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Chapter 1

Mathematical tools

1.1 The Feynman parametrization

The Feynman parametrization is given by the following formula

n∏

i=1

1

Aci
i

=
Γ (c)

n∏

i=1

Γ (ci)

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c (1.1)

where

c =
n∑

i=1

ci . (1.2)

The proof of this equation is done following a few steps. First of all, we demonstrate it by
induction when all the ci are equal to 1. The case with n = 2 is trivial: by a direct inspection

I2 ≡
∫ 1

0

dα1 dα2
δ (1− α1 − α2)

(α1A1 + α2A2)
2 =

∫ 1

0

dα1
1

(α1A1 + (1− α1)A2)
2

= − 1

A1 − A2

[
1

α1A1 + (1− α1)A2

]1

0

=
1

A1A2

(1.3)

Supposing now that formula (1.1) is valid for (n− 1)

In−1 ≡ 1

A1 . . . An−1

= (n− 2)!

∫ 1

0

n−1∏

i=1

dαi

δ
(
1−∑n−1

i=1 αi

)

(∑n−1
k=1 αkAk

)n−1

=

∫ 1

0

n−2∏

i=1

dαi
(n− 2)!

(
An−1 +

∑n−2
k=1 αk (Ak − An−1)

)n−1 (1.4)
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where in the last line

0 ≤
n−2∑

k=1

αk ≤ 1 (1.5)

we show, with some algebra, that it is true also for n

In ≡ 1

A1 . . . An

= (n− 1)!

∫ 1

0

n∏

i=1

dαi
δ(1−∑n

i=1 αi)

(
∑n

k=1 αkAk)
n

=

∫ 1

0

n−1∏

i=1

dαi
(n− 1)!

(
An +

∑n−1
k=1 αk (Ak − An)

)n (1.6)

with

0 ≤
n−1∑

k=1

αk ≤ 1 . (1.7)

In fact, integrating (1.6) in αn−1 between 0 and
(
1−∑n−2

i=1 αi

)
, we find

In = − (n− 2)!

(An−1 − An)

∫ 1

0

n−2∏

i=1

dαi
1

(
An−1 +

∑n−2
k=1 αk (Ak − An−1)

)n−1

+
(n− 2)!

(An−1 − An)

∫ 1

0

n−2∏

i=1

dαi
1

(
An +

∑n−2
k=1 αk (Ak − An)

)n−1 (1.8)

and using (1.4)

In =
1

(An−1 − An)A1 . . . An−2

[
1

An

− 1

An−1

]

=
1

A1 . . . An

(1.9)

so equation (1.6) is indeed an identity.

To complete the demonstration of eq. (1.1), we derive cn times both members of the first
line of (1.6) with respect to An. On the left-hand side we have

∂ cn

∂A cn
n

(
1

A1 . . . An

)

=
(−1)cn (cn)!

A1 . . . An−1A cn+1
n

, (1.10)

while on the right-hand side, the derivation gives

∂ cn

∂A cn
n

In =

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

(−1)cn (n+ cn − 1)!αcn
n

(
∑n

k=1 αkAk)
n+cn

(1.11)

Comparing the last two equations one can see that

1

A1 . . . An−1A cn
n

=
(n+ cn − 2)!

(cn − 1)!

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

αcn−1
n

(
∑n

k=1 αkAk)
n+cn−1 . (1.12)
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Repeating now the derivation with respect to a generic Ak, we get

n∏

i=1

1

Aci
i

=
(c− 1)!

n∏

i=1

(ci − 1)!

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c

=
Γ (c)

n∏

i=1

Γ (ci)

∫ 1

0

n∏

i=1

αci−1
i dαi

δ

(

1−
n∑

i=1

αi

)

(
n∑

k=1

αkAk

)c . (1.13)

This proves eq. (1.1).

1.2 The scalar one-loop integrals

In this section we want to introduce all the principal mathematical tools useful to calculate
d-dimensional scalar one-loop Feynman integrals. These integrals are built up with the
propagators of n massive particles, with masses mi, connecting n+1 vertexes of interaction
with other external particles, each carrying momentum pi.

1

p1

p2 p3

p4

pn

l

l + p1

l + p12

The integral can be written in this general form (notice that
∑n

i=1 pi = 0 for momentum
conservation)

I =

∫
ddℓ

(2π)d
1

[
(ℓ+ p1)

2 −m2
1 + iη

] [
(ℓ+ p12)

2 −m2
2 + iη

]
. . . [(ℓ+ p12...n)2 −m2

n + iη]
,

(1.14)

1All momenta incoming.
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where we have introduced a small imaginary part iη according to the Feynman prescription
for the T–ordered propagator and we have used the shortcut p12 = p1+ p2, and similar ones.

