which gives
2

(M(s, )" = % Tr [y*(1 = 5) b v* (1= 35) o | Tr (a1 = 75) A2 75(1 = 75) i

= 32G%s%, (4.2.23)

where a sum over polarizations is understood. We see that only the partial amplitude ag(s) is
nonzero, since there is no ¢ dependence at all. Using the definition eq. (4.2.16) we obtain

. GFS
B 221

The unitarity bound eq. (4.2.20) is therefore violated at

lao(s))| (4.2.24)

2271
Gr

V5= ~ 875 GeV. (4.2.25)

From eq. (4.2.23) we obtain the total cross section

G4 s
o=—. 4.2.26
5 ( )
Let us now repeat the same calculation in the context of a theory with an interacting vector
boson W with mass m,, and coupling g/(2v/2) to left-handed fermions (the coupling g is dimen-
sionless; the numerical factor is conventional). The squared amplitude in this theory is obtained
from the result in eq. (4.2.23) by performing the replacement

(4.2.27)



We get

—_— 4.2.28
8 t—m2 (t —mi,)? ( )

2 2 4.2
|M(s,t)|2:32<g\/§ ! >s2: g5

The total cross section is now given by

g* s

©64mm2, s +mi,

(4.2.29)

For s < m?,, this expression reduces to the result obtained in the Fermi theory, eq. (4.2.26),
with the identification
Gr - g9’
V2 8m}’
In this case, however, the linear growth of the cross section with s is cut off at s ~ m2,. At very
large energy we have

(4.2.30)

4 2 2
g _ GFmW

o — (4.2.31)

64wm2, 27
The value of my, is related to the size of the coupling g through eq. (4.2.30). If m,, were close to
the energy at which the Fermi theory breaks down, about 900 GeV, then g would take a value
close to 10, far from the perturbative domain. The fact that the measured value m,, is instead
much smaller, m;, ~ 80 GeV, is a signal of the fact that a theory of weak interactions with an
intermediate vector boson can be treated perturbatively: indeed, in this case we get g ~ 0.7.
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4.3 Gauge theories

The abelian case

The Dirac free lagrangian for a massive fermion
L =P(id — m)p (4.3.1)
is invariant under the global (or first kind) U(1) gauge transformation
d) N d)’ — eieaw
b= = e Y, (4.3.2)

where « is a real constant. The constant e plays the role of the conserved charge associated
with this invariance property. We want to promote this global symmetry to a local one, that is,
we want to modify £ in order to make it invariant under the field transformation (4.3.2) with
a = a(z). The derivative term is not invariant:

DM — e T () = PO + ieh (0 ). (4.3.3)
The ordinary derivative must be replaced by a covariant derivative,
DF = 0" — e A, (4.3.4)

where A" is a real vector field. The transformation property of A* must be fixed in such a way
that .
DFip — e*“*DFap. (4.3.5)

This gives
(O — ie A" = ¥ (0" — ie Ay
(O —ieAM)e™ ™) = (I — ieAM)
Op + ie(OFa)p — ie AMap = OFp — je A

(OFa)h — A'Mp = — At (4.3.6)
which implies
A — A = AP 4 Ot (4.3.7)
The lagrangian R
L=1vy(D —m)y (4.3.8)

is invariant under the local (or second kind) gauge transformation

w - wl _ eiea(w),l/)
T 7 = ey,
AP 5 A™ = AP 4 9Palx). (4.3.9)
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Notice that the requirement of local gauge invariance generates the interaction term ety A*.

A kinetic term, involving derivatives of the vector field A*, must now be introduced. It
is uniquely fixed by the requirements of Lorentz and gauge invariance, and by assuming the
standard normalization of the propagator for A*. It is given by

1 4
LM — —ZF“ F, (4.3.10)
where
FH = ot AY — 0¥ A, (4.3.11)
Notice that
(D*D¥ — D" D")p = —ieF* ), (4.3.12)

and that F'* is invariant under a gauge transformation. Notice also that gauge invariance forbids
the presence of a mass term for the gauge field A*. Finally, we observe that no self-interaction
term for the vector field A* is present in the lagrangian. This is connected with the abelian
nature of the invariance group.

