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Chapter 1

Introdu
tion

The aim of these le
tures is a des
ription of the 
onstru
tion and the main phenomenologi
al

impli
ations of the Glashow-Weinberg-Salam uni�ed theory of weak and ele
tromagneti
 in-

tera
tions (universally referred to as the standard model.) Basi
 knowledge in quantum �eld

theory [1℄,[2℄ and elementary group theory [3℄ is assumed, as well as familiarity with the funda-

mental phenomenology of weak intera
tions [4℄.

No attempt will be made to give a full list of referen
es. Su
h a list 
an be found in any

standard text book of parti
le physi
s; see for example refs. [4℄-[8℄.
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Chapter 2

Constru
tion of the standard model

2.1 A gauge theory of weak intera
tions

Our starting point is the e�e
tive lagrangian that des
ribes weak intera
tion pro
esses at low

energies. This lagrangian (often 
alled the Fermi lagrangian) has the form of a sum of produ
ts

of ve
tor and axial ve
tor 
urrents. For example, the terms responsible for nu
leon � de
ay and

for muon de
ay are

1
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: (2.1.1)

From the experimental values of the muon and neutron lifetimes, one obtains

G

(�)

' 1:16639� 10

�5

GeV

�2

; G

(�)

' G

(�)

� G

F

; (2.1.2)

while the value

a = 1:239� 0:09 (2.1.3)


an be extra
ted from hyperon de
ays.

The �eld theory de�ned by the intera
tion in eq. (2.1.1) is manifestly not renormalizable,

sin
e it 
ontains operators with mass dimension 6 (a ne
essary 
ondition for perturbative renor-

malizability is that the lagrangian density 
ontains operators with mass dimension less than or

equal to 4, see Appendix 4.1), and it gives rise to a non-unitary S matrix (see Appendix 4.2).

However, it 
ontains all the physi
al information needed to build a renormalizable and unitary

theory of weak intera
tions.

The idea is that of building a theory with lo
al invarian
e under the a
tion of some group

of �eld transformations, a gauge theory, in analogy with quantum ele
trodynami
s (see Ap-

pendix 4.3). We will then require that the new theory redu
e to eq. (2.1.1) in the low-energy

limit, in the sense that the lo
al four-fermion intera
tion of the Fermi lagrangian will be inter-

preted as the intera
tion vertex that arises from the ex
hange of a massive ve
tor boson with

1

Throughout these le
tures, parti
le �elds will be denoted by the symbol usually adopted for the 
orresponding

parti
le: e for the ele
tron, �

e

for the ele
tron neutrino, and so on.
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momentum mu
h smaller than its mass. In this way, both problems of renormalizability and

unitarity will be solved, sin
e gauge theories are known to be renormalizable, and the mass of

the intermediate ve
tor boson will a
t as a 
ut-o� that stops the growth of 
ross se
tions with

energy, thus ensuring unitarity of the s
attering matrix.

In order to 
omplete this program, we must 
hoose the group of lo
al invarian
e, and then

assign parti
le �elds to representations of this group. Both these steps 
an be performed with

the help of the information 
ontained in the Fermi lagrangian. Let us �rst 
onsider the ele
tron

and the ele
tron neutrino. They parti
ipate in the weak intera
tion via the 
urrent

J

�

= �

e




�

1

2

(1� 


5

)e: (2.1.4)

We would like to rewrite J

�

in the form of a Noether 
urrent,

 

i




�

T

A

ij

 

j

; (2.1.5)

where  

i

are the 
omponents of some multiplet of the (as yet unknown) gauge group, and T

A

ij

are the 
orresponding generators. In the 
ase of J

�

, this 
an be done in the following way. We

observe that the 
urrent J

�


an be written as

J

�

= L


�

�

+

L; (2.1.6)

where

L =

1

2
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e
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; (2.1.7)
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"

0 1

0 0

#

; (2.1.8)

and �

i

are the usual Pauli matri
es. The hermitian 
onjugate 
urrent

J

y

�

= L


�

�

�

L; �

�

=

1

2

(�

1

� i�

2

) (2.1.9)

will also parti
ipate in the intera
tion. The 
urrents are in one-to-one 
orresponden
e with

the generators of the symmetry group, whi
h, in turn, form a 
losed set with respe
t to the


ommutation operation: the 
ommutator of two generators is also a generator. Therefore, the


urrent

J

�

3

= L


�

[�

+

; �

�

℄L = L


�

�

3

L (2.1.10)

will also be present. No other 
urrent must be introdu
ed, sin
e

[�

3

; �

�

℄ = 2�

�

: (2.1.11)

We have thus interpreted the 
urrent J

�

as one of the three 
onserved 
urrents of a theory with

SU(2) gauge invarian
e, the Pauli matri
es being the generators of SU(2) in the fundamental

representation, and we have assigned the left-handed neutrino and ele
tron �elds to an SU(2)

doublet. The right-handed neutrino and ele
tron 
omponents, �

e

R

and e

R

, do not take part in

4



the weak-intera
tion phenomena des
ribed by the Fermi lagrangian, so they must be assigned

to the singlet (or s
alar) representation. Of 
ourse, this is not the only possible 
hoi
e, but it

is the simplest possibility (and also the 
orre
t one, as we will see) sin
e it does not require the

introdu
tion of fermion �elds other than the observed ones.

The 
urrent J

�

3

is a neutral 
urrent: it 
ontains 
reation and annihilation operators of parti
les

with the same 
harge (a
tually, of the same parti
le). Neutral 
urrents do not appear in the

Fermi lagrangian; no neutral 
urrent phenomenon is observed in low-energy weak intera
tions.

As we will see, the experimental observation of phenomena indu
ed by weak neutral 
urrents is a


ru
ial test of the validity of the standard model. Noti
e also that the neutral 
urrent J

�

3


annot

be identi�ed with the only other neutral 
urrent we know of, the ele
tromagneti
 
urrent. This

is for two reasons: �rst, the ele
tromagneti
 
urrent involves both left-handed and right-handed

fermion �elds with the same weight; and se
ond, the ele
tromagneti
 
urrent does not 
ontain a

neutrino term, the neutrino being 
hargeless. We will 
ome ba
k later to the problem of neutral


urrents, that will end up with the in
lusion of the ele
tromagneti
 
urrent in the theory. For the

moment, we go on with the 
onstru
tion of our SU(2) gauge theory. We must introdu
e ve
tor

meson �elds W

�

i

, one for ea
h of the three SU(2) generators, and build a 
ovariant derivative

D

�

= �

�

� igW

�

i

T

i

; (2.1.12)

where we have introdu
ed, as is 
ustomary in gauge theories, a 
oupling 
onstant g. The matri
es

T

i

are generators of SU(2) in the representation of the multiplet the 
ovariant derivative is a
ting

on. For example, when D

�

a
ts on the doublet L, we have T

i

� �

i

=2, and when it a
ts on the

gauge singlet e

R

we have T

i

� 0. We are now ready to write the gauge-invariant lagrangian for

the fermion �elds (whi
h we assume massless for the time being):

L = iLD=L+ i�

e

R

D= �

e

R

+ ie

R

D= e

R

= L

kin

+ L




+ L

n

(2.1.13)

where D= = 


�

D

�

. The lagrangian L 
ontains the usual kineti
 term for massless fermions,

L

kin

= iL �=L + i�

e

R

�= �

e

R

+ ie

R

�= e

R

; (2.1.14)

plus an intera
tion term L




+ L

n

, where

L




= gW

�

1

L


�

�

1

2

L + gW

�

2

L


�

�

2

2

L (2.1.15)


orresponds to 
harged-
urrent intera
tions, and

L

n

= gW

�

3

L


�

�

3

2

L =

g

2

W

�

3

(�

e

L




�

�

e

L

� e

L




�

e

L

) (2.1.16)

to neutral 
urrent intera
tions. The 
harged-
urrent term L




is usually expressed in terms of

the �elds

W

�

�

=

1

p

2

(W

1

�

� iW

2

�

): (2.1.17)
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We �nd

L




=

g

p

2

L


�

�

+

LW

+

�

+

g

p

2

L


�

�

�

LW

�

�

: (2.1.18)

We have already observed that the neutral 
urrent J

�

3

= L


�

�

3

L 
annot be identi�ed with

the ele
tromagneti
 
urrent, and 
orrespondingly that the gauge ve
tor boson W

�

3


annot be

interpreted as the photon. The 
onstru
tion of the model 
an therefore pro
eed in two di�erent

dire
tions: either we modify the multiplet stru
ture of the theory, in order to make J

�

3

equal to

the ele
tromagneti
 
urrent; or we admit the possibility of the existen
e of weak neutral 
urrents,

and we extend the gauge group in order to a

ommodate also the ele
tromagneti
 
urrent in

addition to J

�

3

. We pro
eed to des
ribe the se
ond possibility, whi
h is the one that turns out

to be 
orre
t, after the dis
overy of weak pro
esses indu
ed by neutral 
urrents. Nevertheless,

it should be kept in mind that this was not at all obvious to physi
ists before the observation of

weak neutral-
urrent e�e
ts.

The simplest way of extending the gauge group SU(2) to in
lude a se
ond neutral generator

is to in
lude an abelian fa
tor U(1):

SU(2)! SU(2)
 U(1): (2.1.19)

We will require our lagrangian to be invariant also under the U(1) gauge transformations

 !  

0

= exp

"

ig

0

�

Y ( )

2

#

 ; (2.1.20)

where  is a generi
 �eld of the theory, g

0

is the 
oupling 
onstant asso
iated with the U(1)

fa
tor of the gauge group, and Y ( ) is a quantum number, usually 
alled the weak hyper
harge,

to be spe
i�ed for ea
h �eld  . Sin
e the SU(2) fa
tor of the gauge group a
ts in a di�erent

way on left-handed and right-handed fermions (it is a 
hiral group), it is natural to allow for the

possibility of assigning di�erent hyper
harge quantum numbers to the left and right 
omponents

of the same fermion �eld. A new gauge ve
tor �eld B

�

must be introdu
ed, and the 
ovariant

derivative be
omes

D

�

= �

�

� igW

�

i

T

i

� ig

0

Y

2

B

�

; (2.1.21)

where Y is a diagonal matrix with the hyper
harge values in its diagonal entries. Y being

diagonal, only the term L

n

is modi�ed. We have now

L

n

=

g

2

W

�

3

(�

e

L




�

�

e

L

� e

L




�

e

L

)

+

g

0

2

B

�

[Y (L) (�

e

L




�

�

e

L

+ e

L




�

e

L

) + Y (�

e

R

)�

e

R




�

�

e

R

+ Y (e

R

)e

R




�

e

R

℄ : (2.1.22)

This 
an be written as

L

n

= g	


�

T

3

	W

�

3

+ g

0

	


�

Y

2

	B

�

; (2.1.23)

where 	 is a 
olumn ve
tor formed with all left-handed and right-handed fermioni
 �elds in the

theory, and T

3

= �1=2 for �

e

L

and e

L

respe
tively, and T

3

= 0 for �

e

R

and e

R

. We 
an now
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assign the quantum numbers Y in su
h a way that the ele
tromagneti
 intera
tion term appear

in eq. (2.1.22). To do this, we �rst perform a rotation by an angle �

W

in the spa
e of the two

neutral gauge �elds W

�

3

; B

�

:

B

�

= A

�


os �

W

� Z

�

sin �

W

(2.1.24)

W

�

3

= A

�

sin �

W

+ Z

�


os �

W

: (2.1.25)

In terms of the new ve
tor �elds A

�

, Z

�

, eq. (2.1.23) takes the form

L

n

= 	


�

�

g sin �

W

T

3

+

Y

2

g

0


os �

W

�

	A

�

+	


�

�

g 
os �

W

T

3

�

Y

2

g

0

sin �

W

�

	Z

�

: (2.1.26)

In order to identify one of the two neutral ve
tor �elds, say A

�

, with the photon �eld, we must


hoose Y (L), Y (�

e

R

) and Y (e

R

) so that A

�


ouples to the ele
tromagneti
 
urrent

J

�

em

= �e (e

R




�

e

R

+ e

L




�

e

L

) � e	


�

Q	; (2.1.27)

where Q is the ele
tromagneti
 
harge matrix in units of the positron 
harge e. In other words,

it must be

T

3

g sin �

W

+

Y

2

g

0


os �

W

= eQ : (2.1.28)

The weak hyper
harges Y appear in eq. (2.1.28) only through the 
ombination Y g

0

: thus, we

have the freedom of res
aling the hyper
harges by a 
ommon fa
tor K, provided we res
ale g

0

by 1=K. This freedom 
an be used to �x arbitrarily the value of one of the three hyper
harges

Y (L); Y (�

e

R

); Y (e

R

). The 
onventionally adopted 
hoi
e is

Y (L) = �1: (2.1.29)

With this 
hoi
e, eq. (2.1.28) restri
ted to the doublet of left-handed leptons is

+

1

2

g sin �

W

�

1

2

g

0


os �

W

= 0 (2.1.30)

�

1

2

g sin �

W

�

1

2

g

0


os �

W

= �e; (2.1.31)

whi
h gives

g sin �

W

= g

0


os �

W

= e: (2.1.32)

(For a generi
 doublet of fermions with 
harges Q

1

and Q

2

the r.h.s. of eq. (2.1.32) be
omes

e(Q

1

�Q

2

), but gauge invarian
e of the 
harged 
oupling requires Q

1

�Q

2

= 1.) Equation (2.1.28)

then redu
es to

T

3

+

Y

2

= Q; (2.1.33)

whi
h is valid for any fermion. For example, we �nd

Y (�

e

R

) = 0; Y (e

R

) = �2: (2.1.34)
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This 
ompletes the assignments of weak hyper
harge values to all fermion �elds. Noti
e that the

right-handed neutrino has zero 
harge and zero hyper
harge, and it is an SU(2) singlet: it does

not take part in ele
troweak intera
tions.

The se
ond term in eq. (2.1.26) de�nes the weak neutral 
urrent 
oupled to the other neutral

ve
tor boson Z

�

. It 
an be written as

e	


�

Q

Z

	Z

�

; (2.1.35)

where

Q

Z

=

1


os �

W

sin �

W

�

T

3

�Q sin

2

�

W

�

: (2.1.36)

The extension of the theory to more lepton doublets is straightforward.

We must now in
lude hadrons in the theory. We will do this in terms of quark �elds, taking

as a starting point the hadroni
 
urrent responsible for � de
ay and strange parti
le de
ays:

J

�

had

= 
os �




u


�

1

2

(1� 


5

)d+ sin �




u


�

1

2

(1� 


5

)s; (2.1.37)

where �




is the Cabibbo angle (�




� 13

Æ

) and u, d, s are the up, down and strange quark �elds

respe
tively. We are tempted to pro
eed as in the 
ase of leptons: de�ne

Q =

1

2

(1� 


5

)

2

6

4

u

d

s

3

7

5

�

2

6

4

u

L

d

L

s

L

3

7

5

(2.1.38)

and

T

+

=

2

6

4

0 
os �




sin �




0 0 0

0 0 0

3

7

5

; (2.1.39)

so that

J

�

had

= Q


�

T

+

Q: (2.1.40)

This leads to a system of 
urrents whi
h is in 
ontrast with experimental observations. Indeed,

we �nd that

T

3

= [T

+

; T

�

℄ =

2

6

4

1 0 0

0 � 
os

2

�




� 
os �




sin �




0 � 
os �




sin �




� sin

2

�




3

7

5

: (2.1.41)

The 
orresponding neutral 
urrent 
ontains 
avour-
hanging terms, su
h as e.g. d

L




�

s

L

, with a

weight of the same order of magnitude of 
avour-
onserving ones. These terms indu
e pro
esses

at a rate whi
h is not 
ompatible with experimental observation. For example, the ratio of the

de
ay rates for the pro
esses

K

+

! �

0

e

+

�

e

(2.1.42)

K

+

! �

+

e

+

e

�

(2.1.43)
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is approximately

r =

"

sin �




sin �





os �




#

2

=

1


os

2

�




' 1:1; (2.1.44)

while observations give

r

exp

' 1:3� 10

5

; (2.1.45)

that is, the 
harged-
urrent pro
ess (s! u) is enhan
ed by �ve orders of magnitude with respe
t

to the neutral-
urrent (s ! d) one. Our theory should therefore be modi�ed in order to avoid

the introdu
tion of 
avour-
hanging neutral 
urrents. The solution to this puzzle was found

by S. Glashow, J. Iliopoulos and L. Maiani. They suggested to introdu
e a fourth quark 
 (for


harm) with 
harge 2=3 like the up quark, and to assume that its 
ouplings to down and strange

quarks are given by

J

�

had

= 
os �




u


�

1

2

(1� 


5

)d+ sin �




u


�

1

2

(1� 


5

)s

� sin �








�

1

2

(1� 


5

)d+ 
os �








�

1

2

(1� 


5

)s: (2.1.46)

The 
 quark being not observed at the time, they had to assume that its mass was mu
h larger

than those of u, d and s quarks, and therefore outside the energy range of available experimental

devi
es. The 
urrent J

�

had


an still be put in the form (2.1.40), where now

Q =

2

6

6

6

4

u

L




L

d

L

s

L

3

7

7

7

5

(2.1.47)

and

T

+

=

2

6

6

6

4

0 0 
os �




sin �




0 0 � sin �





os �




0 0 0 0

0 0 0 0

3

7

7

7

5

: (2.1.48)

No 
avour-
hanging neutral 
urrent is now present. In fa
t,

[T

+

; T

�

℄ =

2

6

6

6

4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

3

7

7

7

5

; (2.1.49)

thanks to the fa
t that the upper right 2 � 2 blo
k of T

+

has been 
leverly 
hosen to be an

orthogonal matrix. The existen
e of the quark 
 was later 
on�rmed by the dis
overy of the J= 

parti
le. The 
urrent J

�

had

is usually written in the following form, analogous to the 
orresponding

leptoni
 
urrent:

J

�

had

= (u

L

d

0

L

)


�

�

+

 

u

L

d

0

L

!