Using the Feynman parametrization (1.1) we can write

I = Γ (n)

∫ 1

0

n∏

i=1

dαi

∫
ddℓ

(2π)d
δ(1−∑n

i=1 αi)

(
∑n

k=1 αkAk)
n (1.15)

The sum in the denominator can then be rewritten as

n∑

k=1

αkAk =
n∑

k=1

αk

[
(ℓ+ p1...k)

2 −m2
k + iη

]
=

= ℓ2 + 2ℓ ·
(

n∑

k=1

αkp1...k

)

+
n∑

k=1

αk

(
p21...k −m2

k + iη
)
=

≡ ℓ2 + 2ℓ · P +K2 + iη . (1.16)

The integral (1.15) becomes

I = Γ (n)

∫ 1

0

n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)
∫

ddℓ

(2π)d
1

(ℓ2 + 2ℓ · P +K2 + iη)n
(ℓ→ ℓ+ P )

= Γ (n)

∫ 1

0

[dα]n

∫
ddℓ

(2π)d
1

(ℓ2 −m2 + iη)n
(1.17)

where we used the shorthand notation

[dα]n ≡
n∏

i=1

dαi δ

(

1−
n∑

i=1

αi

)

, m2 ≡ P 2 −K2 (1.18)

Notice that in the last line η is not the same one defined previously but it plays the same role
again picking the poles away from the path of the integration as the Feynman prescription
requires.

The integral over the loop momentum l can be performed once and for all. We first
perform the integral over l0. In Fig. 1.1 we have promoted the real variable l0 into a complex
variable and we have plotted the two poles

ℓ2 −m2 + iη ≡ ℓ20 − |ℓ|2 −m2 + iη = 0 =⇒ l0 = ±
√

|ℓ|2 +m2 ∓ iη . (1.19)

The integration over l0 is along the real axis. Exploiting the fact that the Feynman integrals
are analytic functions, we interpret the integration along the real axis as part of the integra-
tion over the closed path in the figure. Using the residue theorem, we know that the integral
along that closed path is zero, since the poles of the integral are outside the integration path.
So we can write

0 =

∫ +∞

−∞

dℓ0 . . .+

∫ −∞

+∞

idℓE0 . . . =⇒
∫ +∞

−∞

dℓ0 . . . = i

∫ +∞

−∞

dℓE0 . . . (1.20)
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z=i l

l 0

0
E

*

*

Figure 1.1: Wick rotation.

since the contribution from the circular parts of the path goes to zero as we radius goes to
infinity. We have indicated with ℓE0 the new integration variable, reminiscent of the fact that
now we are using an Euclidean notation and no longer a Minkoskian one. The integral I
then becomes

I = iΓ (n)

∫ 1

0

[dα]n

∫ +∞

−∞

dℓE0 d(d−1)ℓ

(2π)d
1

(

− (ℓE0 )
2 − |ℓ|2 −m2 + iη

)n (1.21)

and using spherical coordinates, defining ℓ2E ≡ (ℓE0 )
2 + |ℓ|2 (please notice that the integral

over the loop momentum is now perfectly defined and we could set η = 0. We keep it, since
it will be useful in the integration over the Feynman parameters αi, yet to be done)

I =
(−1)n iΓ (n)

(2π)d

∫ 1

0

[dα]n

∫

ddΩ dℓE
(ℓE)

d−1

(ℓ2E +m2 − iη)
n

=⇒ t =
ℓ2E
m2

=
(−1)n iΓ (n) Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n
∫ ∞

0

dt t
d
2
−1 (t+ 1)−n

=⇒ x =
1

1 + t

=
(−1)n iΓ (n) Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n
∫ 1

0

dx xn−
d
2
−1 (1− x)

d
2
−1

=
(−1)n iΓ (n) Ωd

2 (2π)d
β

(
d

2
, n− d

2

)∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

=
(−1)n iΓ

(
n− d

2

)
Γ
(
d
2

)
Ωd

2 (2π)d

∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

(1.22)
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where Ωd is the total angle in d dimensions

Ωd =
2π

d
2

Γ
(
d
2

) . (1.23)