The non-abelian case

Let us consider now the case when the invariance group of the theory is non-abelian. For
definiteness, we consider the group SU(NN) of N x N unitary matrices with unit determinant.
This group has N2 — 1 hermitian traceless generators ¢4, that obey the commutation relations

[t 1P = ifAPCC, A B,C=1,..,N*—1, (4.3.13)

where fAPC is completely antisymmetric. A generic element U of SU(NN) can be expressed in
terms of the generators t* and of a set of real functions o () by

U =U(a) = exp(igat?); Ul =Ut, (4.3.14)

where we have inserted a coupling constant ¢ in analogy with the abelian case. The covariant

derivative is now given by
DF =o' —igA*, (4.3.15)

where [ is the unity matrix in the representation space, and the vector field A* is now a hermitian
matrix

Al = ARA, (4.3.16)

It is easy to show, in analogy with the abelian case, that the transformation law
Ar 5 A = UARU 4 LU U (4.3.17)
g

ensures that
D* — UDFU™!, (4.3.18)
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Consider now an infinitesimal gauge transformation
Ula) = I +igat* + O(a?). (4.3.19)

To first order in «, eq. (4.3.17) becomes

A" = AP 4 glattt AF] — 3ig@“oaAtA
g

= ALY — gat AL FABCLY + 0raCtC, (4.3.20)
or

A =AY — gat AL FABC 4 gral (4.3.21)
A kinetic term for the gauge fields can be built in analogy with the abelian case. We have
Recalling eq. (4.3.12), we define a field tensor F*” through

(D"D" — D"D*)ip = —igF* 1, (4.3.22)

where ¢ is a multiplet of some SU(N) representation, and F* = Fi"t*. We find

Fr = 0rAY — OV AP — ig[A*) A",
le/ — 8“142 . auA;;l + ngBCA%Aé. (4323)

The kinetic term is then given by

1
— WL, (4.3.24)

In the non-abelian case, self-interaction terms among the gauge fields are present. This is related
to the fact that, contrary to the abelian case, the field strength F'* transforms non-trivially under
a gauge transformation:

Fm — P =UF™U L. (4.3.25)

For an infinitesimal gauge transformation, we find
F' = FY" = gf*P e’ Y, (4.3.26)

which means that the components F}{” form a multiplet in the adjoint representation of the
gauge group.
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4.4 The standard model lagrangian in renormalizable gauges

Let us consider the following part of the standard model lagrangian:

Lp—V(®)+ Lar, (4.4.1)

where
Lp = (D"$)'D,o (4.4.2)
V() =m®|g]” + Ag|' (4.4.3)

1 2 1
2% 2%

For the moment, we do not specify the value of the hypercharge quantum number Y of the Higgs
doublet ¢. We define

Lap = [0"B, — £f ()] (4.4.4)

[0 — ££i(9)]

¢ = 1+ b2, (4.4.5)
where . o
=1 ( Z; > P2 = ( (H +1iG)/V2 ) 449
and vy, vy are arbitrary complex numbers, only restricted by the minimization condition
2
01?4 [va]? = 02 = _mT' (4.4.7)

We have
£y = |ongt+ Lot (qwir + gy B 0,6 — L (qWiri + gV B
p = ¢+2¢(9ﬂ+g ) u® 2(9 W Ty ﬂ)cﬁ
= Loo + Logvv + Logv- (4.4.8)
The first term is simply the kinetic term for ¢,
1 1
Loy = (0"9)'9,0 = 9"G*0,G™ + SO HOH + 50"GO,G. (4.4.9)
Next, we consider the ¢ppV'V term:
c = Y ewrwi g g2 BB 66 + Legy B gt
sovv = (GWIW,+g WP+ 599 LT

1 GPP1ed ggYirtig | [ W
= Z(Wﬂ B“) [ gg'Y¢TTj¢ QI2Y2¢T¢ ] ( Bjﬂ > . (4410)

Equation (4.4.10) contains a mass term for the vector fields, that can be isolated by replacing ¢
with ¢q:

Linass = (W} B*) M? (‘/gj ) (4.4.11)
w
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where

1 2 f ij v ati
»_ 1 [ 1007 g9V 9iT ] ‘ (1.4.12)
41 99Y o171 §7Y 1
Observe that the square mass matrix in eq. (4.4.11) has zero determinant:
1 . .
det M? = g% Y2 [on " (8177 01 017761 — |n") (4.4.13)

which is seen to vanish by means of the identity
i i 1
TabTea = 2 <5ad5bc - §5ab5cd> . (4.4.14)

In other words, with only one scalar doublet of any hypercharge, one of the four physical vector
boson has always zero mass. This is because it is always possible to find a U(1) subgroup of the
gauge group which leaves the vacuum expectation value ¢, invariant.