+ (


L

s

0

L

)


�

�

+

 




L

s

0

L

!

; (2.1.50)
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where

 

d

0

L

s

0

L

!

= V

 

d

L

s

L

!

; V =

"


os �




sin �




� sin �





os �




#

: (2.1.51)

The pairs (u; d), (
; s) are 
alled quark families. A
tually, there is a 
orresponden
e between

quark and lepton families, whose origin will be investigated in se
tion 3.3. The stru
ture outlined

above 
an be extended to an arbitrary number of quark families. With n families, V be
omes an

n� n matrix, and it must be unitary in order to ensure the absen
e of 
avour-
hanging neutral


urrents.

The �nal form of the 
harged-
urrent intera
tion term, in
luding n families of leptons and

quarks, is then

L




=

g

p

2

n

X

f=1

�

L

f




�

�

+

L

f

+Q

f




�

�

+

Q

f

�

W

+

�

+ h:
:; (2.1.52)

where

L

f

=

 

�

e

L

e

L

!

;

 

�

�

L

�

L

!

; : : : (2.1.53)

Q

f

=

 

u

L

d

0

L

!

;

 




L

s

0

L

!

; : : : : (2.1.54)

An equivalent (and often more useful) form of eq. (2.1.52) is

L




=

g

p

2

0

�

n

X

f=1

��

f

L




�

e

f

L

+

n

X

f;g=1

�u

f

L




�

V

fg

d

g

L

1

A

W

+

�

+ h:
: (2.1.55)

The neutral-
urrent lagrangian in eq. (2.1.23) is dire
tly generalizable to in
lude quark �elds.

To 
on
lude the 
onstru
tion of the standard model lagrangian, we must 
onsider the pure

Yang-Mills term

L

YM

= �

1

4

B

��

B

��

�

1

4

W

i

��

W

��

i

; (2.1.56)

where

B

��

= �

�

B

�

� �

�

B

�

W

��

i

= �

�

W

�

i

� �

�

W

�

i

+ g�

ijk

W

�

j

W

�

k

: (2.1.57)

The 
orresponding expression in terms of the physi
al �eldsW

�

�

, Z

�

and A

�


an be easily worked

out with the help of eqs. (2.1.17), (2.1.24) and (2.1.25), whi
h we rewrite here:

W

1

�

=

1

p

2

(W

+

�

+W

�

�

) (2.1.58)

W

2

�

=

i

p

2

(W

+

�

�W

�

�

) (2.1.59)

W

3

�

= A

�

sin �

W

+ Z

�


os �

W

(2.1.60)

B

�

= A

�


os �

W

� Z

�

sin �

W

: (2.1.61)
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We get

W

1

��

=

1

p

2

h

W

+

��

+ ig sin �

W

(W

+

�

A

�

�W

+

�

A

�

) + ig 
os �

W

(W

+

�

Z

�

�W

+

�

Z

�

)

i

+ h:
:

W

2

��

=

i

p

2

h

W

+

��

+ ig sin �

W

(W

+

�

A

�

�W

+

�

A

�

) + ig 
os �

W

(W

+

�

Z

�

�W

+

�

Z

�

)

i

+ h:
:

W

3

��

= F

��

sin �

W

+ Z

��


os �

W

� ig(W

+

�

W

�

�

�W

�

�

W

+

�

)

B

��

= F

��


os �

W

� Z

��

sin �

W

; (2.1.62)

where

F

��

= �

�

A

�

� �

�

A

�

(2.1.63)

Z

��

= �

�

Z

�

� �

�

Z

�

(2.1.64)

W

��

�

= �

�

W

�

�

� �

�

W

�

�

: (2.1.65)

It follows that

L

YM

= �

1

4

F

��

F

��

�

1

4

Z

��

Z

��

�

1

2

W

+

��

W

��

�

(2.1.66)

+ig sin �

W

(W

+

��

W

�

�

A

�

�W

�

��

W

�

+

A

�

+ F

��

W

�

+

W

�

�

)

+ig 
os �

W

(W

+

��

W

�

�

Z

�

�W

�

��

W

�

+

Z

�

+ Z

��

W

�

+

W

�

�

)

�

g

2

2

(2g

��

g

��

� g

��

g

��

� g

��

g

��

)

�

W

+

�

W

�

�

(A

�

A

�

sin

2

�

W

+ Z

�

Z

�


os

2

�

W

+ 2A

�

Z

�

sin �

W


os �

W

)�

1

2

W

+

�

W

+

�

W

�

�

W

�

�

�

2.2 Masses

Masses for the gauge bosons

We will now show that, in order to make 
onta
t with the Fermi theory, whi
h is known to


orre
tly des
ribe low-energy weak intera
tions, the gauge ve
tor bosons of weak intera
tions

must have a non-zero mass. We will also be able to set a lower bound to the mass of the W

boson. Let us 
onsider the amplitude for down-quark � de
ay. In the Fermi theory, it is simply

given by

�

G

F

p

2

u


�

(1� 


5

)d e


�

(1� 


5

)�

e

: (2.2.1)

In the 
ontext of the standard model, the same pro
ess is indu
ed by the ex
hange of aW boson,

with amplitude

 

g

p

2

u

L




�

d

L

!

1

q

2

�m

2

W

 

g

p

2

e

L




�

�

e

L

!

; (2.2.2)

(we are negle
ting Cabibbo mixing for simpli
ity). The virtuality q

2

of the ex
hanged ve
tor

boson is bounded from above by the square of the neutron-proton mass di�eren
e, q

2

� (m

N

�

11



m

P

)

2

� (1:3 MeV)

2

. For eq. (2.2.2) to be equal to the Fermi amplitude in the q

2

! 0 limit, m

W

must be non zero, and

G

F

p

2

=

 

g

2

p

2

!

2

1

m

2

W

: (2.2.3)

Re
alling that g = e= sin �

W

, eq. (2.2.3) gives us the lower bound

m

W

� 37:3 GeV; (2.2.4)

quite a large value, if 
ompared with the present upper bound on the photon mass,

m




� 2 � 10

�16

eV: (2.2.5)

So, we know sin
e the beginning that if weak intera
tions are to be mediated by ve
tor bosons,

these must be very heavy. On the other hand, we also know that gauge theories are in
ompatible

with mass terms for the ve
tor bosons. One possibility is to break gauge invarian
e expli
itly

and insert a mass term for the W boson by hand, but this leads to a non-renormalizable theory.

Let us investigate this point in more detail. Consider for simpli
ity the lagrangian of a pure

abelian gauge theory, with a mass term for the gauge ve
tor �eld:

L = �

1

4

(�

�

A

�

� �

�

A

�

)(�

�

A

�

� �

�

A

�

) +

1

2

m

2




A

�

A

�

; (2.2.6)

and work out the propagator �

��

for A

�

in momentum spa
e. We get

�

��

=

i

k

2

�m

2




 

�g

��

+

k

�

k

�

m

2




!

: (2.2.7)

The propagator �

��

has not the 
orre
t behaviour for large values of the momentum k: for

k !1 it be
omes a 
onstant, rather than vanishing as k

�2

, thus violating power-
ounting and

making the theory unrenormalizable.

A related problem of a massive ve
tor boson theory, su
h as the one de�ned by eq. (2.2.6),

is again unitarity of the s
attering matrix. The amplitude for a generi
 physi
al pro
ess whi
h

involves the emission or the absorption of a ve
tor boson with four-momentum k and polarization

ve
tor �(k) has the form

M =M

�

�

�

(k): (2.2.8)

A massive ve
tor (
ontrary to a massless one) may be polarized longitudinally. In this 
ase,


hoosing the z axis along the dire
tion of the 3-momentum of the ve
tor boson, the polarization

is given by

�

L

= (k=m




; 0; 0; E=m




) = k=m




+O(m

2




=E

2

); (2.2.9)

where we have imposed the transversity 
ondition p � � = 0 and the normalization 
ondition �

2

=

�1. Clearly, the amplitudeM will grow inde�nitely with the energy E, unless some me
hanism

takes pla
e to 
ut o� this growth, and unitarity of the s
attering matrix will eventually be

violated.
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To see how one 
an introdu
e a mass term for gauge ve
tor bosons without spoiling renor-

malizability and unitarity, we �rst 
onsider a simple example where this happens, and then we

generalize our 
onsiderations to the standard model. The simple theory we 
onsider is s
alar

ele
trodynami
s, that is, a gauge theory based on U(1) invarian
e, 
oupled to one 
omplex s
alar

�eld � with 
harge e. The lagrangian is given by

L = �

1

4

F

��

F

��

+ (D

�

�)

y

D

�

�� V (�); (2.2.10)

where D

�

= �

�

� ieA

�

, and V (�) is the so-
alled s
alar potential, whi
h is 
onstrained by gauge

invarian
e and renormalizability to be of the form

V (�) = m

2

j � j

2

+� j � j

4

: (2.2.11)

We look for �eld 
on�gurations that minimize the energy of the system. Be
ause of the require-

ment of translational invarian
e, they must be 
onstant 
on�gurations, so we 
an negle
t the

derivative terms and look for the minimum of the potential V . Now, if m

2

� 0, then V has a

minimum for � = 0. If, on the other hand, m

2

< 0, then m

2


an no longer be interpreted as a

mass squared for the �eld �; furthermore, the potential has now an in�nite number of degenerate

minima, given by all those �eld 
on�gurations for whi
h

j � j

2

= �

m

2

2�

�

1

2

v

2

: (2.2.12)

All these minimum 
on�gurations (in the language of quantum theory, all these ground states)

are 
onne
ted by gauge transformations, that 
hange the phase of the 
omplex �eld � without

a�e
ting its modulus. The system will 
hoose one of the in�nite possible minimum 
on�gura-

tions. This phenomenon is usually 
alled spontaneous breaking of the gauge symmetry, but the

symmetry is not a
tually broken. In fa
t, the Lagrangian is still gauge invariant, and all the

properties 
onne
ted with this invarian
e (su
h as, for example, 
urrent 
onservation) are still

there. It is important to stress this point, be
ause at the quantum level this is essentially what

guarantees the renormalizability of the theory, whi
h would instead be lost in the 
ase of an

expli
it breaking of the gauge symmetry.

Let us now expand the �eld � around one of the in�nite minimum 
on�gurations; we 
hoose

the one for whi
h � is real at the minimum, but of 
ourse any other 
hoi
e would be equivalent.

We introdu
e real s
alar �elds H(x) and G(x) by

�(x) =

1

p

2

[v +H(x) + iG(x)℄ ; (2.2.13)

where v is de�ned in eq. (2.2.12). In prin
iple, the �eld G 
ould have been removed from the

lagrangian by an appropriate gauge transformation. In fa
t, we 
ould have �rst applied a lo
al

gauge transformation to � in order to make it real, and then shift it a

ording to � = (v+H)=

p

2.

For the moment, we keep both H and G in the lagrangian; we will 
ome ba
k to this point later.

Up to an irrelevant 
onstant, the s
alar potential takes the form

V (�) = (m

2

v + �v

3

)H +

1

2

(m

2

+ 3�v

2

)H

2

+

1

2

(m

2

+ �v

2

)G

2

+�vH(H

2

+G

2

) +

�

4

(H

2

+G

2

)

2

: (2.2.14)
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Using eq. (2.2.12), �v

2

= �m

2

, we see that the terms proportional to H and G

2

vanish, whi
h

means that the �eld G is massless. The 
oeÆ
ient of the H

2

term is now (�2m

2

)=2, and has

therefore the 
orre
t sign to be interpreted as a mass term (remember that m

2

is negative).

After the reparametrization eq. (2.2.13), the jD�j

2

term takes the following form:

(D

�

�)

y

D

�

� =

1

2

�

�

H�

�

H +

1

2

�

�

G�

�

G+

1

2

e

2

(H

2

+G

2

+ 2vH)A

�

A

�

� eA

�

(H�

�

G�G�

�

H)� evA

�

�

�

G+

1

2

e

2

v

2

A

�

A

�

: (2.2.15)

We see that the gauge �eld A

�

has a
quired a mass m




= ev, pre
isely the result we were looking

for. The term �evA

�

�

�

G is unpleasant, be
ause it mixes the gauge ve
tor �eld A

�

with the

unphysi
al �eld G; we will see in a moment how to get rid of it.

We must now 
he
k that the appearan
e of a mass term for A

�

via the spontaneous symme-

try breaking me
hanism has not spoiled the renormalizability of our theory, 
ontrary to what

happened when we tried to break the symmetry expli
itly. It is well known that, in order to

quantize a gauge theory, a gauge-�xing term must be added to the lagrangian (obviously, this

was not ne
essary in the 
ase of expli
it gauge symmetry breaking). A 
onvenient 
hoi
e for the

gauge-�xing term is

L

GF

= �

1

2�

(�

�

A

�

+ ev�G)

2

; (2.2.16)

where � is an arbitrary 
onstant (the gauge parameter). Equation (2.2.16) 
orresponds to the

gauge-�xing 
ondition

�

�

A

�

= �ev�G: (2.2.17)

The gauge-�xing lagrangian (2.2.16) has been 
arefully 
hosen in order to 
an
el the term pro-

portional to A

�

�

�

G in eq. (2.2.15). Indeed, eq. (2.2.16) 
ontains a term �ev�

�

AG, whi
h after

partial integration 
an
els the unwanted term in eq. (2.2.15). Observe also that the gauge-�xing

lagrangian introdu
es a term

�

1

2

�e

2

v

2

G

2

= �

1

2

�m

2




G

2

; (2.2.18)

whi
h gives a squared mass �m

2




to the unphysi
al �eld G.

Colle
ting the various terms, the lagrangian is given by:

L = �

1

2

(�

�

A

�

�

�

A

�

� �

�

A

�

�

�

A

�

) +

1

2

m

2




A

�

A

�

�

1

2�

(�

�

A

�

)

2

+

1

2

�

�

H�

�

H �

1

2

m

2

H

H

2

+

1

2

�

�

G�

�

G�

1

2

�m

2




G

2

+

1

2

e

2

(H

2

+G

2

+ 2vH)A

�

A

�

� eA

�

(H�

�

G�G�

�

H)

��vH(H

2

+G

2

)�

�

4

(H

2

+G

2

)

2

; (2.2.19)

where m




= ev and m

2

H

= 2�v

2

. The propagators 
an be worked out from the quadrati
 terms,


olle
ted in the �rst two rows of eq. (2.2.19). We get

�

��

�

(k) =

i

k

2

�m

2




"

�g

��

+

(1� �)k

�

k

�

k

2

� �m

2




#

(2.2.20)
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for the photon propagator, and

�

H

(k) =

i

k

2

�m

2

H

; �

G

(k) =

i

k

2

� �m

2




(2.2.21)

for the two s
alar propagators.

Observe that the photon propagator has now the 
orre
t behaviour 1=k

2

at large momenta.

However, in addition to the pole at k

2

= m

2




, an unphysi
al singularity at k

2

= �m

2




has now

appeared. This singularity is lo
ated at the mass squared of the unphysi
al s
alar �eld G. One


an prove that the 
ontributions of this term of the photon propagator to physi
al quantities

are exa
tly 
an
elled by the 
ontributions of G ex
hange. It is easy to 
he
k this 
an
ellation in

spe
i�
 
ases, su
h as e.g. H
 ! H
 s
attering at tree level. In order to perform this kind of


he
ks, it is useful to rewrite the propagator in eq. (2.2.20) in the form

�

��

�

(k) =

i

k

2

�m

2




 

�g

��

+

k

�

k

�

m

2




!

�

k

�

k

�

m

2




i

k

2

� �m

2




; (2.2.22)

where the G propagator appears expli
itly.

When we let � tend to in�nity, the photon propagator eq. (2.2.20) takes the form of eq. (2.2.7):

lim

�!1

�

��

�

(k) =

i

k

2

�m

2




 

�g

��

+

k

�

k

�

m

2




!

: (2.2.23)

The theory is still renormalizable, but in a hidden way: renormalizability must arise as a 
on-

sequen
e of 
an
ellations among di�erent 
ontributions to the same Green fun
tion, sin
e the

propagator does not obey the power-
ounting rule. The limit � !1 is 
alled the unitary gauge.

The advantage of the unitary gauge is that the theory 
ontains only physi
al degrees of free-

dom. In fa
t, when � ! 1 the gauge-�xing 
ondition redu
es to G(x) = 0 (see eq. (2.2.16));

it 
orresponds to the gauge 
hoi
e that eliminates G from the theory sin
e the very beginning.

The drawba
k is that in the unitary gauge renormalizability is not manifest at ea
h intermediate

step of a 
al
ulation.

Two 
ommon gauge 
hoi
es are the Feynman gauge, � = 1, whi
h gives

�

��

F

= �

ig

��

k

2

�m

2




(2.2.24)

and the Landau gauge, � = 0, for whi
h

�

��

L

=

i

k

2

�m

2




 

�g

��

+

k

�

k

�

k

2

!

: (2.2.25)

One last observation about the �eld G(x). It looks like we lost a degree of freedom, sin
e we

started with a 
omplex s
alar �eld and we end up with one real s
alar. A
tually, the number

of degrees of freedom stays the same, sin
e the photon is now massive, and has therefore three

polarization states instead of two. The �eld G(x) is 
alled a would-be Goldstone boson. This

terminology re
e
ts the fa
t that, in the absen
e of gauge invarian
e and of the gauge-�xing
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term, G would have simply been a physi
al, zero-mass state, whi
h is always present when

spontaneous symmetry breaking o

urs. This me
hanism is known as the Higgs me
hanism. It

is possible to extend it to the standard model, with a few modi�
ations that we now des
ribe in

detail.

We have learned that, in order to break spontaneously a gauge symmetry, we must intro-

du
e s
alar �elds in the game. How should we do this in the standard model? First, the s
alar

�eld must transform non-trivially under that part of the gauge group that we want to undergo

spontaneous breaking. Se
ondly, we must be 
areful not to break the U(1) invarian
e 
orre-

sponding to ele
trodynami
s, or, in other words, we want the photon to stay massless. This

means that spontaneous symmetry breaking must take pla
e in three of the four \dire
tions" of

the SU(2)� U(1) gauge group, the fourth one being that 
orresponding to ele
tri
 
harge. The

simplest way to do this is to assign the s
alar �eld � to a doublet representation of SU(2):

� =

 

�

1

�

2

!