Finally, the scalar integral (1.15) takes this form

I = (−1)n
i

(4π)
d
2

Γ

(

n− d

2

)∫ 1

0

[dα]n
(
m2 − iη

) d
2
−n

= (−1)n
i

(4π)
d
2

Γ

(

n− d

2

)∫ 1

0

[dα]n

(

−
n∑

i>j

αiαj p
2
j+1...i +

n∑

i=1

αim
2
i − iη

) d
2
−n

(1.24)

where in the last line we used

m2 = P 2 −K2 =

(
n∑

i=1

αip1...i

)2

−
n∑

i=1

αi

(
p21...i −m2

i + iη
)

=
n∑

i=1

α2
i p

2
1...i + 2

n∑

i>j

αiαjp1...ip1...j −
n∑

i=1

αip
2
1...i +

n∑

i=1

αim
2
i − iη

= −
n∑

i=1

αi

∑

j 6=i

αjp
2
1...i + 2

n∑

i>j

αiαjp1...ip1...j +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp
2
1...i −

n∑

i>j

αiαjp1...ip1...j

−
n∑

j>i

αiαjp
2
1...i −

n∑

j>i

αjαip1...jp1...i +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp1...ipj+1...i +
n∑

j>i

αiαjp1...ipi+1...j +
n∑

i=1

αim
2
i − iη

= −
n∑

i>j

αiαjp
2
j+1...i +

n∑

i=1

αim
2
i − iη . (1.25)

In summary

I =

∫
ddℓ

(2π)d
1

[
(ℓ+ p1)

2 −m2
1 + iη

] [
(ℓ+ p12)

2 −m2
2 + iη

]
. . . [(ℓ+ p12...n)2 −m2

n + iη]

= (−1)n
i

(4π)(
d
2)

Γ

(

n− d

2

)∫ 1

0

[dα]n

Dn− d
2

, (1.26)

where

D = −
∑

i>j

αi αj sij +
n∑

i=1

αim
2
i − iη , (1.27)

and sij is the square of the momentum flowing through the i-j cut of the diagram representing
I.
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1.2.1 The one-point function (tadpole)

l

Figure 1.2: One-point function (tadpole).

The one-point function is given by

A0

(
m2
)

=

∫
ddℓ

(2π)d
1

ℓ2 −m2 + iη
=

−iΓ
(
2−d
2

)

(4π)
d
2

∫ 1

0

dα δ (1− α)
(
αm2 − iη

) d−2

2

=
−iΓ

(
2−d
2

)

(4π)
d
2

(
m2 − iη

) d−2

2 (1.28)

where m is the mass of the particle propagating in the loop. Please notice that

m = 0 =⇒ A0 = 0 (1.29)

since if the mass is zero, there are not dimensional variables that carry the dimension of A0

after the integration over the loop momentum. So the integral must be zero.

If m 6= 0, with the usual definition d = 4− 2ǫ, we have

A0

(
m2
)
=

−iΓ (ǫ− 1)

(4π)2−ǫ

(
m2 − iη

)1−ǫ
=

i

(4π)2
(4π)ǫ Γ (1 + ǫ)

ǫ (1− ǫ)

(
m2 − iη

)1−ǫ
, (1.30)

that shows that A0 diverges as 1/ǫ when ǫ→ 0.

1.2.2 The two-point function (bubble) with m1 = m2 = 0

We now consider the integral corresponding to the two-point function with massless propa-
gators, i.e. m1 = m2 = 0. The external momentum p must then have p2 6= 0 otherwise, as
for A0 with m2 = 0, if also the external particles are massless, the integral vanishes. The
integral is given by

B0

(
p2
)
=

∫
ddℓ

(2π)d
1

[ℓ2 + iη]
[
(ℓ+ p)2 + iη

] =
iΓ
(
4−d
2

)

(4π)
d
2

∫ 1

0

[dα]2
1

(−α1α2 p2 − iη)
4−d
2

=
iΓ
(
4−d
2

)

(4π)
d
2

∫ 1

0

dα1

(

α1 (1− α1)
(
−p2 − iη

) )
d−4

2

=
iΓ
(
4−d
2

)

(4π)
d
2

(
−p2 − iη

) d−4

2
Γ2
(
d−2
2

)

Γ (d− 2)

(1.31)
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p

p+l

α2

l

α1

Figure 1.3: Two-point function (bubble).