Let us now diagonalize M?2. This is easily done by choosing v; = 0, v, = v, which is allowed

because all the degenerate vacuum configurarions are connected by gauge transformations. We
find

L vt 1 L2 9@ =gy | [ Wy,
Lonass = 19 WHW,+ 81} (W4 B") Y g7V B, ) (4.4.15)

The first term is already in diagonal form, and tells us that the charged vector bosons

1 .
W, = —2(W; TiW;) (4.4.16)
are mass eigenstates, with masses
1

m2, = 1921}2. (4.4.17)

The second term in eq. (4.4.15) is diagonalized by the rotation

Wi\ | cosf sinf Zr\ gy

( B >_[—sin9 cos&] (A“)’ tan § = g’ (4.4.18)

where the combination A* corresponds to the zero-mass vector boson. We see immediately that,
for Y =1, A* is precisely equal to the photon field coupled to the electromagnetic current, and
0 = 60,,. The eigenvalue corresponding to Z* is

1
m2 = 1(92 + g0 (4.4.19)

In terms of W, A, and Z, eq. (4.4.10) becomes

1 \2 1 1 g\
Vs — WS ( - H) ~gny ( 1 H)
244 w \MMw 29 + 2 w\Mmz + 2 cos O
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1 2

7'7,G?
8 Cos2 0,

+= g2W+“W (GTG™ + G2)

1 2 . ~
e 592 g (A sin 20 + 7 c0s 20, )° GG
+gsin Oy, (my A* — m,Z" sin 6,,) (G’W: + G+WH’)

1
+59°sin by (A — 7" tan by) (G-WHH +iG) + GTW, (H - iG)).

(4.4.20)

The third term in £, must be considered in conjunction with the gauge-fixing term. We
have
l

Lov = —50W, [(0"62)''01 — 9]7'0" 2] — %g’Bﬂ [(0%2) 61 — 6]0" 0]

— W [(0"62) 7'y — 170" da] — ' B, [(0"62) b2 — 610" 0] .
(4.4.21)
Exploiting the fact that 0*¢, = 0, we can integrate by parts the first row. Adding Lgp, we find

£¢¢V +Lor = —ngi [(au¢2)TTi¢2 - ¢ au¢ } - —g B [(au¢2)1‘¢2 - ;8‘%2}
FOWS |Sg(6hrion - olrign) + J”(d))]
4048, [ 29/ (6161 — 162) + (6)]

7 1 3 3 1
WL = S0 B = SEFOFO) = 5@ (0). (142)
With the choices
J1(9) = —59(8kr'61 — 6i7'd) (4.4.23)
[8) = —59(@h1 — olen) (1.4.24)
the mixing between vector bosons and scalars disappears, and we remain with
Losv + Lar = —%gW: (H +iG)0"G™ — G=0"(H +iG)]
+%gW; (H —iG)o"G* — G o"(H — iG)]

—% [2gsin 0, A" + (g cos Oy — ' sin0,,) 2" (G10,G~ — G~ 9,G")

1
_5(9 cos By, + ¢'sin by, ) Z*(Go,H — HO,G)
215 1§miGz.

(0" W) - .

5(aﬂBH)2 —mi GG —
(4.4.25)
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We see that the would-be Goldstone bosons G* and G have acquired squared masses equal to
&m?, and Eém?, respectively, as is necessary in order to cancel the unphysical singularities in the
vector boson propagators. These masses vanish in the Landau gauge, £ = 0.