: (2.2.26)

The Higgs me
hanism takes pla
e in analogy with s
alar ele
trodynami
s. The most general

s
alar potential 
onsistent with gauge invarian
e and renormalizability is

V (�) = m

2

j � j

2

+� j � j

4

; (2.2.27)

whi
h has a minimum at

j � j

2

= �

m

2

2�

�

1

2

v

2

: (2.2.28)

The value of the hyper
harge of the s
alar doublet � is �xed by the requirement that the minimum


on�guration

� =

1

p

2

 

v

1

v

2

!

; jv

1

j

2

+ jv

2

j

2

= v

2

(2.2.29)

is left un
hanged by ele
tromagneti
 gauge transformations, that 
orrespond to the subgroup

U(1)

em

. This 
orresponds to the requirement

e

ieQ�

1

p

2

 

v

1

v

2

!

=

1

p

2

 

v

1

v

2

!

; (2.2.30)

or equivalently

 

Q

1

0

0 Q

2

! 

v

1

v

2

!

=

 

1=2 + Y=2 0

0 �1=2 + Y=2

! 

v

1

v

2

!

=

 

0

0

!

; (2.2.31)

where Q

1

; Q

2

are the ele
tri
 
harges of �

1

; �

2

, and we have used eq. (2.1.33). There are two

possibilities:

1) v

1

= 0; jv

2

j = v; Y = +1 (2.2.32)

2) v

2

= 0; jv

1

j = v; Y = �1: (2.2.33)
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We will adpot the �rst 
hoi
e, with Y = +1 and therefore Q

1

= 1; Q

2

= 0. We will further

assume that v

2

is real and positive.

We 
an reparameterize � in the following way:

� =

1

p

2

e

i�

i

�

i

(x)=v

 

0

v +H(x)

!

; (2.2.34)

with �

i

(x) and H(x) real. This parametrization is not suited for renormalizable gauges, be
ause

it is non-linear and 
ontains all powers of the �elds �

i

. It is 
onvenient, however, if we work in

the unitary gauge; in fa
t, it is apparent that the �elds �

i


an be transformed away by an SU(2)

gauge transformation. In this se
tion, we will use the unitary gauge �

i

= 0. The standard model

lagrangian in a generi
 renormalizable gauge is given in Appendix 4.4.

The s
alar potential takes the form

V =

1

2

(2�v

2

)H

2

+ �vH

3

+

1

4

�H

4

; (2.2.35)

the Higgs s
alar H has a squared mass m

2

H

= 2�v

2

. The term (D

�

�)

y

D

�

� 
an be worked out

using eq. (2.2.34) with �

i

= 0. We get

D

�

� =

 

�

�

� i

g

2

�

i

W

i

�

� i

g

0

2

B

�

!

1

p

2

 

0

H(x) + v

!

=

1

p

2

 

0

�

�

H

!

�

i

2

(H + v)

1

p

2

 

g(W

�

1

� iW

�

2

)

�gW

�

3

+ g

0

B

�

!

=

1

p

2

 

0

�

�

H

!

�

i

2

(H + v)

 

gW

�

+

�

q

(g

2

+ g

0

2

)=2Z

�

!

; (2.2.36)

where in the last step we have used eqs. (2.1.17), (2.1.24), (2.1.25) and (2.1.32). We have

therefore

(D

�

�)

y

D

�

� =

1

2

�

�

H�

�

H +

�

1

4

g

2

W

�

+

W

�

�

+

1

8

(g

2

+ g

0

2

)Z

�

Z

�

�

(H + v)

2

: (2.2.37)

We see that the W and Z bosons have a
quired masses

m

2

W

=

1

4

g

2

v

2

(2.2.38)

m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

: (2.2.39)

Note that the photon stays massless. With the s
alar �eld � transforming as a doublet of SU(2),

there is always a linear 
ombination of B

�

and W

�

3

that does not re
eive a mass term, but only

if Y (�) = 1 (or �1) does this linear 
ombination 
oin
ide with the one in eq. (2.1.24). The

lagrangian in a generi
 renormalizable gauge is mu
h more 
ompli
ated, sin
e it also involves

kineti
 and intera
tion terms for non-physi
al Higgs s
alars, the would-be Goldstone bosons. It

is des
ribed in Appendix 4.4.
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The value of v, the va
uum expe
tation value of the neutral 
omponent of the Higgs doublet,


an be obtained 
ombining eqs. (2.2.3) and (2.2.38), and using the measured valued of the Fermi


onstant. We get

v =

s

1

G

F

p

2

' 246:22 GeV: (2.2.40)

The value of the Higgs quarti
 
oupling � (or equivalently the Higgs mass) is not �xed by our

present knowledge.

Masses for hadrons and 
avour-mixing

Fermion masses are also forbidden by the gauge symmetry of the standard model. In fa
t, the

mass term for a fermion �eld  has the form

�m  = �m( 

L

 

R

+  

R

 

L

); (2.2.41)

and 
annot be invariant under a 
hiral transformation, that is, a transformation that a
ts di�er-

ently on left-handed and right-handed �elds. The gauge transformations of the standard model

are pre
isely of this kind. Again, this diÆ
ulty 
an be 
ir
umvented by means of the Higgs

doublet �.

We �rst 
onsider the hadroni
 se
tor. We have seen in se
tion 2.1 that the intera
tion

lagrangian is not diagonal in terms of quark �elds with de�nite 
avours. Let us 
all u

0

f

and

d

0

f

the �elds that bring the intera
tion terms diagonal (the index f runs over the n fermion

generations); in prin
iple, there is no reason why only down-type quarks should be rotated. We

also de�ne

Q

0

f

=

 

u

0

f

L

d

0

f

L

!

U

0

f

= u

0

f

R

D

0

i

= d

0

f

R

: (2.2.42)

A Yukawa intera
tion term 
an be added to the lagrangian:

L

hadr

Y

= �(

�

Q

0

�h

0

D

D

0

+

�

D

0

�

y

h

0

y

D

Q

0

)� (

�

Q

0

�




h

0

U

U

0

+

�

U

0

�

y




h

0

y

U

Q

0

); (2.2.43)

where h

0

U

and h

0

D

are generi
 n� n 
onstant 
omplex matri
es in the generation spa
e, and

�




=

 

�

0

�

��

�

!

: (2.2.44)

It easy to 
he
k that L

hadr

Y

is Lorentz-invariant, gauge-invariant

2

and renormalizable, and there-

fore it 
an (a
tually, it must) be in
luded in the lagrangian. The matri
es h

0

U

and h

0

D


an be

diagonalized by means of bi-unitary transformations:

h

U

� V

U

L

y

h

0

U

V

U

R

(2.2.45)

h

D

� V

D

L

y

h

0

D

V

D

R

; (2.2.46)

2

If � transforms as an SU(2) doublet, so does �




= ��

�

, where � is the antisymmetri
 tensor; 
he
k it as an

exer
ise.
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where V

U;D

L;R

are unitary matri
es, 
hosen so that are diagonal with real, non-negative entries.

Now, we de�ne new quark �elds u and d by

u

0

L

= V

U

L

u

L

; u

0

R

= V

U

R

u

R

(2.2.47)

d

0

L

= V

D

L

d

L

; d

0

R

= V

D

R

d

R

; (2.2.48)

In the unitary gauge, eq. (2.2.43) be
omes

L

hadr

Y

= �

1

p

2

(v +H)

n

X

f=1

(h

f

D

�

d

f

d

f

+ h

f

U

�u

f

u

f

); (2.2.49)

where h

f

U;D

are the diagonal entries of the matri
es h

U;D

. We 
an now identify the quark masses

with

m

f

U

=

vh

f

U

p

2

; m

f

D

=

vh

f

D

p

2

: (2.2.50)

Sin
e the matri
es V

U;D

L;R

are 
onstant in spa
e-time, eqs. (2.2.47,2.2.48) are obviously global

symmetry transformations of the free quark lagrangian. They also leave un
hanged the neutral-


urrent intera
tion term, be
ause of the universality of the 
ouplings of fermions of di�erent

families to the photon and the Z. The only term in the lagrangian whi
h is a�e
ted by

eqs. (2.2.47,2.2.48) is the 
harged-
urrent intera
tion, be
ause the up and down 
omponents

of the same left-handed doublet are transformed in a di�erent way. Indeed, we �nd

J

�

hadr

=

n

X

f=1

�

Q

0f




�

�

+

Q

0

f

=

n

X

f;g=1

�u

f

L




�

V

fg

d

g

L

; (2.2.51)

where

V = V

U

L

y

V

D

L

: (2.2.52)

The matrix V is usually 
alled the Cabibbo-Kobayashi-Maskawa (CKM) matrix. It is a unitary

matrix, and its unitarity guarantees the suppression of 
avour 
hanging neutral 
urrents, as we

already dis
ussed in se
tion 2 in the 
ase of two fermion families. The matrix V enters the

standard model lagrangian as a fundamental parameter, on the same step as masses and gauge


ouplings. The values of its entries must be determined from experiments.

To 
on
lude this subse
tion, we now determine the number of independent parameters in the

CKM matrix. A generi
 n � n unitary matrix is formed with n

2

independent real parameters.

Some (n

A

) of them 
an be thought of as rotation angles in the n-dimensional spa
e of generations,

and there are as many as the 
oordinate planes in N dimensions:

n

A

=

 

n

2

!

=

1

2

n(n� 1): (2.2.53)

The remaining parameters are just 
omplex phases; their number is

n̂

P

= n

2

� n

A

=

1

2

n(n+ 1): (2.2.54)
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Some of the n̂

P


omplex phases, however, 
an be eliminated by rede�ning the left-handed quark

�elds. This means that 2n � 1 phases are eliminable: in fa
t, there are n up-type quarks and

n down-type quarks, that 
an be rotated to eliminate the phase of one row and one 
olumn of

V , and the �1 a

ounts for the fa
t that the entry 
orresponding to the interse
tion of the row

and the 
olumn 
annot be rotated twi
e. The number of really independent 
omplex phases in

V is therefore

n

P

= n̂

P

� (2n� 1) =

1

2

(n� 1)(n� 2): (2.2.55)

Observe that, with one or two fermion families, the CKM matrix 
an be made real. The �rst


ase with non-trivial phases is n = 3, whi
h 
orresponds to n

P

= 1. In the standard model with

three fermion families, the CKM matrix has four independent parameters: three rotation angles

and one 
omplex phase. In the general 
ase, the total number of independent parametersi in the

CKM matrix is

n

A

+ n

P

= (n� 1)

2

: (2.2.56)

Masses for leptons

The same pro
edure 
an be applied to the leptoni
 se
tor. Everything is formally un
hanged:

up-quarks are repla
ed by neutrinos and down-quarks are repla
ed by 
harged leptons (e

�

, �

�

and �

�

). There is however an important di�eren
e, whi
h leads to 
onsiderable simpli�
ations:

as we have seen, right-handed neutrinos have no intera
tions. Therefore, there is no Yukawa


oupling involving the 
onjugate s
alar �eld �




, and there is only one matrix of Yukawa 
ouplings,

h

0

E

:

L

lept

Y

= �(L

0

�h

0

E

E

0

+ E

0

�

y

h

0

y

E

L

0

) ; (2.2.57)

whi
h 
an be diagonalized by means of a biunitary transformation

h

E

= V

E

L

y

h

0

E

V

E

R

: (2.2.58)

The di�eren
e with respe
t to the 
ase of quarks is that now we have the freedom of rede�ning

the left-handed neutrino �elds using the same matrix V

E

L

that rotates 
harged leptons:

�

0

L

= V

E

L

�

L

(2.2.59)

e

0

L

= V

E

L

e

L

; e

0

R

= V

E

R

e

R

: (2.2.60)

This puts the Yukawa intera
tion in diagonal form,

L

lept

Y

= �

n

X

f=1

h

f

E

(

�

L

f

� e

f

R

+ �e

f

R

�

y

L

i

); (2.2.61)

but, 
ontrary to what happens in the quark se
tor, leaves the 
harged intera
tion term un-


hanged, sin
e

J

�

lept

=

�

L

0




�

�

+

L

0

=

�

L


�

�

+

L =

n

X

f=1

��

f

L




�

e

f

L

: (2.2.62)
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In other words, in the leptoni
 se
tor there is no mixing among di�erent generations, be
ause

the Yukawa 
oupling matrix 
an be diagonalized by a global transformation under whi
h the

full lagrangian is invariant. As a 
onsequen
e, not only the overall leptoni
 number, but also

individual leptoni
 
avors are 
onserved. This is due to the absen
e of right-handed neutrinos.

The values of the Yukawa 
ouplings h

f

E

are determined by the values of the observed lepton

masses. In fa
t, using eq. (2.2.34), we �nd

L

lept

Y

= �

n

X

f=1

h

f

E

p

2

(v +H)�e

f

e

f

; (2.2.63)

thus allowing the identi�
ations

m

f

E

=

vh

f

E

p

2

: (2.2.64)

As in the 
ase of ve
tor bosons, in renormalizable gauges there are also intera
tion terms between

quarks and non-physi
al s
alars; the details are given in Appendix 4.4.
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2.3 Summary

To summarize, the standard model lagrangian in the unitary gauge is given by

L

SM

= L

kin

+ L

em

+ L




+ L

n

+ L

YM

+ L

Higgs

+ L

Y ukawa

; (2.3.1)

where

� L

kin

is the free fermion lagrangian:

L

kin

=

n

X

f=1

h

��

f

i�= �

f

+ �e

f

(i�=�m

f

E

) e

f

+ �u

f

(i�=�m

f

U

) u

f

+

�

d

f

(i�=�m

f

D

) d

f

i

: (2.3.2)

The index f labels the n fermion families. Neutrinos are assumed massless.

� L

em

is the ele
tromagneti
 
oupling:

L

em

= e

n

X

f=1

�

��e

f




�

e

f

+

2

3

�u

f




�

u

f

�

1

3

�

d

f




�

d

f

�

A

�

; (2.3.3)

� L




is the 
harged-
urrent intera
tion term:

L




=

g

2

p

2

2

4

n

X

f=1

��

f




�

(1� 


5

) e

f

+

n

X

f;g=1

�u

f




�

(1� 


5

)V

fg

d

g

3

5

W

+

�

+

g

2

p

2

2

4

n

X

f=1

�e

f




�

(1� 


5

) �

f

+

n

X

f;g=1

�

d

f




�

(1� 


5

)V

�

fg

u

g

3

5

W

�

�

: (2.3.4)

� L

n

is the neutral-
urrent intera
tion term:

L

n

=

e

4 
os �

W

sin �

W

n

X

f=1

"

��

f




�

(1� 


5

) �

f

+ �e

f




�

�

�1 + 4 sin

2

�

W

+ 


5

�

e

f

+ �u

f




�

�

1�

8

3

sin

2

�

W

� 


5

�

u

f

+

�

d

f




�

�

�1 +

4

3

sin

2

�

W

+ 


5

�

d

f

#

Z

�

:(2.3.5)

� L

YM

is the pure Yang-Mills lagrangian:

L

YM

= �

1

4

F

��

F

��

�

1

4

Z

��

Z

��

�

1

2

W

+

��

W

��

�

(2.3.6)

+ig sin �

W

(W

+

��

W

�

�

A

�

�W

�

��

W

�

+

A

�

+ F

��

W

�

+

W

�

�

)

+ig 
os �

W

(W

+

��

W

�

�

Z

�

�W

�

��

W

�

+

Z

�

+ Z

��

W

�

+

W

�

�

)

�

g

2

2

(2g

��

g

��

� g

��

g

��

� g

��

g

��

)

�

W

+

�

W

�

�

(A

�

A

�

sin

2

�

W

+ Z

�

Z

�


os

2

�

W

+ 2A

�

Z

�

sin �

W


os �

W

)�

1

2

W

+

�

W

+

�

W

�

�

W

�

�

�

where

F

��

= �

�

A

�

� �

�

A

�

; Z

��

= �

�

Z

�

� �

�

Z

�

; W

��

�

= �

�

W

�

�

� �

�

W

�

�

: (2.3.7)
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� The Higgs se
tor provides a term

L

Higgs

=

1

2

�

�

H �

�

H+

�

m

2

W

W

�

+

W

�

�

+

1

2

m

2

Z

Z

�

Z

�

��

1 +

H

v

�

2

�

1

2

m

2

H

H

2

��vH

3

�

1

4

�H

4

:

(2.3.8)

� The Yukawa 
oupling L

Y ukawa

is given by

L

Y ukawa

= �

1

p

2

H

v

n

X

f=1

(m

f

D

�

d

f

d

f

+m

f

U

�u

f

u

f

+m

f

E

�e

f

e

f

): (2.3.9)

The parameters appearing in L

SM

are not all independent. The gauge-Higgs se
tor is entirely

spe
i�ed by the four parameters

g; g

0

; v; m

H

; (2.3.10)

sin
e

m

2

W

=

1

4

g

2

v

2

; m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

; � =

m

2

H

2v

2

; tan �

W

=

g

0

g

(2.3.11)

and g sin �

W

= g

0


os �

W

= e. However, g; g

0

; v are often eliminated in favour of the ele
tromag-

neti
 
oupling �

em

, the Fermi 
onstant G

F

and the Z

0

mass m

Z

, whi
h are measured with high

a

ura
y. We have

�

em

=

g

2

g

0

2

4�(g

2

+ g

0

2

)

; G

F

=

1

p

2v

2

; m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

: (2.3.12)

The free parameters in the fermioni
 se
tor are the 3n masses m

f

U

; m

f

D

; m

f

E

, and the (n � 1)

2

independent parameters in the Cabibbo-Kobayashi-Maskawa matrix V . This gives a total of 17

free parameters for the standard model with three fermion generations.
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Chapter 3

Spe
ial topi
s

3.1 The s
alar se
tor beyond the tree level

E�e
tive a
tion and e�e
tive potential

In this se
tion we will study the s
alar se
tor of the standard model, and in parti
ular the

phenomenon of spontaneous breaking of the gauge symmetry, beyond the 
lassi
al level. This is

most 
onveniently done in the 
ontext of the generating fun
tional formalism, whi
h we brie
y

re
all. One introdu
es the fun
tional

Z[J ℄ = h0jTe

i

R

d

4

xJ(x)�(x)

j0i = h0j0i

J

; (3.1.1)

where J(x) is a 
lassi
al sour
e with the appropriate gauge transformation properties (we are

only interested in the s
alar se
tor, so we do not introdu
e here sour
es for the other �elds in

the theory). Fun
tional derivatives of Z[J ℄ with respe
t to J at J = 0 give the Green's fun
tions

of the theory; for this reason, Z[J ℄ is 
alled the generating fun
tional. It 
an be shown that the

fun
tional

W [J ℄ = �i logZ[J ℄ (3.1.2)

is the generating fun
tional for 
onne
ted Green's fun
tions. One then de�nes the 
lassi
al �eld

�




as

�




(x) =

ÆW [J ℄

ÆJ(x)

=

h0j�(x)j0i

J

h0j0i

J

(3.1.3)

and the e�e
tive a
tion �[�




℄ as

�[�




℄ = W [J ℄�

Z

d

4

x J(x)�




(x): (3.1.4)

The e�e
tive a
tion has an expansion in powers of the 
lassi
al �eld,

�[�




℄ =

1

X

n=0

1

n!