With d = 4− 2ǫ we have

B0

(
p2
)

=
i

(4π)2−ǫ

Γ (ǫ) Γ2 (1− ǫ)

Γ (2− 2ǫ)

(
−p2 − iη

)−ǫ
=

i

(4π)2
CΓ

ǫ (1− 2ǫ)

(
−p2 − iη

)−ǫ
(1.32)

where we have defined

CΓ = (4π)ǫ
Γ (1 + ǫ) Γ2 (1− ǫ)

Γ (1− 2ǫ)
(1.33)

Since we are interested in an expansion in ǫ of B0, we have to deal with

(
−p2 − iη

)−ǫ
= 1− ǫ log

(
−p2 − iη

)
+O

(
ǫ2
)

(1.34)

If p2 < 0, then the logarithm is perfectly defined and no imaginary part is needed to give
meaning to it. If instead p2 > 0, then −p2 − iη is a complex negative number with a small
imaginary part, so that it is below the typical cut for the definition of the logarithm. In this
case, we have

(
−p2 − iη

)−ǫ
= 1− ǫ log

(
−p2 − iη

)
+O

(
ǫ2
)
= 1− ǫ

[
log
(
p2
)
− iπ

]
+O

(
ǫ2
)

(1.35)

In the kinematic region p2 > 0 we then have

B0

(
p2
)
=

i

(4π)2
CΓ

(1− 2ǫ)

[
1

ǫ
− log(p2) + iπ +O (ǫ)

]

(1.36)

This integral is divergent as 1/ǫ in the limit ǫ→ 0.

1.2.3 The two-point function (bubble) with m1 = m, m2 = 0

Left as exercise.

1.2.4 The two-point function (bubble) with m1 = m2 = m

Left as exercise.
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Check that you get

B0

(
p2,m2,m2

)
≡
∫

ddl

(2π)d
1

l2 −m2

1

(l + p)2 −m2
(1.37)

in the kinematic region p2 ≥ 4m2

B0

(
p2,m2,m2

)
=

i

(4π)2
CΓ

(
m2
)−ǫ
{
1

ǫ
+ 2 + (x+ − x−) log

x−
x+

+ i π (x+ − x−) +O (ǫ)

}

(1.38)
where

x± =
1

2

(

1±
√

1− 4m2

p2

)

± iη . (1.39)

1.2.5 The three-point function (triangle) with m1 = m2 = m3 = 0

We consider the simplified case where three-point function has all the propagators massless.

Triangle with one external massive leg

q

l+q
α2

l
α1

l+q+p2

α3

p1

p2

Figure 1.4: The three-point function (triangle). The double line denote the massive leg.

In the notation of Fig. 1.4, we have q2 6= 0, p21 = p22 = 0. We have only one independent
invariant, i.e. q2. Any other relativistic invariant can be written in terms of q2. The Feynman
diagram corresponding to Fig. 1.4 is given by

C0

(
q2
)

=

∫
ddℓ

(2π)d
1

[
(ℓ)2 + iη

] [
(ℓ+ q)2 + iη

] [
(ℓ+ q + p2)

2 + iη
] =

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

[dα]3

(−α1α2 q2 − iη)
6−d
2

, (1.40)

where we used p2i = 0 for i = 1, 2. We can integrate over α3 immediately, using the δ
function. This gives α3 = 1 − α1 − α2. Since the range of integration of α3 is from 0 to 1,
this means that 0 ≤ 1 − α1 − α2 ≤ 1, that implies that α2 ≤ 1 − α1. Performing now the

14



integration on the Feynman parameters, we have

C0

(
q2
)

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

dα1

∫ 1−α1

0

dα2
1

(−α1α2 q2 − iη)
6−d
2

=
−iΓ (1 + ǫ)

(4π)2−ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1

∫ 1−α1

0

dα2 (α1α2)
−(1+ǫ)

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1 (α1)
−(1+ǫ)

[

α−ǫ
2

]1−α1

0
=

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ)
∫ 1

0

dα1 (α1)
−(1+ǫ) (1− α1)

−ǫ =

=
iΓ (1 + ǫ)

(4π)2−ǫ ǫ

(
−q2 − iη

)−(1+ǫ) Γ (−ǫ) Γ (1− ǫ)

Γ (1− 2ǫ)
(1.41)

While this integral can be performed as done before, it is important to keep in mind also the
following trick to restore the integration boundaries between 0 and 1. We make the change
of variable α2 = (1− α1)x
∫ 1

0

dα1 α
−(1+ǫ)
1

∫ 1−α1

0

dα2 α
−(1+ǫ)
2 =

∫ 1

0

dα1 α
−(1+ǫ)
1

∫ 1

0

dx (1− α1)(1− α1)
−(1+ǫ)x−(1+ǫ)