The last term to be considered is the scalar potential V(¢). After some algebra, we find

(4.4.26)

1 H? 4+ 2G+G~ + G*]*
_ QlH+ +G2G+G],
v

where
m2, = 2\v”. (4.4.27)

We consider now the interaction between fermions and scalars. From eqs. (2.2.43-2.2.46) and
the definition in eq. (2.2.52), we get

Ll;adr = —G+ (ﬂLVhDdR - ﬂRhUVdL) -G~ (ER}LDVTUL - ELVT}LUU,R)
1 — G-
——=(v+ H) (dhpd + ahyu) — < (dhprsd — ahysu) (4.4.28)

V2 V2

and

1
Ly’ = _W(U + H)ehre — G*Uhreg — G eghyy, (4.4.29)

where sums over generation indices are understood.
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4.5 Dimensional regularization

A convenient way of regularizing divergent integrals, like those appearing when computing loop
diagrams in perturbation theory, is that of modifying the dimension of the integration space
(space-time in our case): the integral of 1/(k? — m?)? is logarithmically divergent at large mo-
menta in four-dimensional space-time, while it would be convergent if space-time dimensions are
lowered to 3, for example. More generally, one computes the integral in a d-dimensional space-
time, with d chosen in such a way that the integral converges, and then continues analitycally the
result in the complex d plane. Divergences will therefore appear as poles in d — 4. Dimensional
regularization is particularly useful because it preserves Lorentz invariance and gauge invariance
of the theory.

In the following, I will show how to compute ultraviolet-divergent loop integrals in dimen-
sional regularization. After Feynman reduction of the denominators and appropriate shifts in
the loop variable, loop integrals can be reduced to the form

(4.5.1)

/ d’q g ... gh*
(2m) (¢ —m? 4 in)"’

2

where £ is an even integer and m~ is a function of external momenta, masses, and Feynman

parameters. For £k =0,2,4 we find

diq 1 idm)T'(n—24¢€ ,
= (=1)" ~(n=2+¢) 4.5.2
[ ey = Vo ) (152
diq q"q” i(4m)¢ I'(n —3+¢)
= (=1)"! 2)y=(n=3%9 g (453
/ eri@—m vy~ Y G T my ™) g (453
/ ddq 7"q"q"q° _ (_1)71 7’(47T)E F(TL —4+ 6) (mZ)f(nf4+e)
(2m)4 (¢* — m? + in)" 4(4m)* - T(n)
x(9"9" + 99" + g"°9"), (4.5.4)
where we have set, as usual,
d=4- 2 (4.5.5)
The Euler I" function is defined by
+o0o
(z) = /0 dt et 171, (4.5.6)
The properties
[(z+1) =2I(2); a1 =1; [(1/2) =7 (4.5.7)

follow from the definition. Furthermore, it can be shown that I'(z) is analytic in the whole
compex plane z, except when z is 0 or a negative integer, where it has simple poles. One finds

D(=n+¢) = (—nl!)” e+ 1)+ 0], (4.5.8)
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where

(s) = d%logF( ) (4.5.9)

and

1 1
Yn+l)=1+-4+...+——1,
2 n

(1) = —y = —0.5772... (4.5.10)

We now compute explicitly the integral in eq. (4.5.2). Equations (4.5.3,4.5.4) (and similar
formulae with higher powers of ¢ in the numerator) can be obtained by shifting ¢ — ¢ + k and
taking derivatives with respect to k£ at £ = 0. By virtue of the analiticity properties of the
integrand in the complex ¢y plane, the ¢y integral along the closed path C' shown in fig. 4.1 is

Im qq |

—E+in
X

E-in

Figure 4.1: Integration in the comple:c qo plane. Crosses indicate the singularities of
the Feynman integrands at qo = £(F — in), with E = \/q? + m?.

equal to zero. We have therefore

™y L " L 0 45.11
. o s
/_oo P (@3 — @ — m? +in)" +ico @ (g3 — @& — m? +in)" ( )

With the variable change ¢y = ig, in the second term of eq. (4.5.11), we find

+00 1 +00 1
d (-1 ”/ d 45.12
/—oo © @ =E = m2 i) i) oo M EF P m)n ( )
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Notice that the +in prescription is now immaterial, since the integration is performed along the
imaginary axis. We have therefore

diq 1 (1) diq 1
/( =i /( _, (4.5.13)

2m)4 (¢ —m? +in 2m)? (¢* +m?)

where ¢ in the r.h.s. is a vector in a 4-dimensional Euclidean space. We first observe that the
integrand does not depend on angular variables, which can therefore be integrated directly. The
integral over the d-dimensional solid angle can be obtained in the following way. We have