Z

d

4

x

1

: : : d

4

x

n

�




(x

1

) : : : �




(x

n

)�

n

(x

1

; : : : x

n

); (3.1.5)

24



whose 
oeÆ
ients �

n

(x

1

; : : : x

n

) 
an be shown to be the 
onne
ted, one-parti
le irredu
ible

Green's fun
tions of the theory. The fun
tional �[�




℄ is the appropriate tool to study spon-

taneous symmetry breaking. In fa
t, the 
ondition for spontaneous symmetry breaking is that

�




is di�erent from zero even when the sour
e J is set equal to zero, as 
an be read o� eq. (3.1.3).

On the other hand, for J = 0, one has

Æ�[�




℄

Æ�




= 0: (3.1.6)

We 
on
lude that spontaneous symmetry breaking takes pla
e when the 
lassi
al �eld that

minimizes the e�e
tive a
tion is di�erent from zero.

Consider now the Fourier transforms of the fun
tions �

n

(x

1

; : : : x

n

):

�

n

(x

1

; : : : x

n

) =

Z

d

4

p

1

(2�)

4

: : :

d

4

p

n

(2�)

4

e

i(p

1

x

1

+:::p

n

x

n

)

(2�)

4

Æ(p

1

+ : : :+ p

n

)

~

�

n

(p

1

; : : : p

n

); (3.1.7)

and expand

~

�

n

in powers of momenta around p

i

= 0,

~

�

n

(p

1

; : : : ; p

n

) =

~

�

n

(0) + : : : : (3.1.8)

The e�e
tive a
tion be
omes

�[�




℄ =

1

X

n=0

1

n!

Z

d

4

x

1

: : : d

4

x

n

�




(x

1

) : : : �




(x

n

)

Z

d

4

p

1

(2�)

4

: : :

d

4

p

n

(2�)

4

e

i(p

1

x

1

+:::p

n

x

n

)

Z

d

4

x e

�ix(p

1

+:::+p

n

)

h

~

�

n

(0) + : : :

i

=

Z

d

4

x

1

X

n=0

1

n!

~

�

n

(0)�

n




(x) + : : : : (3.1.9)

The �rst term in this expansion is usually written as

�

Z

d

4

x V (�




); (3.1.10)

where

V (�




) = �

1

X

n=0

1

n!

~

�

n

(0)�

n




(3.1.11)

is 
alled the e�e
tive potential of the theory, sin
e it does not 
ontain derivatives of the 
lassi
al

�eld. The following terms, originating from higher powers of momenta in the expansion of

~

�

n

,


ontain instead two or more derivatives of �




. The minimum 
ondition eq. (3.1.6) redu
es to

Æ

Æ�




Z

d

4

x V (�




) =

dV (�




)

d�




= 0 (3.1.12)

if we require translational invarian
e of the va
uum state.
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E�e
tive potential for a real s
alar �eld

The e�e
tive potential 
an be 
omputed dire
tly, by taking the sum of all diagrams with an

arbitrary number of external s
alar lines and zero external momenta. Consider for example a

theory with a single real s
alar �eld �, and a tree-level potential given by

V

0

(�) =

1

2

m

2

�

2

+

1

4

��

4

: (3.1.13)

The one-loop Green's fun
tions at zero external momenta are given by

~

�

2n

(0) = �i S

n

 

�4!

i�

4

!

n

Z

d

4

k

(2�)

4

 

i

k

2

�m

2

+ i�

!

n

; (3.1.14)

while Green's fun
tions with an odd number of external lines are obviously zero. The 
ombina-

torial fa
tor S

n

is

S

n

=

(2n)!

2

n

2n

; (3.1.15)

and 
an be determined in the following way: there are (2n)! ways of assigning the external

momenta to the verti
es; this number must be divided by 2

n

be
ause there are two external lines

for ea
h vertex, and by 2n be
ause there are 2n identi
al verti
es in the diagram. The one-loop


orre
tion to the s
alar potential is therefore given by

V

1

(�




) =

i

2

1

X

n=1

�

3��

2




�

n

1

n

Z

d

4

k

(2�)

4

1

(k

2

�m

2

+ i�)

n

: (3.1.16)

One sees immediately that the terms 
orresponding to n = 1 and n = 2 are divergent. This is

no surprise: these terms are proportional to �

2




and �

4




respe
tively, and the divergen
es must

undergo the usual pro
edure of mass and 
oupling 
onstant renormalization. Let us �rst take


are of the �nite part. The loop integrals 
an be performed using eq. (4.5.2); we �nd

V

�nite

1

=

i

2

i

(4�)

2

1

X

n=3

�

3��

2




�

n

(�1)

n

n

�(n� 2)

�(n)

m

4�2n

; (3.1.17)

or, using the properties of the � fun
tion and de�ning z = 3��

2




=m

2

,

V

�nite

1

= �

m

4

32�

2

1

X

n=3

(�1)

n

z

n

n(n� 1)(n� 2)

= �

m

4

64�

2

1

X

n=3

(�1)

n

z

n

�

1

n

�

2

n� 1

+

1

n� 2

�

: (3.1.18)

It is now easy to sum the series by shifting the summation index to n+1 and n+2 in the se
ond

and third term, and by adding and subtra
ting the missing n = 1; 2 terms. We get

V

�nite

1

=

m

4

64�

2

�

(1 + z)

2

log(1 + z)� z �

3

2

z

2

�

=

1

64�

2

"

�

m

2

+ 3��

2




�

2

log

m

2

+ 3��

2




m

2

� 3��

2




m

2

�

3

2

(3��

2




)

2

#

:

(3.1.19)
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Let us now 
onsider the divergent part:

V

div

1

i

2

"

�

3��

2




�

Z

d

4

k

(2�)

4

1

k

2

�m

2

+ i�

+

1

2

�

3��

2




�

2

Z

d

4

k

(2�)

4

1

(k

2

�m

2

+ i�)

2

#

: (3.1.20)

The renormalization pro
edure requires that a regularization pres
ription is given in order to give

mathemati
al meaning to the divergent integrals. Then, one must add suitable 
ounterterms in

order to 
an
el the divergen
es; the renormalizability of the theory manifests itself in the fa
t

that the only divergent diagrams 
orrespond to terms whi
h are already present in the bare

lagrangian. The �nite parts of the 
ounterterms are arbitrary; di�erent 
hoi
es 
orrespond to

di�erent renormalization s
hemes, and 
onsequently to di�erent de�nitions of the renormalized

parameters.

We noti
e that the �rst term in eq. (3.1.20) is quadrati
ally divergent: if we were to regularize

the integrals by simply imposing an ultraviolet 
ut-o� � on the modulus of the loop momentum

k, we would �nd a term proportional to ��

2

�

2




, whi
h 
orresponds to a quadrati
ally divergent

radiative 
orre
tion to the mass of the s
alar �eld �




. This fa
t is 
hara
teristi
 of s
alar mass

parameters.

In general, after regularization, the divergent part of the one-loop potential takes the form

V

div

1

= A�

2




+B�

4




; (3.1.21)

where A and B are fun
tions of �, m and of some parameter whi
h de�nes the regularization

pres
ription; both are divergent in the physi
al limit, e.g. �!1 for the 
ut-o� regularization,

or d ! 4 in dimensional regularization. We must give some renormalization pres
ription to �x

the �nite 
ounterterms. For example, we 
ould require that

~

�

2

(0) = �m

2

;

~

�

4

(0) = �6�: (3.1.22)

Sin
e eqs. (3.1.22) hold for the tree-level potential, and sin
e the �nite part of the one-loop


orre
tions starts with �

6




, this pres
ription simply means that the 
ounterterms must be exa
tly

equal and opposite to the divergent part, namely

V


t

1

= �A�

2




� B�

4




; (3.1.23)

so that in this 
ase

V

1

= V

�nite

1

: (3.1.24)

Another possibility is to perform the so-
alled minimal subtra
tion (MS). This pres
ription

amounts to 
omputing the divergent part in dimensional regularization, and then �xing the


ounterterms in su
h a way that only the pole in d� 4 is subtra
ted. A modi�ed version of this

renormalization pres
ription (MS) 
onsists in subtra
ting the term proportional to

1

�

� 
 + log(4�); (3.1.25)

where the spa
e-time dimension is d = 4 � 2�. In this 
ase, we have to 
ompute expli
itly the

loop integrals in eq. (3.1.20). Using again eq. (4.5.2), we �nd

V

div

1

= �

1

64�

2

"

6��

2




m

2

+ 6��

2




�

m

2

+

3

2

��

2




�

 

1

�

� 
 + log(4�) + log

�

2

m

2

!#

; (3.1.26)
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where � is an arbitrary mass parameter whi
h must be introdu
ed in dimensional regularization

in order to keep the 
oupling 
onstant � dimensionless. Now, we simply subtra
t the term

proportional to 1=�� 
 + log(4�). Adding all together, we �nd

V

MS

1

=

1

64�

2

�

m

2

+ 3��

2




�

2

"

log

m

2

+ 3��

2




�

2

�

3

2

#

; (3.1.27)

where we have used the identity

6��

2




�

m

2

+

3

2

��

2




�

=

�

m

2

+ 3��

2




�

2

�m

4

(3.1.28)

and we have dropped 
onstant terms.

In more 
ompli
ated theories, like the standard model, the e�e
tive potential re
eives 
ontri-

butions also from fermion and ve
tor loops. These 
ontributions 
an be 
omputed in the same

way as the s
alar one, but the 
al
ulations are quite tedious and 
ompli
ated. Fortunately, there

is a mu
h 
leverer te
hnique, whi
h allows one to obtain all 
ontributions to the one-loop s
alar

potential in a very simple way. Consider a new theory, obtained from the original one by shifting

the s
alar �eld by an arbitrary quantity !:

�! �+ !: (3.1.29)

The 
orresponding e�e
tive potential is

V

0

(�




) = �

1

X

n=0

1

n!

~

�

n

(0) (�




+ !)

n

= �

1

X

n=0

1

n!

~

�

0

n

(!; 0)�

n




; (3.1.30)

where the Green's fun
tions

~

�

0

n


an be 
omputed in terms of

~

�

n

. From eq. (3.1.30) we �nd

~

�

0

1

(!; 0) =

1

X

n=1

1

n!

~

�

n

(0)n!

n�1

(3.1.31)

and therefore

Z

�




0

d!

~

�

0

1

(!; 0) =

1

X

n=0

1

n!

~

�

n

(0)�

n




= �V (�




): (3.1.32)

Equation (3.1.32) tells us that the e�e
tive potential of the original theory 
an be obtained by


omputing the one-parti
le (or tadpole) amplitude of the shifted theory and integrating it with

respe
t to the shift. Let us see expli
itly how this works. The tree-level potential of the shifted

theory is

V

0

0

(�) =

1

2

m

2

(�+ !)

2

+

1

4

�(�+ !)

4

: (3.1.33)

The tree-level tadpole is therefore

�m

2

! � �!

3

; (3.1.34)

whi
h, integrated in ! between 0 and �




gives minus the tree-level potential (3.1.13) as expe
ted.

We now turn to the one-loop term. There is only one diagram to be 
omputed, with one external
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line and one internal propagator. In the shifted theory, the mass of the �




�eld is m

2

+ 3�!

2

,

and the �

3




vertex is �3�! (the fa
tor 3 is due to the fa
t that the three lines are identi
al), and

therefore

~

�

0

1

(!; 0) = �3�!

Z

d

d

k

(2�)

d

i

k

2

�m

2

� 3�!

2

: (3.1.35)

Using the results of appendix 4.5 we readily �nd

~

�

0

1

(!; 0) = �3�!

(4�)

�

(4�)

2

�(�1 + �)(m

2

+ 3�!

2
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1��
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 + log(4�)� log

m

2

+ 3�!

2

�

2

+ 1

#

+O(�); (3.1.36)

where � is the renormalization s
ale introdu
ed by dimensional regularization. After performing

the MS subtra
tion, we �nd

V

1

(�




) =

1

(4�)

2

Z

�




0

d! 3�!(m
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+ 3�!
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2

!

: (3.1.37)

whi
h is the same result obtained with the dire
t 
al
ulation, eq. (3.1.27).

The e�e
tive potential in the standard model

The pro
edure outlined at the end of the previous subse
tion 
an be applied to the standard

model. The s
alar �eld is now a 
omplex doublet, whi
h we write in terms of four real s
alar

�elds �

i

:

� =

1

p

2

 

�

1

+ i�

2

�

3

+ i�

4

!

: (3.1.38)

In the standard model, the e�e
tive potential re
eives 
ontributions from the s
alar se
tor, the

ve
tor boson se
tor, the Faddeev-Popov ghost se
tor and the fermion se
tor:

V

1

(�) = V

S

(�) + V

V

(�) + V

g

(�) + V

F

(�) (3.1.39)

(we drop the suÆx 
 on from now on).

The e�e
tive potential is a gauge-dependent quantity. It 
an be shown that the gauge

dependen
e of the e�e
tive potential is governed by the equation

"

�

�

��

+ C(�; �)

�

��

#

V (�; �) = 0 ; (3.1.40)

where � is the gauge parameter and C(�; �) is a fun
tion whi
h 
an be 
omputed order by order

in perturbation theory. Equation (3.1.40), in parti
ular, tells us that V is gauge-independent at
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its minimum, where �V=�� = 0. We will 
ompute V (�) in the Landau gauge � = 0; in this 
ase,

the ghost 
ontribution V

g

(�) vanishes.

We begin by 
omputing the s
alar 
ontribution. After the shift �

i

! �

i

+ !

i

, the tree-level

potential

V

0

(�) = m

2

j�j

2

+ � j�j

4

(3.1.41)

be
omes

V

0

0

(�) = �

i

!

i

(m
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+ �!

2

) +

1

2

h

(m

2

+ �!

2

)Æ

ij

+ 2�!

i

!

j

i

�

i

�

j

+�!

i

�

i

�

j

�

j

+

1

4

�(�

i

�

i

)

2

; (3.1.42)

where !

2

= !

i

!

i

. It is immediate to 
he
k that integrating the tree-level tadpole with respe
t to

!

i

and summing over the index i gives ba
k the tree-level potential. The one-loop 
ontribution

is obtained in the same way as in the 
ase of the real s
alar �eld, that is by 
omputation of the

one-loop tadpole diagram. A 
ompli
ation arises here, due to the fa
t that the mass term in

eq. (3.1.42) is not diagonal. A simple way to 
ir
umvent this diÆ
ulty is to 
hoose !

i

= 0 for

all i ex
ept one of them, say !

3

= ! (the reason of this 
hoi
e will be
ome 
lear later; of 
ourse,

it does not a�e
t the �nal result). This 
hoi
e simpli�es 
onsiderably the 
al
ulation, sin
e now

eq. (3.1.42) des
ribes three real s
alars, �

1

, �

2

and �

4

, with mass m

2

+ �!

2

, and one real s
alar,

�

3

, with mass m

2

+ 3�!

2

. The trilinear 
ouplings �

3

�

j

�

j

are simply ��! for i 6= 3 and �3�!

for j = 3. The 
al
ulation is now exa
tly analogous to that of a single s
alar �eld, ex
ept that

all four 
ontributions must be taken into a

ount. The result is therefore

V
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64�
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; (3.1.43)

where �

2

= �

i

�

i

. Some 
omments are in order. First of all, we observe that the same result


ould have been obtained without any spe
i�
 assumption about the shift variables !

i

. Se
ondly,

we stress the fa
t that the result in eq. (3.1.43) (as well as all the other 
ontributions, to be


omputed below) is independent of the values of m

2

and �. More spe
i�
ally, this result holds

in both the m

2

> 0 and m

2

< 0 
ases. In the �rst 
ase, there is no spontaneous breaking of

the gauge symmetry, the va
uum expe
tation values of the �elds �

i

are all zero, and the s
alar

masses are all equal to m

2

. In the m

2

< 0 
ase, the minimum of the tree-level potential lies at

�

2

= v

2

, and eq. (3.1.43) is easily intrerpreted: there is a 
ontribution 
oming from the physi
al

Higgs boson, with massm

2

+3�v

2

, and a 
ontribution from the three would-be Goldstone bosons,

whose masses vanish at the minimum of the tree-level potential. In both 
ases, the one-loop

e�e
tive potential has the same form. Note that the masses of the unphysi
al s
alars vanish

be
ause we are working in the Landau gauge.