=

∫ 1

0

dα1 α
−(1+ǫ)
1 (1− α1)

−ǫ

∫ 1

0

dx x−(1+ǫ)

= B(−ǫ, 1− ǫ)B(−ǫ, 1) = Γ(−ǫ)Γ(1− ǫ)

Γ(1− 2ǫ)

Γ(−ǫ)Γ(1)
Γ(1− ǫ)

=
1

ǫ2
Γ2(1− ǫ)

Γ(1− 2ǫ)
(1.42)

where we have used the definition of the B function in eq. (A.9). We finally get

C0

(
q2
)
=

i

(4π)2
CΓ

q2
(
−q2 − iη

)−ǫ 1

ǫ2
(1.43)

where CΓ is given in equation (1.33). We refer to Sec. 1.2.2 for the expansion of the previous
expression in the kinematic regions where q2 < 0 or q2 > 0.

Triangle with two external massive legs

Consider now the triangle with two massive external legs. In the notation of Fig. 1.5, we
have p2 = 0, p21 6= 0 and p22 6= 0. We compute this integral with the further hypothesis that
q22 > 0. The sign of q21 is arbitrary. The integral corresponding to this Feynman graph is

C0

(
q21, q

2
2

)
=

∫
ddℓ

(2π)d
1

[
(ℓ)2 + iη

] [
(ℓ+ p)2 + iη

] [
(ℓ+ p+ q2)

2 + iη
] =

=
−iΓ

(
6−d
2

)

(4π)
d
2

∫ 1

0

[dα]3

(−α1α3q21 − α2α3q22 − iη)
6−d
2

. (1.44)
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p

l+p
α2

l
α1

l+p+q2

α3

q1

q2

Figure 1.5: The three-point function (triangle). The double line denote the massive leg.

Factorizing out −q22 with the right iη prescription and using d = 4− 2ǫ, and defining

r =
q21
q22

+ iη (1.45)

we have

C0

(
q21, q

2
2

)
=

−iΓ (1 + ǫ)

(4π)2−ǫ

1

(−1− iη)1+ǫ (q22)
1+ǫ

∫ 1

0

[dα]3
α1+ǫ
3 (α1 r + α2)

1+ǫ =

=
−iΓ (1 + ǫ)

(4π)2−ǫ

eiπǫ

(q22)
1+ǫ

∫ 1

0

dα3

∫ 1−α3

0

dα1
1

α1+ǫ
3 [α1 (r − 1) + 1− α3]

1+ǫ

Integrating first over α1 we have

C0

(
q21, q

2
2

)
=

ieiπǫΓ (1 + ǫ)

(4π)2−ǫ (q22)
1+ǫ

1

ǫ (r − 1)

∫ 1

0

dα3

α1+ǫ
3

∣
∣[α1 (r − 1) + 1− α3]

−ǫ
∣
∣
1−α3

0

=
ieiπǫΓ (1 + ǫ)

(4π)2−ǫ ǫ (q22)
1+ǫ

(r − 1)

(1− rǫ)

rǫ

∫ 1

0

dα3 α
−(1+ǫ)
3 (1− α3)

−ǫ

=
−ieiπǫΓ (1 + ǫ)

(4π)2
CΓ

ǫ2
1

(q22)
1+ǫ

(1− rǫ)

(r − 1) rǫ
(1.46)

By making a (partial) Laurent expansion in ǫ we have

C0

(
q21, q

2
2

)
=
ieiπǫΓ (1 + ǫ)

(4π)2
CΓ

ǫ

log

(
q21
q22

+ iη

)

(
q21 − q22

) (
q21 + iη

)ǫ (1.47)

1.2.6 The four-point function (box) with mi = 0

Box with

p1 + p2 = p3 + p4, p2i = 0, s = (p1 + p2)
2 > 0, t = (p1 − p3)

2 < 0 (1.48)

Left as exercise.
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p1 α1    t↓ p3

α4

p4α3p2

α2

s→

Figure 1.6: Four-point function.

1.3 The tensor one-loop integrals and the Passarino–

Veltman reduction formula

We are ready to look at more complicated numerator structures. As previously stated, in
QCD (and more in general in the Standard Model), this happens when we have one (or
more) fermion legs in the loop or in the presence of triple and quartic gluon vertexes. In the
following, we will deal only with massless propagators, to simplify the calculations and the
notation. No conceptual problems arise in case of massive propagators.