+o00 +oo 1
/ddqe_q2 = /de/ dqq?~e™” = 2/ ¢ ( d/2 et = 5F(d/2), (4.5.14)
0

where we have used polar coordinates and the definition of I'(z). On the other hand, the usual
gaussian integration formula gives

/ddq e ? =742, (4.5.15)
Thus,
27rd/2
dQyg = ———. 4.5.16
/ T I(d)2) ( )
For d = 2, 3 the familiar results [ d€Qy = 27, [ d€)3 = 47 are recovered. Using this result, we have
d—2
d¢ 1 2 d/2 +oo 2 3
/ g T (4.5.17)
(2m)? (g% + m?)" (27r )eT( d/2 2 (q? + m2)
The integral can be performed with the change of integration variable
2
m
— _ 4.5.18
z q2 + m2 ’ ( )
which gives
d o\ —n+d/2
/ d’q 1 _ 1 (m?) ldxxn—d/Q 1 )d/2 1
(2m)? (¢* + m?) (4m)42  T(d/2) Jo
1 T(n—d/2) , 5 —nta2
_ 4.5.19
(47T)d/2 F(n) ( ) ) ( )
where we have used ) F(a)T(b)
dr o~ (1 — )bt = =L 4.5.20
/0 v (1 -2) T(a+b) (4:5.20)
By replacing d = 4 — 2¢, we finally obtain
d’q 1 Am)T(n—2+4€), 5 —(n-2+e
=(—=1)" 4.5.21
o 7 i v R A 521

which is the announced result. Notice in particular that the integral vanishes when m? = 0.
This happens, for example, when one computes on-shell amplitudes in a massless theory.
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The use of dimensional regularization poses some special problems in calculations where the
5 matrix is involved. In fact, 75 (or equivalently the antisymmetric tensor €#**7) is a quantity
whose definition is strictly connected to the fact that space-time is four-dimensional, and a
definition in d dimensions requires special care. It is tempting to define 75 simply by requiring
that its four-dimensional properties

=1 {17}t =0 (4.5.22)

hold in d dimensions as well. It is easy to prove that this assumption, together with the circular
property of the trace operator, leads to inconsistent results. To see this important fact explicitly,
consider the trace of 5 times an even number of v matrices:

T ="Tr ¥5Yus - Yo - (4.5.23)

We can use the anticommutation rules {v,,7,} = 2¢,, to bring, for example, ~,, at the right of
the product; this requires 2n — 1 steps, and at each step a trace with 2n — 2 v matrices appears.
We denote by C5, ; the sum of such terms. At the end of the procedure, using the circularity
property of the trace and eq. (4.5.22), the trace can brought to its original form, and we get

or
anfl - 0 (4525)
For n =1 eq. (4.5.25) gives
G It 75 =10 (4.5.26)
and, for n=2,
Gy o LT V5 Vs Vs — Gy L V5 Vo Yaa + Gpunpsa T V5o Vs = O- (4.5.27)
Using eq. (4.5.26), eq. (4.5.27) implies
(d—2)Tr 57,74, = 0. (4.5.28)

Repeating the same procedure for n = 3 one gets

(d = 2)(d = )T 5%, Vo Vs Yua = 0- (4.5.29)

For d = 4, eq. (4.5.29) is satisfied for any value of Tr 757, Vs Vs Vs, Which in fact is non-zero
(and proportional to the axial current anomalous term, by the way); however, if we require
eq. (4.5.29) to hold for any value of d, then we are forced to conclude that

Tr V5 V1 Yoo Yus Tua = 0 (4530)

which is manifestly an inconsistent result, since it does not give the correct answer when d tends
to 4. In particular, one would conclude that there is no axial current anomaly! We conclude
that the definition of 75 cannot be based on eq. (4.5.22).
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The correct way to define 75 in dimensional regularization is the following. We decompose
all v matrices into a four-dimensional and an extra-dimensional component:

Vi = T+ Vus (4.5.31)

where 7, is non-zero only when p takes the ordinary values 0,1,2,3 and %, vanishes in the
ordinary dimensions. Correspondingly, the matrix tensor ¢g"” has a four-dimensional and an
extra-dimensional part,

g = g" + g"; (4.5.32)

mixed components obviously vanish. The anticommutation relations become
{’Vua %} = 20w} {'S’ua’A)’u} = 2guu; {7)% ’3/11} = 0. (4-5-33)
Then, we simply define 5 as in four dimensions, that is
V5 = 170727273 (4.5.34)
It is easy to check that the definition (4.5.34) implies