We now turn to the 
ontribution of ve
tor bosons, V

V

(�). The only term of the lagrangian we

need is the s
alar-s
alar-ve
tor-ve
tor term that appears in the squared 
ovariant derivative of

the Higgs doublet. In fa
t, after shifting the �elds �

i

, this term 
ontains both the mass terms for
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the ve
tor bosons and the s
alar-ve
tor-ve
tor verti
es needed to 
ompute the one-loop tadpole.

With the help of the results in 4.4 we �nd that the relevant term in the shifted lagrangian is

L = (!

i

!

i

+ 2�

i

!

i

)

�

1

4

g

2

W

+

�

W

�

�

+

1

8

(g

2

+ g

0

2

)Z

�

Z

�

�

; (3.1.44)

where again we have 
hosen !

i

= 0 for i 6= 3 and !

3

= !. Therefore, the one-loop tadpole re
eives

one 
ontribution from a loop of a W ve
tor boson with mass g

2

!

2

=4 and 
ouplings g

2

!

i

g

��

=2 to

the s
alar �elds �

i

, and a 
ontribution from the Z boson with mass (g

2

+ g

0

2

)!

2

=4 and 
ouplings

(g

2

+g

0

2

)!

i

g

��

=4. The 
orresponding 
ontributions to the e�e
tive potential are easily 
omputed

with the help of eq. (3.1.36), re
alling that a fa
tor g

��

(�g

��

+ k

�

k

�

=k

2

) = �3 + 2� must now

be in
luded be
ause of the form of the ve
tor boson propagators in the Landau gauge. The �nal

result is

V

V
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: (3.1.45)

Finally, we must 
onsider the 
ontribution of fermions. For simpli
ity, we 
onsider only

the 
ontribution of the top quark, sin
e all other Yukawa 
ouplings in the standard model are

negligibly small. With the 
hoi
e of ! adopted above, the relevant pie
e of the shifted lagrangian

is

L = �

h

t

p

2

(�

3

+ !)tt; (3.1.46)

and pro
eeding as above we �nd

V

F

(�) = �

12

64�
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2
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2

t

�

2

�

2

"

log

h

2
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�

2

=2

�

2

�

3

2

#

; (3.1.47)

where we have in
luded a fa
tor of three for the 
olour quantum number, and a minus sign

be
ause of the fermion loop.

To summarize our results, we have 
omputed the one-loop e�e
tive potential of the standard

model in the MS subtra
tion s
heme. The result is

V (�) =

1

2

m

2
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2

+

1

4

�(�
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+
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�
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; (3.1.48)

where

H = m

2

+ 3��

2

; G = m

2

+ ��

2

; W =

1

4

g

2

�

2

; Z =

1

4

(g

2

+ g

0

2

)�

2

; T =

1

2

h

2

t

�

2

: (3.1.49)
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The quantities de�ned in eq. (3.1.49) are usually 
alled the �eld dependent squared masses

of the theory; there is one su
h fun
tion for ea
h parti
le in the spe
trum, and its value at

�

2

= v

2

equals the squared mass of the 
orresponding parti
le. We may denote these fun
tions


olle
tively with the symbol

M

2

i

(�

2

) (3.1.50)

with the index i running over all parti
les in the theory, and rewrite the one-loop 
orre
tion to

the s
alar potential as

V

1

(�) =

1

64�

2

X

i

(�1)

2s

i

(2s

i

+ 1)M

4

i

(�

2

)

"

log

M

2

i

(�

2

)

�

2

� 


i

#

; (3.1.51)

where s

i

is the spin of parti
le i, 


i

= 3=2 for s
alars and fermions, and 


i

= 5=6 for ve
tors.

A number of interesting things 
an be done with the one-loop e�e
tive potential (the original

work of S. Coleman and E. Weinberg is parti
ularly instru
tive). We will 
on
entrate on some

of them. Let us 
onsider for example the dependen
e on the renormalization s
ale �. From

eq. (3.1.11), we have

dV (�)

dt

= 0; (3.1.52)

where t = log�

2

. In fa
t, the one-parti
le irredu
ible Green's fun
tions obey the Callan-

Symanzik equations

 

�

�t

+ �

�

�

��

+m

2




m

�

�m

2

+ n


!

~

�

n

= 0; (3.1.53)

where

d�

dt

= �

�

; (3.1.54)

dm

2

dt

= 


m

m

2

; (3.1.55)

d�

2

dt

= 2
�

2

; (3.1.56)

and �

�

, 


m

and 
 are fun
tions of the 
oupling 
onstants, and are 
omputable in perturbation

theory. Using eqs. (3.1.53) in eq. (3.1.11), eq. (3.1.52) is immediately obtained.

On the other hand, dV=dt 
an be 
omputed expli
itly by di�erentiating eq. (3.1.48) with

respe
t to log�

2

and negle
ting two-loop e�e
ts. We �nd
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=
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; (3.1.57)

and therefore
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 =
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(3.1.58)




m

+ 2
 =

12�

32�

2

: (3.1.59)
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Observe that eqs. (3.1.58,3.1.59) are not quite enough to 
ompute all the anomalous dimensions

of the s
alar se
tor, but almost so: infa
t, it is suÆ
ient to 
ompute expli
itly one of them, for

example 
, to obtain the others.

We will now study the behaviour of the e�e
tive potential for large values of the 
lassi
al

�elds �

i

. We will be interested in dis
overing under whi
h 
onditions V (�)! +1 for large �

2

,

a ne
essary 
ondition for the existen
e of a minimum of V (�) for �nite �

2

. We therefore assume

that �

2

� �

2

, where � is some energy s
ale mu
h larger than the ele
troweak s
ale. Under this

assumptions, the e�e
tive potential is approximately given by
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; (3.1.60)

or, using eqs. (3.1.58,3.1.59),
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: (3.1.61)

We now observe that the renormalization group equations (3.1.54-3.1.56) have the approximate

solutions

�(�) ' �+ �

�

log

�

2

�

2

(3.1.62)
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(3.1.63)
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; (3.1.64)

with � = �(�), m

2

= m

2

(�), �

2

= �

2

(�). It is now immediate to show that eq. (3.1.61) is just

the expansion of the renormalization group improved e�e
tive potential

V

RG

(�) =

1

2

m

2

(�)�

2

(�) +

1

4

�(�)�

4

(�): (3.1.65)

We see that the stability 
ondition for the potential is simply the positivity of the running


oupling 
onstant �(�) at large s
ales.

The stability 
ondition 
an be translated into a lower limit for the Higgs boson mass. To see

this, we need the expli
it form of the one-loop renormalization group equation for �(�):

d�
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=
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: (3.1.66)

This equation must be solved together with the one-loop renormalization group equations for

gauge and Yukawa 
oupling 
onstants, whi
h in the standard model are given by

dg

dt

=

1

32�

2

�

�

19

6

g

3

�

(3.1.67)
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=
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h

t
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; (3.1.70)

where g

S

is the strong intera
tion 
oupling 
onstant, and the MS s
heme is adopted. This system

of 
oupled �rst-order di�erential equations 
an be easily solved numeri
ally. The result for �(�)

is shown in �g. 3.1 for di�erent values of the initial 
ondition �(� = m

Z

). Namely, we have


hosen �(m

Z

) 
orresponding to m

H

= 60; 100; 130; 150; 190 and 210 GeV, where

m

2

H

' 2�(m

Z

)v

2

: (3.1.71)

The interpretation of �g. 3.1 in 
onne
tion with the problem of the stability of the e�e
tive

Figure 3.1: The running 
oupling 
onstant �(�) for di�erent values of �(m

Z

), as ex-

plained in the text.

potential is as follows. We see that if the initial 
ondition at � = v is small, then �(�) be
omes

negative for some value of the renormalization s
ale. Conversely, the requirement that �(�)

stay positive at least up to a given value of �, � � �, translates into a lower limit on �(v), or

equivalently on m

H

. This lower bound depends on �; we see for example that if we ask �(�) > 0

up to the grand uni�
ation s
ale, � 10

16

GeV, the Higgs boson mass 
annot go below � 150 GeV

(�g. 3.1 is obtained for m

t

= 175 GeV). This lower limit be
omes less stringent if we require

�(�) > 0 in a smaller range of �.

There is another lesson to be learned from �g. 3.1. We observe that, for large values of the

Higgs boson mass, the 
oupling 
onstant � grows with in
reasing �, and eventually leaves the
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perturbative domain, � < 1. This is be
ause the solution of the renormalization group equation

for � has a singularity in �, known as the Landau singularity. Also in this 
ase, for the theory to

make sense up to a given s
ale �, we must ask �(�) < 1 (or something like that) for � � �. This

in turns implies an upper bound on the Higgs boson mass, whi
h is approximately 180 GeV for

� � 10

16

GeV and m

t

= 175 GeV.

The upper limit on the standard model Higgs boson mass is often referred to as the triviality

limit. The reason for this is that the existen
e of a Landau singularity in the running 
oupling


onstant � would imply �(v) = 0 if we require that the theory be valid for all values of the s
ale

�, that is, the theory would be non-intera
ting, or trivial, in the s
alar se
tor. Therefore, we are

for
ed to require the 
onsisten
y of the theory only up to some �nite value of �, and to assume

that some new phenomena be
ome relevant at higher energy s
ales. Noti
e however that no

rigorous proof of the triviality of the standard model has been given so far; there are only some

indi
ations of this, 
oming from studies and latti
e simulations of simpli�ed theories.

Both the triviality upper bound and the stability lower bound on the Higgs mass are shown

in �g. 3.2, as fun
tions of �. As � in
reases, the allowed range form

H

be
omes narrower. Re
ent

Figure 3.2: Theoreti
al upper and lower bounds on the Higgs mass.

LEP and SLD pre
ision data allow to estimate, although with a large un
ertainty, the value of

the standard model Higgs mass, that a�e
ts various observables (like the W boson mass, or

forward-ba
kward asymmetries) through radiative 
orre
tions. The 
entral values of these �ts

are between 100 and 200 GeV. It is interesting to noti
e that a value of m

H

in this range is


ompatible with � 
lose to the uni�
ation s
ale, � 10

16

GeV.
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3.2 The SU(2) 
ustodial symmetry

We have seen in se
tion 3 that in the standard model at tree level the weak ve
tor boson masses

m

W

and m

Z

are related by

� �

m

2

W

m

2

Z


os

2

�

W

= 1: (3.2.1)

Equation (3.2.1) 
ould in prin
iple be modi�ed at higher orders in perturbation theory. A
tually,

the measured value of � is very 
lose to 1:

�

exp

= 1:0048� 0:0022; (3.2.2)

thus suggesting that some symmetry property prevents the quantity � from re
eiving large

radiative 
orre
tions. We will now show that this is indeed the 
ase.

Preliminarly, we observe that, even after the in
lusion of radiative 
orre
tions, the most

general ve
tor boson mass term is given by
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=
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: (3.2.3)

Furthermore, the 
ondition that the photon stays massless gives us M

02

= MM

00

, and M

2

+

M

002

= m

2

Z

. Therefore, the mass matrix in the neutral se
tor is 
ompletely �xed by the value of

one parameter, say M

2

, and it is diagonalized by a rotation of an angle �

W

given by

tan �

W

=

q

m

2

Z

�M

2

M

: (3.2.4)

This in turn implies that

� =

m

2

W

m

2

Z


os

2

�

W

=

m

2

W

M

2

; (3.2.5)

that is, � = 1 only if M

2

= m

2

W

.

Next we noti
e that the s
alar potential

V (�) = m

2

j � j

2

+� j � j

4

(3.2.6)

is invariant under a group of transformations whi
h is larger than the standard model SU(2)

L

�

U(1)

Y

. In fa
t, de�ning

� =

1

p

2

 

�

1

+ i�

2

�

3
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(3.2.7)

we see that
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=

1
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2
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2

3
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2

4

) (3.2.8)


an be interpreted as the squared length of a real four ve
tor. Therefore, the s
alar potential

has an O(4) � SU(2)� SU(2) invarian
e. This symmetry property 
an be implemented in the

following way. We de�ne a 2� 2 matrix

H =

"

�

+

�

0

�

�

0

��

�

#

: (3.2.9)
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Re
alling that the �eld �




= (�

0

�

;��

�

)

T

transforms as an SU(2) doublet, it follows that, under

the a
tion of a generi
 SU(2)

L

transformation U , we have

H ! UH: (3.2.10)

On the other hand, it is easy to 
he
k that the s
alar potential 
an be written in terms of H as

V (�) =

1

2

m

2

Tr

�

H

y

H

�

+

1

2

�Tr

�

H

y

H

�

2

; (3.2.11)

whi
h is invariant under the SU(2)

L

� SU(2) transformation

H ! UHV

y

; (3.2.12)

where V is a se
ond SU(2) 
onstant matrix, independent of U . This is possible be
ause the

stru
ture of H in eq. (3.2.9) is preserved also by right multipli
ation with an SU(2) matrix.

Equation (3.2.12) is a representation of the O(4) symmetry we mentioned above. Is it possible

to write also the kineti
 term for the �eld � in an O(4)-invariant way? The natural 
andidate is

of 
ourse

1

2

Tr (D

�

H)

y

D

�

H; (3.2.13)

whi
h is invariant under the transformations (3.2.12) sin
e D

�

! UD

�

U

y

. However, one readily

realizes that (3.2.13) is not equal to (D

�

�)

y

D

�

� (prove this statement as an exer
ise); this is

be
ause � and �




have opposite values of the hyper
harge quantum number. We 
on
lude that

the O(4) symmetry is violated by the hyper
harge intera
tion term 
ontained in the 
ovariant

derivative. Let us therefore negle
t for the moment the hyper
harge fa
tor of the gauge group,

whi
h amounts to setting g

0

= 0, in order to work with an O(4)-invariant theory.

Due to spontaneous breaking of SU(2)

L

, the ground state is not invariant under O(4); how-

ever, there is a residual O(3) � SU(2) symmetry under transformations of the kind

H ! UH(�

1

U

y

�

1

); (3.2.14)

that leave the va
uum expe
tation value < H >=

p

2v�

1

un
hanged (U is now x-independent).

We are almost at the end of the road: in fa
t, it is easy to 
he
k that the only mass term for the

W

i

�

�elds allowed by the symmetry in eq. (3.2.14) is of the formW

i

�

W

�

i

, that is, a s
alar produ
t

in O(3). In other words, M

2

= m

2

W

in the notation of eq. (3.2.3).

We have proven that � = 1 is a 
onsequen
e of the so-
alled 
ustodial SU(2) symmetry

de�ned in eq. (3.2.14), and therefore it is not spoiled by radiative 
orre
tions. The in
lusion of

the hyper
harge intera
tion, that breaks O(4) expli
itly, does not 
hange this 
on
lusion, sin
e

radiative 
orre
tions to � due to the hyper
harge 
oupling are very small.

Of 
ourse, fermion mass terms do not preserve the 
ustodial symmetry; we expe
t 
orre
tions

to eq. (3.2.1) of the order of G

�

m

2

f

. More pre
isely, one �nds

� ' 1 +

3G

�

m

2

t

8�

2

p

2

; (3.2.15)

where we have in
luded only the 
ontribution from the top quark, for obvious reasons.
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3.3 Axial anomaly 
an
ellation

We have seen in the previous se
tions that the renormalizability of the standard model is stri
tly


onne
ted with gauge invarian
e. In parti
ular, we have seen that the massive ve
tor boson prop-

agators show unphysi
al singularities, that are 
an
elled by the presen
e of would-be Goldstone

bosons. In turn, gauge invarian
e manifests itself in the form of identities between Green fun
-

tions, 
alled Slavnov-Taylor identities, that are 
onsequen
es of 
urrent 
onservation, and that

must hold at all perturbative orders for the theory to be renormalizable. In this se
tion, we will

show that this might not be the 
ase for theories with axial 
urrents, as the standard model

itself. It might happen that 
urrent 
onservation is spoiled at the quantum level, unless the

spe
trum of the theory satis�es parti
ular 
onditions. In the language of quantum �eld theory,

terms that spoil the validity of Slavnov-Taylor identities are 
alled anomalies. We will illustrate

the problem of anomalies in the 
ontext of a simple example, and we will then state under whi
h


onditions the standard model is anomaly-free and renormalizable.

We 
onsider quantum ele
trodynami
s with one massive fermion,  with ele
tri
 
harge e

and mass m. We 
onsider the operators

J

�

V

=  


�

 (3.3.1)

J

�

A

=  


�




5

 (3.3.2)

J

P

=  


5

 : (3.3.3)

It is easy to show, using the equations of motion, that

�

�

J

�

V

= 0 (3.3.4)

�

�

J

�

A

= 2imJ

P

: (3.3.5)

The interpretation of eqs. (3.3.4) and (3.3.5) is well known. Equation (3.3.4) is simply the


onservation of the ele
tromagneti
 
urrent, whi
h re
e
ts the gauge-invarian
e of the theory.

The 
urrent J

�

A

, on the other hand, is asso
iated with axial transformations,

 ! e

i�


5

 : (3.3.6)

The lagrangian of massive QED is not invariant under axial transformations be
ause of the

presen
e of the mass term, and as a 
onsequen
e the asso
iated 
urrent J

�

A

is not 
onserved.

Equation (3.3.5) pre
isely states this fa
t. Exa
t axial-
urrent 
onservation is obviously re
overed

in the m! 0 limit.

Now 
onsider the Green fun
tion

T

���

(k

1

; k

2

) = i

Z

d

4

x

1

d

4

x

2

e

ik

1

x

1

+ik

2

x

2

h0jT [J

�

V

(x

1

)J

�

V

(x

2

)J

�

A

(0)℄j0i ; (3.3.7)

whi
h 
an be easily shown to be related to the matrix element of the axial 
urrent between the

va
uum state and a two-photon state by the relation

h
(k

1

; �
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)
(k

1

; �
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)jJ
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2
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�

(�
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�
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���

(k
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) : (3.3.8)
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Formally, it obeys the Slavnov-Taylor identities

k

�
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T

���

= k

�

2

T

���

= 0 (3.3.9)

q
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���
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; (3.3.10)

where q = k

1

+ k

2
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(k
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) = i

Z
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�
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(x

2

)J

P

(0)℄j0i : (3.3.11)

The identities in eqs. (3.3.9,3.3.10) 
an be worked out by exploiting eqs. (3.3.4) and (3.3.5), and

the 
anoni
al 
ommutation relations. We will now 
he
k expli
itly whether eqs. (3.3.9,3.3.10)

are satis�ed in perturbation theory or not. At the one-loop order, the diagrams to be 
omputed

are those of �g. 3.3. We have

Figure 3.3: Diagrams 
ontributing to T

���
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; k

2

) and T
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).
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) = T
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) (3.3.12)
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); (3.3.13)

where
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and

T
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) (3.3.16)

T
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2
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1

; k

2

) = T
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1
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; k
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): (3.3.17)
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The overall minus sign is due to the presen
e of a fermion loop.

The loop integrals in eqs. (3.3.14) and (3.3.15) are super�
ially divergent. We must therefore


hoose a regularization s
heme before pro
eeding. Dimensional regularization is not suited here,

be
ause of the presen
e of 


5

, whi
h has an intrinsi
ally four-dimensional meaning and 
annot

be generalized to other spa
e-time dimensions in a simple way. We will make a di�erent 
hoi
e,

keeping in mind, however, that it is possible, although quite 
ompli
ated, to treat this problem

within dimensional regularization. The regularization s
heme we 
hoose is the following. We

subtra
t from ea
h integrand in eqs. (3.3.14) and (3.3.15) the same expression, but with m re-

pla
ed by an arbitrary regularization parameterM . In the limitM !1 the original expression

is re
overed, while, for �nite M , the integrals are now 
onvergent. We will indi
ate with a

subs
ript M the regularized quantities.

Equations (3.3.9), that state the 
onservation of the ve
tor 
urrent, are satis�ed by T

���

as

given in eqs. (3.3.12) and (3.3.14). In fa
t, writing
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1

= (k=+ k=

1

�m)� (k=�m) (3.3.18)
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1
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1
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1

�m) (3.3.19)

in T
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2

(and similarly in the regularizing part of the integrands), we �nd

[k

�

1

T

���

℄

M

= �i

Z

d

4

k

(2�)

4

Tr

"

i

k=+ k=

1

�m




�




5

i

k=� k=

2

�m




�

i

k=�m

k=

1

+

i

k=+ k=

2

�m




�




5

i

k=� k=

1

�m

k=

1

i

k=�m




�

� (m!M)

#

=

Z

d

4

k

(2�)

4

Tr

"




�




5

i

k=� k=

2

�m




�

i

k=�m

�

i

k=+ k=

1

�m




�




5

i

k=� k=

2

�m




�

+

i

k=+ k=

2

�m




�




5

i

k=� k=

1

�m




�

�

i

k=+ k=

2

�m




�




5

i

k=�m




�

� (m!M)

#

:

(3.3.20)

Now, shifting k ! k + k

2

in the �rst term and shifting k ! k � k

1

+ k

2

in the se
ond one,

they 
an
el against the fourth and se
ond terms, respe
tively. We have therefore

[k

�

1

T

���

℄

M

= 0; (3.3.21)

and also

[k

�

2

T

���

℄

M

= 0 (3.3.22)

by an analogous argument. The limit M ! 1 
an then be taken safely, thus obtaining the

announ
ed results.

We may use a similar pro
edure to 
he
k the identity in eq. (3.3.10). Using

q=


5

= 2m


5

+ (k=+ k=

1

�m)


5

+ 


5

(k=� k=

2

�m) (3.3.23)
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and

q=


5

= 2m


5

+ (k=+ k=

2

�m)


5
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5

(k=� k=

1

�m) (3.3.24)

in q

�
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���

1

and q

�

T

���

2

respe
tively (and making similar repla
ements in the terms with m!M),

we get
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; (3.3.25)
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(3.3.26)

It is now easy to see that [R

��

℄

M

vanishes. In fa
t, by shifting the loop momentum k to k + k

2

in the se
ond term, and to k + k

1

in the fourth, they 
an
el against the third and the �rst

respe
tively. The important point here is that these shifts in the integration variable 
an be

performed only after regularizing the integrals. Therefore,

[q

�

T

���

℄

M

= [2mT

��

℄

M

: (3.3.27)

Let us now 
ompute [2mT

��

℄

M

expli
itly. Using the Feynman parametrization
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(3.3.28)

we �nd
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; (3.3.29)

where we have set k

2

1

= k

2

2

= 0. The simple expression in the numerator is obtained by dropping

all produ
ts of 


5

with two, three and �ve 
 matri
es, and exploiting the antisymmetry of �

����

.

The integration over the loop momentum k 
an be easily performed by shifting the integration

variable

k ! k � k

1

x + k

2

y (3.3.30)

with the result
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41



Noti
e that the RHS of eq. (3.3.31) is �nite when M !1. The limit 
an now be taken safely,

giving

q

�

T

���

= 2mT

��

�

1

2�

2

�

����

k

�

1

k

�

2

: (3.3.32)

The e�e
t of the regularization is that the Slavnov-Taylor identity in eq. (3.3.10) is spoiled by

an anomalous term, whi
h is usually 
alled the axial anomaly, or the Adler-Bardeen-Ja
kiw

anomaly. This term arises be
ause of the impossibility of regularizing the theory in a way that

preserves both the ve
tor and axial ve
tor 
lassi
al 
urrent divergen
e relations; one of the two

must be given up. The anomalous term is �nite; however, a regularization pro
edure is needed

in order to prove the 
an
ellation of integrals with two propagators, whi
h are divergent.

The anomalous term 
an be taken into a

ount by modifying eq. (3.3.5) at the one-loop level

in the following way:

�

�

J
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A

= 2imJ

P

+

1

(4�)

2

�

����

F

��

F

��

; (3.3.33)

where F

��

is the �eld-strength tensor of QED. In other words, the axial 
urrent is not 
onserved,

at the quantum level, even ifm = 0. Noti
e in fa
t that the anomaly is independent of the fermion

mass. Furthermore, it 
an be proved that higher-order 
orre
tions do not modify the one-loop

expression of the anomaly.

The result in eq. (3.3.33) 
an be immediately generalized to a theory with n fermion �elds

 

i

, i = 1; : : : ; n with masses m

i

, ve
tor 
harges Q

i

and axial 
harges Q

5

i
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; (3.3.34)

where now
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=
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X
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i

; J

i

P

=  

i




5

 

i

: (3.3.35)

The above 
onsiderations 
an be extended to the 
ase of a theory with non-abelian gauge

invarian
e. In this 
ase, also fermion loops with four and �ve internal lines 
ontribute to the

anomaly. It 
an be shown that the anomalous term of the axial ve
tor 
urrent in a non-abelian

theory is proportional to

Tr (fT

a

; T

b

gT




); (3.3.36)

where T

a

are the gauge group generators. In the standard model, fermions are either in the

doublet or in the singlet representation of SU(2); this means that the four quantities

Tr (f�
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; �

b

g�




) (3.3.37)

Tr (f�
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; �
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gY ) (3.3.38)

Tr (Y
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) (3.3.39)

Tr (Y

3

) (3.3.40)

must all vanish, for the axial anomaly to be 
an
elled. The �rst quantity is obviously zero:

Tr (f�

a

; �

b

g�




) = 2Æ

ab

Tr (�




) = 0: (3.3.41)
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The se
ond quantity requires more 
are. Sin
e �

a

= 0 for right-handed fermions, we have

Tr (f�

a

; �

b

gY ) = 2Æ

ab

Tr (Y

L

); (3.3.42)

where Y

L

is the hyper
harge matrix restri
ted to left-handed fermions. Sin
e Y = 1=3 for the

doublets of left-handed quarks, and Y = �1 for the doublets of left-handed leptons, we �nd

Tr (Y

L

) = n

q

� 3� 2�

1

3

+ n

l

� 2� (�1) = 2(n

q

� n

l

); (3.3.43)

where n

q

(n

l

) is the number of quark (lepton) families. The fa
tor of 3 in front of the quark term

is due to the 
olour degree of freedom, and the overall fa
tor of 2 is due to the fa
t that left-

handed fermions are SU(2) doublets. We see that the 
an
ellation of the axial anomaly requires

that the numbers of quark and lepton families are equal! This is an important predi
tion of the

standard model, whi
h has been re
ently 
on�rmed by the dis
overy of the top quark.

The third 
ondition, Tr (Y

2

�




) = 0, is again trivially satis�ed, sin
e Y has the same value

for both 
omponents of ea
h doublet, and Tr (�




) = 0 (for singlets, we have simply �




= 0).

The last 
ondition, Tr (Y

3

) = 0, is also satis�ed provided n

q

= n

l

. To show this, it is


onvenient to write the axial 
urrent as
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2

(1 + 
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(1� 


5

) : (3.3.44)

In this way, it is 
lear that left-handed fermions and right-handed fermions 
ontribute to the

axial anomaly with opposite signs. We have therefore

Tr (Y

3

) = Tr (Y

3

L

)� Tr (Y

3

R

): (3.3.45)

Using Y = 2(Q� T

3

) we �nd

Tr (Y

3

L

) = 6n

q

�

1

3

�

3

+ 2n

l

(�1)

3

(3.3.46)
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; (3.3.47)

and therefore

Tr (Y

3

) = �6(n

q

� n

l

): (3.3.48)

It is easy to prove that, be
ause of the axial anomaly, the 
urrents asso
iated with the leptoni


and baryoni
 numbers,
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(3.3.50)
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are anomalous. In order to prove this statement, let us 
onsider the 
ase of only one generation

(the extension to more than one generation is trivial), and let us rewrite the leptoni
 
urrent as

L

�

= L

�

L

+ L

�

R

; (3.3.51)

where

L

�

L

= (��

L

; �e

L

)


�

 

�

L

e

L

!

(3.3.52)
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: (3.3.53)

We now 
onsider triangle diagrams with L

�

L

or L

�

R

on one vertex, and weak ve
tor bosons on the

the two remaining verti
es. Clearly, only left-handed (right-handed) fermions 
ir
ulate in the

loop with L

�

L

(L

�

R

). This is easily seen by working out the Dira
 stru
ture of the loop integrand:
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Thus,
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: (3.3.55)

The minus sign arises be
ause 


5

appears in L

�

L

with a minus sign. Using Y

L

= �1 and the

anti
ommutation relations among the Pauli matri
es, we �nd
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By a similar argument, we get

�

�

L

�

R

=

1

(4�)

2

�

����

g

0

2

B

��

B

��

Tr

�

Y

R

2

;

Y

R

2

�

=

2

(4�)

2

�

����

g

0

2

B

��

B

��

; (3.3.57)

sin
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R

= �2, and therefore
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This results in a (numeri
ally negligible) non-
onservation of leptoni
 and baryoni
 numbers L

and B, due to instanton e�e
ts. The di�eren
e B � L is however 
onserved. Indeed, we may

write for the baryoni
 
urrent

B

�

= B

�
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+B
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; (3.3.59)
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and 
ompute �

�

B

�

as in the 
ase of the leptoni
 
urrent. We �nd
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The global fa
tor of 1=3 is 
an
elled by a fa
tor of 3 from 
olor. Using the known values of quark

hyper
harges
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we get
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(3.3.64)

whi
h is exa
tly equal to �

�

L

�

. This shows that the 
urrent B

�

� L

�

is 
onserved.

3.4 A

idental symmetries

The need for a Yukawa intera
tion term of fermion �elds with s
alar �elds 
an be motivated in

a di�erent way. Consider the standard model with only one generation of quarks and leptons,

and no s
alar �elds. The lagrangian for fermion �elds 
an be written in the following 
ompa
t

form:

L =

5

X

k=1

�

 

k

D= 

k

; (3.4.1)

where the sum runs over the �ve di�erent irredu
ible representations of SU(2)

L


 U(1)

Y

of the

fermions in a generation:
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R
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2

= L � (2;�1)

 

3

= u

R

� (1; 4=3)

 

4

= d

R

� (1;�2=3)

 

5

= Q � (2; 1=3):

Here, the symbol � means \transforms as", and the two numbers in bra
kets stand for the SU(2)

representation (2 for the doublet, 1 for the s
alar) and for the hyper
harge quantum number,

respe
tively. Mass terms are forbidden by the gauge symmetry.

In addition to the assumed gauge symmetry, the lagrangian in eq. (3.4.1) is manifestly in-

variant under a large 
lass of global transformations: namely, the fermion �elds within ea
h

representation 
an be multiplied by an arbitrary 
onstant phase

 

k

! e

i�

k

 

k

(3.4.2)
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without a�e
ting L. This [U(1)℄

5

global symmetry was not imposed at the beginning: it is just

a 
onsequen
e of the assumed gauge symmetry and of the renormalizability 
ondition. It is

therefore 
alled an a

idental symmetry.

Let us take a 
loser look to the a

idental symmetry. The �ve 
onserved 
urrents 
orrespond-

ing to the global transformations (3.4.2) are

J

�

1

= �e

R




�

e

R

J

�

2

= ��

L




�

�

L

+ �e

L




�

e

L

J

�

3

= �u

R




�

u

R

J

�

4

=

�

d

R




�

d

R

J

�

5

= �u

L




�

u

L

+

�

d

L




�

d

L

Equivalently, one 
ould de�ne the a

idental symmetry transformations in su
h a way that the


orresponding 
urrents are �ve independent linear 
ombinations of J

�

1

; : : : ; J

�

5

. Consider for

example the 
hoi
e

J

�

Y

=

5

X

k=1

Y

k

2

J

�

k

J

�

`

= J

�

1

+ J

�

2

� ��


�

� + �e


�

e

J

�

`5

= J

�

1

� J

�

2

� ��


�




5

� + �e


�




5

e

J

�

b

=

1

3

(J

�

3

+ J

�

4

+ J

�

5

) �

1

3

(�u


�

u+

�

d


�

d)

J

�

b5

= J

�

3

+ J

�

4

� J

�

5

� �u


�




5

u+

�

d


�




5

d:

The 
urrent J

Y

is the hyper
harge 
urrent, whi
h 
orresponds to a lo
al invarian
e of the theory.

The true a

idental symmetry is therefore [U(1)℄

4

, rather than [U(1)℄

5

.

The 
urrents J

`

and J

b

are immediately re
ognized to be the leptoni
 and baryoni
 number


urrents, respe
tively. The invarian
e of the lagrangian under the 
orresponding global symme-

tries is 
ertainly good news, sin
e baryoni
 and leptoni
 number are known to be 
onserved to

an extremely high a

ura
y.

On the other hand, experiments show no sign of the 
onservation of J

`5

and J

b5

; in a realisti


theory, the 
orresponding symmetries should be broken. In fa
t, they are in
ompatible with

mass terms, and they are broken by the Yukawa intera
tion terms that generate fermion masses

via the Higgs me
hanism.

When the theory is extended to in
lude more fermion generations, the a

idental symmetry

gets mu
h larger, sin
e also mixing among di�erent generation is allowed. The Yukawa intera
-

tion terms of the previous subse
tion break this larger a

idental symmetry too, leaving however

baryoni
 and leptoni
 numbers 
onserved. Individual leptoni
 numbers are separately 
onserved,

while only the total baryoni
 number is 
onserved, be
ause of 
avour mixing.

To 
on
lude this subse
tion, let us brie
y review the most important experimental eviden
es

of baryon and lepton number 
onservation. The most obvious test of baryon number 
onservation

is proton stability. The experimental lower bound on the proton lifetime is at present

�

p

> 1:6 � 10

25

y : (3.4.3)
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The most a

urate tests of lepton number 
onservation are provided by the following observables:

B(�! e
) � 1:2 � 10

�11

(3.4.4)

B(�! 3e) � 1 � 10

�12

(3.4.5)

�(�T i! e T i)

�(�T i! all)

� 4 � 10

�12

(3.4.6)

B(� ! �
) � 2:7 � 10

�6

: (3.4.7)
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Chapter 4

Appendi
es

4.1 Renormalizability and power 
ounting

In this appendix, we des
ribe the power-
ounting 
riterion for renormalizability of lo
al �eld

theories. Consider a Feynman diagram 
ontaining

{ L loops;

{ V verti
es;

{ I

f

internal fermioni
 lines;

{ E

f

external fermioni
 lines;

{ I

b

internal bosoni
 lines;

{ E

b

external bosoni
 lines.

Let us assume that there are di�erent types of verti
es, ea
h type being labelled by the index

i, and that

V =

X

i

V

i

; (4.1.1)

where V

i

is the number of verti
es of type i. Finally, let n

i

f

, n

i

b

, d

i

be the number of fermioni


lines, bosoni
 lines and �eld derivatives in type-i verti
es, respe
tively. The following relations

hold:

2I

f

+ E

f

=

X

i

n

i

f

V

i

(4.1.2)

2I

b

+ E

b

=

X

i

n

i

b

V

i

: (4.1.3)

The number L of loops is equal to the number of independent internal momenta, whi
h in turn

is equal to the total number of internal lines I = I

f

+ I

b

minus the number of independent

momentum 
onservation equations. Therefore, we have

L = I

f

+ I

b

� (V � 1): (4.1.4)

We now de�ne the degree of super�
ial divergen
e D of the diagram as the power of momenta

in the numerator minus the power of momenta in the denominator of the Feynman diagram.
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Clearly,

D = dL� I

f

� 2I

b

+

X

i

d

i

V

i

; (4.1.5)

sin
e fermion propagators behave as k

�1

, boson propagator behave as k

�2

, ea
h �eld derivative


orresponds to one power of momentum, and d powers of momentum are 
arried by ea
h loop

integration in d-dimensional spa
e-time. Now, repla
ing eqs. (4.1.1) and (4.1.4) in eq. (4.1.5)

and eliminating I

f

and I

b

via eqs. (4.1.2) and (4.1.3), we �nd

D = d�

d� 1

2

E

f

�

d� 2

2

E

b

+

X

i

V

i

 

d

i

+

d� 1

2

n

i

f

+

d� 2

2

n

i

b

� d

!