{757} =05 [75, 9] =0, (4.5.35)
or, in a more compact form,
{157} = 2790 (4.5.36)
The identities
Trys=0; Trysy,7, =0 (4.5.37)

can be shown to hold, regardless of the value of d (this result is nontrivial; it can be obtained
by the same way of reasoning that leads to eqs. (4.5.26) and (4.5.27). Prove it as an exercise).
Furthermore, one sees immediately that the quantity

Tr 5 Y1 Vaz Vs Voa (4.5.38)

vanishes if at least one of the indices has a value in the extra dimensions. We have therefore

Tr V5 V1 Vo Vs Tpa = Tr V5V Yoo Visa Ya = 4i6u1u2#3u47 (4'5'39)

which is the correct four-dimensional result.

The use of the definition (4.5.34) requires special attention, because it introduces an explicit
violation of chiral invariance, which must therefore be restored by means of finite renormalization.
I will not discuss this point in detail here.

In the following, I will show that the computation of the axial current anomaly, performed
in sect. 3.3 in the Pauli-Villars regularization scheme, can also be performed in dimensional
regularization. I will present the computation in the massless case; the extension to massive
fermions is straightforward. From eq. (3.3.14) we have

d Tr ys(F — F)v By (K + F) (B + K)
2 )d 12(k — ka)2(k + k1)2 ; (4.5.40)

(k1 + ko) TT = _/ (
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where the integral is made convergent by dimensional regularization. The numerator of the
integrand contains terms which are linear, quadratic or cubic in the loop momentum k. The
linear term is convergent, and it gives a vanishing contribution:

Tr sy k" Fo(Fr + K2) = 0 (4.5.41)

because k? = k2 = 0.
The quadratic term requires more work. We have

=Tr vk By f(Br + K2) + T vk By E(Fa + Fe)
= 2k*Tr 57" V" Fifo — 2K KT s y* v Kby — 2K“K*Tr 57" v* 1 ko (4.5.42)

The first term contributes to the final result with

2ITr 57" 7" f1 ko, (4.5.43)
where iy
|
[= / . 4.5.44
@r)d (k—ka)2(k + 11 )2 (4:5.44)

The second and third terms in eq. (4.5.42) involve the integral

49k o e
e = / 45.45
@m0k — k)2 (k + ) (4.5.45)

which can be written in the form
1" = Ag"* + B(k{kS + kSkY) + C(kVEY + ESES), (4.5.46)

exploiting symmetry under k; <> ky and v <> a. It is clear from eq. (4.5.42) that only the term
Ag"® contributes to the result. In order to compute A, we observe that eq. (4.5.46) gives

kikglya - klkgA + (k1k2)2B. (4547)

Now, using the identities k1k = ((k + k1)* — k%) /2, kok = (k* — (k — k2)*)/2, one can show that

1

Kk Lo = =, (4.5.48)

where iy 2

= . 4.5.4
I= | Gy G RGTRT (4:549)
Solving the system (4.5.47), one gets

1 J
A=——|1 . 4.5.50
d—?2 ( * 2k1k2> ( )
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Finally, we come to the cubic term:

—Tr sy By B (fr + F2) = K Tr vy v (o + fe), (4.5.51)

since the anticommutator term gives zero contribution because of antisymmetry. We must
therefore compute

o= / dk w = Dk — k2) (4.5.52)
) @2m)d (k= ko)2(k+ k)2 T 2P o
and taking the product I, k¢ one easily obtains
J
D= . 4.5.
T (4.5.53)
Collecting all our results, we finally obtain
(ks + ko), o0 — —4 274 (1+ L) Tr y57" 11 fo (4.5.54)
. d—2 2k ks ’

where a factor of 2 has been inserted to take into account the contribution of 74*”. The final result
is ultraviolet-finite: indeed, in dimensional regularization at one loop ultraviolet divergences
manifest themselves as simple poles in d — 4, and there is a d — 4 factor in front of the divergent
integrals. It is now easy to compute (d —4)I and (d—4)J for d = 4 with the help of the formulae
obtained earlier in this Appendix, and recover the result of eq. (3.3.33).
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