: (4.1.6)

If D � 0, the Feynman amplitude will be ultraviolet divergent. On the other hand, D < 0

is not a suÆ
ient 
ondition for 
onvergen
e, sin
e there 
an still be subdiagrams with D � 0.

However, we noti
e that D de
reases with in
reasing number of external lines. Therefore, if the

last term in the r.h.s. of eq. (4.1.6) is zero or negative, then only a �nite number of diagrams

have D � 0, and the whole theory 
an be made �nite by renormalizing only these primitively

divergent amplitudes, at any order in perturbation theory. The 
ondition for renormalizability

then be
omes

d

i

+

d� 1

2

n

i

f

+

d� 2

2

n

i

b

� d (4.1.7)

and it must hold for ea
h i separately (a diagram 
an 
ontain only verti
es of one type). Noti
e

that the l.h.s. of eq. (4.1.7) is just the mass dimension of the operator that 
orresponds to

type i verti
es: in fa
t, fermion �elds have dimension 3=2, boson �elds have dimension 1 and

derivatives have dimension 1. For this reason, the 
ondition in eq. (4.1.7) 
an be rephrased in

terms of 
oupling 
onstant dimensionality: a renormalizable theory 
an 
ontain only 
onstants

with mass dimension � 0.

50



4.2 Non-unitarity of the Fermi theory

In this Appendix we will work out the restri
tions imposed on s
attering amplitudes by the

unitarity 
ondition of the s
attering matrix, and we will show that the Fermi theory violates

this unitarity bound at suÆ
iently high energy. Writing the s
attering matrix as

S = I + iT; (4.2.1)

the unitarity 
ondition S

y

S = I gives

T

y

T = �i(T � T

y

): (4.2.2)

For generi
 states a; b we have

hajT

y

T jbi = �i

�

hajT jbi � hajT

y

jbi

�

: (4.2.3)

Now de�ne the invariant amplitudeM

af

for the pro
ess a! f by

hf jT jai =M

af

(2�)

4

Æ

(4)

(P

a

� P

f

); (4.2.4)

and insert the identity operator between T

y

and T in the l.h.s. of eq. (4.2.3):

I =

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

jfihf j (4.2.5)

where P

f

i

is the momentum of parti
le i in the state f . We get

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

) (2�)

4

Æ

(4)

(P

b

�

X

i

P

f

i

)M

bf

M

�

af

= �i (M

ba

�M

�

ab

) (2�)

4

Æ

(4)

(P

a

� P

b

); (4.2.6)

or

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

)M

bf

M

�

af

= �i (M

ba

�M

�

ab

) : (4.2.7)

For a = b, eq. (4.2.7) gives

X

f

Y

i

Z

d

3

P

f

i

(2�)

3

2E

f

i

(2�)

4

Æ

(4)

(P

a

�

X

i

P

f

i

) jM

af

j

2

= 2 ImM

aa

; (4.2.8)

whi
h is the so-
alled opti
al theorem: the total 
ross se
tion for the pro
ess a ! f is propor-

tional to the imaginary part of the forward invariant amplitudeM

aa

.

Let us now assume that jai is a state of two parti
les of the same spe
ies, with momenta

p

1

; p

2

; furthermore, let us assume that only elasti
 s
attering is allowed. Under these 
onditions,

the states jfi are also two-parti
le states of the same spe
ies as those in jai, and the amplitudes
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M

af

depend on the initial and �nal states through the two independent Mandelstam variables

s; t:

M

af

�M(s; t); (4.2.9)

where

s = (p

1

+ p

2

)

2

; t = (p

1

� P

1

)

2

: (4.2.10)

In the 
enter-of-mass frame,

t = �

s

2

(1� 
os �) ! 
os � = 1 +

2t

s

; (4.2.11)

where � is the s
attering angle. Thus, for a given value of the 
enter-of mass squared energy

s, the amplitude M(s; t) is a fun
tion of 
os � only, and 
an be expanded on the basis of the

Legendre polynomials

P

J

(z) =

1

J !2

J

d

J

dz

J

(z

2

� 1)

J

: (4.2.12)

The Legendre polynomials obey the orthogonality 
onditions

Z

1

�1

dz P

J

(z)P

K

(z) =

2

2J + 1

Æ

JK

(4.2.13)

and the normalization 
onditions

P

J

(1) = 1: (4.2.14)

We �nd

M(s; t) = 16�

X

J

(2J + 1) a

J

(s)P

J

(
os �); (4.2.15)

where the partial-wave amplitudes a

J

are given by

a

J

(s) =

1

32�

Z

1

�1

d 
os � P

J

(
os �)M(s; t): (4.2.16)

Repla
ing eq. (4.2.15) in the l.h.s. of eq. (4.2.8) we get

Z

d

3

P

1

(2�)

3

2E

1

d

3

P

2

(2�)

3

2E

2

(2�)

4

Æ

(4)

(p

1

+ p

2

� P

1

� P

2

) jM(s; t)j

2

=

1

16�

Z

1

�1

d 
os �

"

16�

X

J

(2J + 1) a

J

(s)P

J

(
os �)

# "

16�

X

K

(2K + 1) a

�

K

(s)P

K

(
os �)

#

= 32�

X

J

(2J + 1) ja

J

(s)j

2

; (4.2.17)

while the r.h.s. is given by

2 ImM(s; 0) = 32�

X

J

(2J + 1) Ima

J

(s); (4.2.18)
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where we have set t = 0, or equivalently 
os � = 1, as appropriate for a forward amplitude, and

we have used the normalization 
ondition (4.2.14). Therefore, unitarity of the s
attering matrix

requires

ja

J

(s)j

2

= Im a

J

(s) (4.2.19)

for all partial amplitudes. Equation (4.2.19) provides the unitarity bound

ja

J

(s)j � 1: (4.2.20)

Let us now 
onsider a spe
i�
 pro
ess, namely the s
attering

e

�

(p

1

) + �

�

(p

2

)! �

�

(P

1

) + �

e

(P

2

) (4.2.21)

within the Fermi theory. The relevant amplitude is

M(s; t) = �

G

F

p

2

�u(P

2

) 


�

(1� 


5

) u(p

1

) �u(P

1

) 


�

(1� 


5

) u(p

2

); (4.2.22)

whi
h gives

jM(s; t)j

2

=

G

2

F

2

Tr

h




�

(1� 


5

) p=

1




�

(1� 


5

) k=

2

i

Tr [


�

(1� 


5

) p=

2




�

(1� 


5

) k=

1

℄

= 32G

2

F

s

2

; (4.2.23)

where a sum over polarizations is understood. We see that only the partial amplitude a

0

(s) is

nonzero, sin
e there is no t dependen
e at all. Using the de�nition eq. (4.2.16) we obtain

ja

0

(s)j =

G

F

s

2

p

2�

: (4.2.24)

The unitarity bound eq. (4.2.20) is therefore violated at

p

s =

v

u

u

t

2

p

2�

G

F

' 875GeV: (4.2.25)

From eq. (4.2.23) we obtain the total 
ross se
tion

� =

G

2

F

s

2�

: (4.2.26)

Let us now repeat the same 
al
ulation in the 
ontext of a theory with an intera
ting ve
tor

boson W with mass m

W

and 
oupling g=(2

p

2) to left-handed fermions (the 
oupling g is dimen-

sionless; the numeri
al fa
tor is 
onventional). The squared amplitude in this theory is obtained

from the result in eq. (4.2.23) by performing the repla
ement

�

G

F

p

2

!

g

2

8

1

t�m

2

W

: (4.2.27)
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We get

jM(s; t)j

2

= 32

 

g

2

p

2

8

1

t�m

2

W

!

2

s

2

=

g

4

s

2

(t�m

2

W

)

2

: (4.2.28)

The total 
ross se
tion is now given by

� =

g

4

64�m

2

W

s

s+m

2

W

: (4.2.29)

For s � m

2

W

, this expression redu
es to the result obtained in the Fermi theory, eq. (4.2.26),

with the identi�
ation

G

F

p

2

=

g

2

8m

2

W

: (4.2.30)

In this 
ase, however, the linear growth of the 
ross se
tion with s is 
ut o� at s � m

2

W

. At very

large energy we have

� !

g

4

64�m

2

W

=

G

2

F

m

2

W

2�

: (4.2.31)

The value of m

W

is related to the size of the 
oupling g through eq. (4.2.30). If m

W

were 
lose to

the energy at whi
h the Fermi theory breaks down, about 900 GeV, then g would take a value


lose to 10, far from the perturbative domain. The fa
t that the measured value m

W

is instead

mu
h smaller, m

W

' 80 GeV, is a signal of the fa
t that a theory of weak intera
tions with an

intermediate ve
tor boson 
an be treated perturbatively: indeed, in this 
ase we get g � 0:7.
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4.3 Gauge theories

The abelian 
ase

The Dira
 free lagrangian for a massive fermion

L =  (i

^

� �m) (4.3.1)

is invariant under the global (or �rst kind) U(1) gauge transformation

 !  

0

= e

ie�

 

 !  

0

= e

�ie�

 ; (4.3.2)

where � is a real 
onstant. The 
onstant e plays the role of the 
onserved 
harge asso
iated

with this invarian
e property. We want to promote this global symmetry to a lo
al one, that is,

we want to modify L in order to make it invariant under the �eld transformation (4.3.2) with

� = �(x). The derivative term is not invariant:

 �

�

 ! e

�ie�

 �

�

(e

ie�

 ) =  �

�

 + ie (�

�

�) : (4.3.3)

The ordinary derivative must be repla
ed by a 
ovariant derivative,

D

�

= �

�

� ieA

�

; (4.3.4)

where A

�

is a real ve
tor �eld. The transformation property of A

�

must be �xed in su
h a way

that

D

�

 ! e

ie�

D

�

 : (4.3.5)

This gives

(�

�

� ieA

0

�

) 

0

= e

ie�

(�

�

� ieA

�

) 

(�

�

� ieA

0

�

)e

ie�

 = e

ie�

(�

�

� ieA

�

) 

�

�

 + ie(�

�

�) � ieA

0

�

 = �

�

 � ieA

�

 

(�

�

�) � A

0

�

 = �A

�

 (4.3.6)

whi
h implies

A

�

! A

0

�

= A

�

+ �

�

�: (4.3.7)

The lagrangian

L =  (i

^

D �m) (4.3.8)

is invariant under the lo
al (or se
ond kind) gauge transformation

 !  

0

= e

ie�(x)

 

 !  

0

= e

�ie�(x)

 ;

A

�

! A

0

�

= A

�

+ �

�

�(x): (4.3.9)
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Noti
e that the requirement of lo
al gauge invarian
e generates the intera
tion term e 


�

 A

�

.

A kineti
 term, involving derivatives of the ve
tor �eld A

�

, must now be introdu
ed. It

is uniquely �xed by the requirements of Lorentz and gauge invarian
e, and by assuming the

standard normalization of the propagator for A

�

. It is given by

L

YM

= �

1

4

F

��

F

��

; (4.3.10)

where

F

��

= �

�

A

�

� �

�

A

�

: (4.3.11)

Noti
e that

(D

�

D

�

�D

�

D

�

) = �ieF

��

 ; (4.3.12)

and that F

��

is invariant under a gauge transformation. Noti
e also that gauge invarian
e forbids

the presen
e of a mass term for the gauge �eld A

�

. Finally, we observe that no self-intera
tion

term for the ve
tor �eld A

�

is present in the lagrangian. This is 
onne
ted with the abelian

nature of the invarian
e group.

The non-abelian 
ase

Let us 
onsider now the 
ase when the invarian
e group of the theory is non-abelian. For

de�niteness, we 
onsider the group SU(N) of N � N unitary matri
es with unit determinant.

This group has N

2

� 1 hermitian tra
eless generators t

A

, that obey the 
ommutation relations

[t

A

; t

B

℄ = if

ABC

t

C

; A; B; C = 1; :::; N

2

� 1; (4.3.13)

where f

ABC

is 
ompletely antisymmetri
. A generi
 element U of SU(N) 
an be expressed in

terms of the generators t

A

and of a set of real fun
tions �

A

(x) by

U � U(�) = exp(ig�

A

t

A

); U

�1

= U

y

; (4.3.14)

where we have inserted a 
oupling 
onstant g in analogy with the abelian 
ase. The 
ovariant

derivative is now given by

D

�

= �

�

I � igA

�

; (4.3.15)

where I is the unity matrix in the representation spa
e, and the ve
tor �eld A

�

is now a hermitian

matrix

A

�

= A

�

A

t

A

: (4.3.16)

It is easy to show, in analogy with the abelian 
ase, that the transformation law

A

�

! A

0

�

= UA

�

U

�1

+

i

g

U(�

�

U

�1

) (4.3.17)

ensures that

D

�

! UD

�

U

�1

: (4.3.18)
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Consider now an in�nitesimal gauge transformation

U(�) = I + ig�

A

t

A

+O(�

2

): (4.3.19)

To �rst order in �, eq. (4.3.17) be
omes

A

0

�

= A

�

+ ig[�

A

t

A

; A

�

℄�

i

g

ig�

�

�

A

t

A

= A

�

C

t

C

� g�

A

A

�

B

f

ABC

t

C

+ �

�

�

C

t

C

; (4.3.20)

or

A

0

�

C

= A

�

C

� g�

A

A

�

B

f

ABC

+ �

�

�

C

: (4.3.21)

A kineti
 term for the gauge �elds 
an be built in analogy with the abelian 
ase. We have

Re
alling eq. (4.3.12), we de�ne a �eld tensor F

��

through

(D

�

D

�

�D

�

D

�

) = �igF

��

 ; (4.3.22)

where  is a multiplet of some SU(N) representation, and F

��

= F

��

A

t

A

. We �nd

F

��

= �

�

A

�

� �

�

A

�

� ig[A

�

; A

�

℄;

F

��

A

= �

�

A

�

A

� �

�

A

�

A

+ gf

ABC

A

�

B

A

�

C

: (4.3.23)

The kineti
 term is then given by

�

1

4

F

��

A

F

A

��

: (4.3.24)

In the non-abelian 
ase, self-intera
tion terms among the gauge �elds are present. This is related

to the fa
t that, 
ontrary to the abelian 
ase, the �eld strength F

��

transforms non-trivially under

a gauge transformation:

F

��

! F

0

��

= UF

��

U

�1

: (4.3.25)

For an in�nitesimal gauge transformation, we �nd

F

0

��

A

= F

��

A

� gf

ABC

�

B

F

��

C

; (4.3.26)

whi
h means that the 
omponents F

��

A

form a multiplet in the adjoint representation of the

gauge group.
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4.4 The standard model lagrangian in renormalizable gauges

Let us 
onsider the following part of the standard model lagrangian:

L

D

� V (�) + L

GF

; (4.4.1)

where

L

D

= (D

�

�)

y

D

�

� (4.4.2)

V (�) = m

2

j�j

2

+ � j�j

4

(4.4.3)

L

GF

= �

1

2�

h

�

�

W

i

�

� �f

i

(�)

i

2

�

1

2�

[�

�

B

�

� �f(�)℄

2

: (4.4.4)

For the moment, we do not spe
ify the value of the hyper
harge quantum number Y of the Higgs

doublet �. We de�ne

� = �

1

+ �

2

; (4.4.5)

where

�

1

=

1

p

2

 

v

1

v

2

!

�

2

=

 

G

+

(H + iG)=

p

2

!

(4.4.6)

and v

1

; v

2

are arbitrary 
omplex numbers, only restri
ted by the minimization 
ondition

jv

1

j

2

+ jv

2

j

2

� v

2

= �

m

2

�

: (4.4.7)

We have

L

D

=

�

�

�

�

y

+

i

2

�

y

�

gW

�

i

�

i

+ g

0

Y B

�

�

� �

�

�

��

i

2

�

gW

j

�

�

j

+ g

0

Y B

�

�

�

�

� L

��

+ L

��V V

+ L

��V

: (4.4.8)

The �rst term is simply the kineti
 term for �,

L

��

= (�

�

�)

y

�

�

� = �

�

G

+

�

�

G

�

+

1

2

�

�

H�

�

H +

1

2

�

�

G�

�

G: (4.4.9)

Next, we 
onsider the ��V V term:

L

��V V

=

1

4

(g

2

W

�

i

W

i

�

+ g

0

2

Y

2

B

�

B

�

)�

y

�+

1

2

gg

0

Y B

�

W

i

�

�

y

�

i

�

=

1

4

(W

�

i

B

�

)

"

g

2

�

y

�Æ

ij

gg

0

Y �

y

�

i

�

gg

0

Y �

y

�

j

� g

0

2

Y

2

�

y

�

# 

W

j�

B

�

!

: (4.4.10)

Equation (4.4.10) 
ontains a mass term for the ve
tor �elds, that 
an be isolated by repla
ing �

with �

1

:

L

mass

= (W

�

i

B

�

)M

2

 

W

j�

B

�

!

; (4.4.11)
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where

M

2

=

1

4

"

g

2

�

y

1

�

1

Æ

ij

gg

0

Y �

y

1

�

i

�

1

gg

0

Y �

y

1

�

j

�

1

g

0

2

Y

2

�

y

1

�

1

#

: (4.4.12)

Observe that the square mass matrix in eq. (4.4.11) has zero determinant:

detM

2

=

1

16

g

2

g

0

2

Y

2

j�

1

j

4

�

�

y

1

�

j

�

1

�

y

1

�

j

�

1

� j�

1

j

4

�

(4.4.13)

whi
h is seen to vanish by means of the identity

�

j

ab

�

j


d

= 2

�

Æ

ad

Æ

b


�

1

2

Æ

ab

Æ


d

�

: (4.4.14)

In other words, with only one s
alar doublet of any hyper
harge, one of the four physi
al ve
tor

boson has always zero mass. This is be
ause it is always possible to �nd a U(1) subgroup of the

gauge group whi
h leaves the va
uum expe
tation value �

1

invariant.

Let us now diagonalizeM

2

. This is easily done by 
hoosing v

1

= 0; v

2

= v, whi
h is allowed

be
ause all the degenerate va
uum 
on�gurarions are 
onne
ted by gauge transformations. We

�nd

L

mass

=

1

4

g

2

v

2

W

+�

W

�

�

+

1

8

v

2

(W

�

3

B

�

)

"

g

2

�gg

0

Y

�gg

0

Y g

0

2

Y

2

#  

W

3

�

B

�

!

: (4.4.15)

The �rst term is already in diagonal form, and tells us that the 
harged ve
tor bosons

W

�

�

=

1

p

2

(W

1

�

� iW

2

�

) (4.4.16)

are mass eigenstates, with masses

m

2

W

=

1

4

g

2

v

2

: (4.4.17)

The se
ond term in eq. (4.4.15) is diagonalized by the rotation

 

W

�

3

B

�

!

=

"


os � sin �

� sin � 
os �

# 

Z

�

A

�

!

; tan � =

g

0

Y

g

; (4.4.18)

where the 
ombination A

�


orresponds to the zero-mass ve
tor boson. We see immediately that,

for Y = 1, A

�

is pre
isely equal to the photon �eld 
oupled to the ele
tromagneti
 
urrent, and

� � �

W

. The eigenvalue 
orresponding to Z

�

is

m

2

Z

=

1

4

(g

2

+ g

0

2

)v

2

: (4.4.19)

In terms of W

�

�

, A

�

and Z

�

eq. (4.4.10) be
omes
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��V V

= W

+

�

W

�

�

�

m

W
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1
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gH
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2

+

1

2

Z

�

Z

�

�

m
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1

2
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W

H

�

2
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+

1

2

g

2
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+

�

W

�

�
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+
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�
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+
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:

(4.4.20)

The third term in L

D

must be 
onsidered in 
onjun
tion with the gauge-�xing term. We

have
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(4.4.21)

Exploiting the fa
t that �

�

�

1

= 0, we 
an integrate by parts the �rst row. Adding L

GF

, we �nd
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With the 
hoi
es

f

i

(�) = �

i

2

g(�

y
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f(�) = �
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2
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� �
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2

) (4.4.24)

the mixing between ve
tor bosons and s
alars disappears, and we remain with
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(4.4.25)
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We see that the would-be Goldstone bosons G

�

and G have a
quired squared masses equal to

�m

2

W

and �m

2

Z

, respe
tively, as is ne
essary in order to 
an
el the unphysi
al singularities in the

ve
tor boson propagators. These masses vanish in the Landau gauge, � = 0.

The last term to be 
onsidered is the s
alar potential V (�). After some algebra, we �nd

V (�) =

1

2

m

2

H

"

H +

H

2

+ 2G

+

G

�

+G

2

2v

#

2

; (4.4.26)

where

m

2

H

= 2�v

2

: (4.4.27)

We 
onsider now the intera
tion between fermions and s
alars. From eqs. (2.2.43-2.2.46) and

the de�nition in eq. (2.2.52), we get

L
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; (4.4.28)

and

L

lept

Y

= �

1

p

2

(v +H)eh

L

e�G

+

�h

L

e

R

�G

�

e

R

h

L

�; (4.4.29)

where sums over generation indi
es are understood.
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4.5 Dimensional regularization

A 
onvenient way of regularizing divergent integrals, like those appearing when 
omputing loop

diagrams in perturbation theory, is that of modifying the dimension of the integration spa
e

(spa
e-time in our 
ase): the integral of 1=(k

2

�m

2

)

2

is logarithmi
ally divergent at large mo-

menta in four-dimensional spa
e-time, while it would be 
onvergent if spa
e-time dimensions are

lowered to 3, for example. More generally, one 
omputes the integral in a d-dimensional spa
e-

time, with d 
hosen in su
h a way that the integral 
onverges, and then 
ontinues anality
ally the

result in the 
omplex d plane. Divergen
es will therefore appear as poles in d� 4. Dimensional

regularization is parti
ularly useful be
ause it preserves Lorentz invarian
e and gauge invarian
e

of the theory.

In the following, I will show how to 
ompute ultraviolet-divergent loop integrals in dimen-

sional regularization. After Feynman redu
tion of the denominators and appropriate shifts in

the loop variable, loop integrals 
an be redu
ed to the form

Z

d

d

q

(2�)

d

q

�

1

: : : q

�

k

(q

2

�m

2

+ i�)

n

; (4.5.1)

where k is an even integer and m

2

is a fun
tion of external momenta, masses, and Feynman

parameters. For k = 0; 2; 4 we �nd
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Z

d

d

q

(2�)

d

q

�

q

�

q

�

q

�

(q

2

�m

2

+ i�)

n

= (�1)

n

i(4�)

�

4(4�)

2

�(n� 4 + �)

�(n)

(m

2

)

�(n�4+�)

�(g

��

g

��

+ g

��

g

��

+ g

��

g

��

); (4.5.4)

where we have set, as usual,

d = 4� 2�: (4.5.5)

The Euler � fun
tion is de�ned by

�(z) =

Z

+1

0

dt e

�t

t

z�1

: (4.5.6)

The properties

�(z + 1) = z�(z); �(1) = 1; �(1=2) =

p

� (4.5.7)

follow from the de�nition. Furthermore, it 
an be shown that �(z) is analyti
 in the whole


ompex plane z, ex
ept when z is 0 or a negative integer, where it has simple poles. One �nds

�(�n + �) =

(�1)

n

n!

�

1

�

+  (n+ 1) +O(�)

�

; (4.5.8)

62



where

 (s) =

d

ds

log �(s) (4.5.9)

and

 (n+ 1) = 1 +

1

2

+ : : :+

1

n

� 
;

 (1) = �
 = �0:5772 : : : (4.5.10)

We now 
ompute expli
itly the integral in eq. (4.5.2). Equations (4.5.3,4.5.4) (and similar

formulae with higher powers of q in the numerator) 
an be obtained by shifting q ! q + k and

taking derivatives with respe
t to k at k = 0. By virtue of the analiti
ity properties of the

integrand in the 
omplex q

0

plane, the q

0

integral along the 
losed path C shown in �g. 4.1 is

Figure 4.1: Integration in the 
omplex q

0

plane. Crosses indi
ate the singularities of

the Feynman integrands at q

0

= �(E � i�), with E =

p

~q

2

+m

2

.

equal to zero. We have therefore
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= 0: (4.5.11)

With the variable 
hange q

0

= iq

4

in the se
ond term of eq. (4.5.11), we �nd
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Noti
e that the +i� pres
ription is now immaterial, sin
e the integration is performed along the

imaginary axis. We have therefore

Z

d

d

q

(2�)

d

1

(q

2
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2

+ i�)

n

= i(�1)

n

Z

d

d

q

(2�)

d

1

(q

2

+m

2

)

n

; (4.5.13)

where q in the r.h.s. is a ve
tor in a 4-dimensional Eu
lidean spa
e. We �rst observe that the

integrand does not depend on angular variables, whi
h 
an therefore be integrated dire
tly. The

integral over the d-dimensional solid angle 
an be obtained in the following way. We have

Z

d

d

q e

�q

2

=

Z

d


d

Z

+1

0

dq q

d�1

e

�q

2

=

1

2

Z

+1

0

dq

2

(q

2

)

d=2�1

e

�q

2

=

1

2

�(d=2); (4.5.14)

where we have used polar 
oordinates and the de�nition of �(z). On the other hand, the usual

gaussian integration formula gives

Z

d

d

q e

�q

2

= �

d=2

: (4.5.15)

Thus,

Z

d


d

=

2�

d=2

�(d=2)

: (4.5.16)

For d = 2; 3 the familiar results

R

d


2

= 2�;

R

d


3

= 4� are re
overed. Using this result, we have

Z

d

d

q

(2�)

d

1

(q

2

+m

2

)

n

=

1

(2�)

d

2�

d=2

�(d=2)

1

2

Z

+1

0

dq

2

(q

2

)

d�2

2

(q

2

+m

2

)

n

: (4.5.17)

The integral 
an be performed with the 
hange of integration variable

x =

m

2

q

2

+m

2

; (4.5.18)

whi
h gives

Z

d

d

q

(2�)

d

1

(q

2

+m

2

)

n

=

1

(4�)

d=2

(m

2

)

�n+d=2

�(d=2)

Z

1

0

dx x

n�d=2�1

(1� x)

d=2�1

=

1

(4�)

d=2

�(n� d=2)

�(n)

(m

2

)

�n+d=2

; (4.5.19)

where we have used

Z

1

0

dx x

a�1

(1� x)

b�1

=

�(a)�(b)

�(a + b)

: (4.5.20)

By repla
ing d = 4� 2�, we �nally obtain

Z

d

d

q

(2�)

d

1

(q

2

�m

2

+ i�)

n

= i(�1)

n

(4�)

�

(4�)

2

�(n� 2 + �)

�(n)

(m

2

)

�(n�2+�)

; (4.5.21)

whi
h is the announ
ed result. Noti
e in parti
ular that the integral vanishes when m

2

= 0.

This happens, for example, when one 
omputes on-shell amplitudes in a massless theory.
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The use of dimensional regularization poses some spe
ial problems in 
al
ulations where the




5

matrix is involved. In fa
t, 


5

(or equivalently the antisymmetri
 tensor �

����

) is a quantity

whose de�nition is stri
tly 
onne
ted to the fa
t that spa
e-time is four-dimensional, and a

de�nition in d dimensions requires spe
ial 
are. It is tempting to de�ne 


5

simply by requiring

that its four-dimensional properties




2

5

= I; f


5

; 


�

g = 0 (4.5.22)

hold in d dimensions as well. It is easy to prove that this assumption, together with the 
ir
ular

property of the tra
e operator, leads to in
onsistent results. To see this important fa
t expli
itly,


onsider the tra
e of 


5

times an even number of 
 matri
es:

T = Tr 


5




�

1

: : : 


�

2n

: (4.5.23)

We 
an use the anti
ommutation rules f


�

; 


�

g = 2g

��

to bring, for example, 


�

1

at the right of

the produ
t; this requires 2n� 1 steps, and at ea
h step a tra
e with 2n� 2 
 matri
es appears.

We denote by C

2n�1

the sum of su
h terms. At the end of the pro
edure, using the 
ir
ularity

property of the tra
e and eq. (4.5.22), the tra
e 
an brought to its original form, and we get

T = T + C

2n�1

(4.5.24)

or

C

2n�1

= 0: (4.5.25)

For n = 1 eq. (4.5.25) gives

g

�

1

�

2

Tr 


5

= 0 (4.5.26)

and, for n=2,

g

�

1

�

2

Tr 


5




�

3




�

4

� g

�

1

�

3

Tr 


5




�

2




�

4

+ g

�

1

�

4

Tr 


5




�

2




�

3

= 0: (4.5.27)

Using eq. (4.5.26), eq. (4.5.27) implies

(d� 2)Tr 


5




�

1




�

2

= 0: (4.5.28)

Repeating the same pro
edure for n = 3 one gets

(d� 2)(d� 4)Tr 


5




�

1




�

2




�

3




�

4

= 0: (4.5.29)

For d = 4, eq. (4.5.29) is satis�ed for any value of Tr 


5




�

1




�

2




�

3




�

4

, whi
h in fa
t is non-zero

(and proportional to the axial 
urrent anomalous term, by the way); however, if we require

eq. (4.5.29) to hold for any value of d, then we are for
ed to 
on
lude that

Tr 


5




�

1




�

2




�

3




�

4

= 0 (4.5.30)

whi
h is manifestly an in
onsistent result, sin
e it does not give the 
orre
t answer when d tends

to 4. In parti
ular, one would 
on
lude that there is no axial 
urrent anomaly! We 
on
lude

that the de�nition of 


5


annot be based on eq. (4.5.22).
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The 
orre
t way to de�ne 


5

in dimensional regularization is the following. We de
ompose

all 
 matri
es into a four-dimensional and an extra-dimensional 
omponent:




�

= �


�

+ 
̂

�

; (4.5.31)

where �


�

is non-zero only when � takes the ordinary values 0,1,2,3 and 
̂

�

vanishes in the

ordinary dimensions. Correspondingly, the matrix tensor g

��

has a four-dimensional and an

extra-dimensional part,

g

��

= �g

��

+ ĝ

��

; (4.5.32)

mixed 
omponents obviously vanish. The anti
ommutation relations be
ome

f�


�

; �


�

g = 2�g

��

; f
̂

�

; 
̂

�

g = 2ĝ

��

; f�


�

; 
̂

�

g = 0: (4.5.33)

Then, we simply de�ne 


5

as in four dimensions, that is




5

= i�


0

�


2

�


2

�


3

: (4.5.34)

It is easy to 
he
k that the de�nition (4.5.34) implies

f


5

; �


�

g = 0; [


5

; 
̂

�

℄ = 0; (4.5.35)

or, in a more 
ompa
t form,

f


5

; 


�

g = 2


5


̂

�

: (4.5.36)

The identities

Tr 


5

= 0; Tr 


5




�




�

= 0 (4.5.37)


an be shown to hold, regardless of the value of d (this result is nontrivial; it 
an be obtained

by the same way of reasoning that leads to eqs. (4.5.26) and (4.5.27). Prove it as an exer
ise).

Furthermore, one sees immediately that the quantity

Tr 


5




�

1




�

2




�

3




�

4

(4.5.38)

vanishes if at least one of the indi
es has a value in the extra dimensions. We have therefore

Tr 


5
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1




�

2




�

3




�

4

= Tr 


5

�


�

1

�


�

2

�


�

3

�


�

4

= 4i�

�

1

�

2

�

3

�

4

; (4.5.39)

whi
h is the 
orre
t four-dimensional result.

The use of the de�nition (4.5.34) requires spe
ial attention, be
ause it introdu
es an expli
it

violation of 
hiral invarian
e, whi
h must therefore be restored by means of �nite renormalization.

I will not dis
uss this point in detail here.

In the following, I will show that the 
omputation of the axial 
urrent anomaly, performed

in se
t. 3.3 in the Pauli-Villars regularization s
heme, 
an also be performed in dimensional

regularization. I will present the 
omputation in the massless 
ase; the extension to massive

fermions is straightforward. From eq. (3.3.14) we have

(k

1

+ k

2

)

�

T

���

1

= �

Z

d

d
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d

Tr 


5

(k=� k=
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(k=+ k=

1
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+ k=

2

)

k

2

(k � k

2

)

2

(k + k

1

)

2

; (4.5.40)
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where the integral is made 
onvergent by dimensional regularization. The numerator of the

integrand 
ontains terms whi
h are linear, quadrati
 or 
ubi
 in the loop momentum k. The

linear term is 
onvergent, and it gives a vanishing 
ontribution:

Tr 


5

k=

2




�

k=


�

k=

1

(k=

1

+ k=

2

) = 0 (4.5.41)

be
ause k

2

1

= k

2

2

= 0.

The quadrati
 term requires more work. We have
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� 2k
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�
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1

k=

2

� 2k

�

k

�

Tr 


5




�




�
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1

k=

2

: (4.5.42)

The �rst term 
ontributes to the �nal result with

2ITr 


5




�




�

k=

1

k=

2

; (4.5.43)

where

I =

Z

d

d

k

(2�)

d

1

(k � k

2

)

2

(k + k

1

)

2

: (4.5.44)

The se
ond and third terms in eq. (4.5.42) involve the integral

I

��

=

Z

d

d

k

(2�)

d

k

�

k

�

k

2

(k � k

2

)

2

(k + k

1

)

2

; (4.5.45)

whi
h 
an be written in the form

I

��

= Ag

��

+B(k

�

1

k

�

2

+ k

�

2

k

�

1

) + C(k

�

1

k

�

1

+ k

�

2

k

�

2

); (4.5.46)

exploiting symmetry under k

1

$ k

2

and � $ �. It is 
lear from eq. (4.5.42) that only the term

Ag

��


ontributes to the result. In order to 
ompute A, we observe that eq. (4.5.46) gives

I

�

�

� I = dA+ 2k

1

k

2

B

k

�

1

k

�

2

I

��

= k

1

k

2

A+ (k

1

k

2

)

2

B: (4.5.47)

Now, using the identities k

1

k = ((k + k

1

)

2

� k

2

)=2, k

2

k = (k

2

� (k� k

2

)

2

)=2, one 
an show that

k

�

1

k

�

2

I

��

= �

1

4

J; (4.5.48)

where

J =

Z

d

d

k

(2�)

d

k

2
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2

)

2

(k + k

1

)

2

: (4.5.49)

Solving the system (4.5.47), one gets

A =

1

d� 2

�

I +

J

2k

1

k

2

�

: (4.5.50)
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Finally, we 
ome to the 
ubi
 term:

�Tr 


5

k=


�

k=


�

k=(k=

1

+ k=

2

) = k

2

Tr 


5

k=


�




�

(k=

1

+ k=

2

); (4.5.51)

sin
e the anti
ommutator term gives zero 
ontribution be
ause of antisymmetry. We must

therefore 
ompute

I

�

=

Z

d

d

k

(2�)

d

k

�

(k � k

2

)

2

(k + k

1

)

2

= D(k

�

1

� k

�

2

); (4.5.52)

and taking the produ
t I

�

k

�

1

one easily obtains

D =

J

2k

1

k

2

: (4.5.53)

Colle
ting all our results, we �nally obtain

(k

1

+ k

2

)
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���
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d� 4

d� 2

�
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J

2k

1

k

2

�

Tr 


5
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�

k=

1

k=

2

; (4.5.54)

where a fa
tor of 2 has been inserted to take into a

ount the 
ontribution of T

���

2

. The �nal result

is ultraviolet-�nite: indeed, in dimensional regularization at one loop ultraviolet divergen
es

manifest themselves as simple poles in d� 4, and there is a d� 4 fa
tor in front of the divergent

integrals. It is now easy to 
ompute (d�4)I and (d�4)J for d = 4 with the help of the formulae

obtained earlier in this Appendix, and re
over the result of eq. (3.3.33).
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