For example, a massless fermionic n-point loop function is given by

In({pi}) =

∫
ddℓ

(2π)d
ℓ/(ℓ/+ p/1)(ℓ/+ p/1 + p/2) . . . (ℓ/+ p/1 + . . .+ p/n−1)

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p1 + p2)2 + iη] . . . [(ℓ+ p1 + . . .+ pn−1)2 + iη]

The gamma matrix structure can be extracted from this integral and we can write In({pi})
as

In({pi}) = γµn
γµ1

γµ2
. . . γµn−1

∫
ddℓ

(2π)d
ℓµn(ℓ+ p1)

µ1(ℓ+ p12)
µ2 . . . (ℓ+ p1...n−1)

µn−1

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p12)2 + iη] . . . [(ℓ+ p1...n−1)2 + iη]

The Feynman integral with tensor components of the loop momentum in the numerator is
called tensor integral.

Iµ1µ2...µk
n ({pi}) ≡

∫
ddℓ

(2π)d
ℓµ1ℓµ2 . . . ℓµk

× 1

[ℓ2 + iη] [(ℓ+ p1)2 + iη] [(ℓ+ p12)2 + iη] . . . [(ℓ+ p1...n−1)2 + iη]
(1.49)

The purpose of this section is to show how to compute this integral. We notice first that all
the Lorentz structure of a tensor integral has to be carried by the external momenta {pi}
or by the gµν tensor. The first step is the to write the more general linear combination of
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tensors of order k constructed with the components of the n external momenta and of the
gµν tensor. The symmetry under permutation of Lorentz indices reduces the allowed tensor
structure. In fact, Iµ1µ2...µk

n ({pi}) must be totally symmetric with respect to the k indices
(µ1, µ2, ..., µk).

The procedure to compute the tensor integrals has been outlined for the first time by
Passarino and Veltman (PV).

We illustrate this procedure with a few examples.

1.3.1 The tensor two-point function Bµ (p2 6= 0)

We start computing Bµ(p). Here the tensor decomposition is trivial because only p can bring
the index µ of the integral. In order for the integral to be different from zero, we must have
p2 6= 0. We have to compute

Bµ(p) ≡
∫

ddℓ

(2π)d
ℓµ

ℓ2(ℓ+ p)2
= B11 p

µ . (1.50)

In order to compute the coefficient B11, we contract both side of the previous equation with
pµ and use

ℓ· p = 1

2
[(ℓ+ p)2 − ℓ2 − p2] . (1.51)

We have

p2B11 =
1

2

∫
ddℓ

(2π)d

[
1

ℓ2
− 1

(ℓ+ p)2
− p2

ℓ2(ℓ+ p)2

]

= −p
2

2
B0(p

2)

from which

B11 = −1

2
B0(p

2) (1.52)

This very easy example illustrates the whole strategy of the PV reduction: the first thing
to do is to write down the most general linear combination of tensors using the xternal
momenta and the metric tensor. Then one has to contract with some tensor structure both
sides of this decomposition and, by making use of identities like (1.51), simplify at least one
propagator in the denominator. In this way one transforms a tensor integral into a scalar
integral or a tensor integral of type In to a tensor integral of type In−1, as we will see in the
following. By using different tensor structures to make the contraction, one obtains a set of
linear equations2 to be resolved with respect to the unknown factors Bij, Cij,. . .

2The contraction with different elements of a tensor basis ensures to have a set of independent linear
equations.
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1.3.2 The tensor two-point function Bµν (p2 6= 0)

Bµν(p) ≡
∫

ddℓ

(2π)d
ℓµℓν

ℓ2(ℓ+ p)2
= B21 p

µpν + B22 g
µν (1.53)

We can demonstrate that

B21 =
d

d− 1

B0(p
2)

4
,

B22 = − p2

d− 1

B0(p
2)

4
. (1.54)

In fact, contracting eq. (1.53) with gµν and pµ, we obtain

p2B21 + dB22 =

∫
ddℓ

(2π)d
ℓ2

ℓ2(ℓ+ p)2
= 0

pν
(
p2B21 + B22

)
=

1

2

∫
ddℓ

(2π)d
ℓν

ℓ2(ℓ+ p)2
[
(ℓ+ p)2 − p2 − ℓ2

]

= −pν p
2B11

2

The linear system to solve is then

B21 p
2 + B22 d = 0

B21 p
2 + B22 = −p

2

2
B11

that gives (1.54).

1.3.3 The tensor three-point function Cµ(p1, p2)
(p21 = p22 = 0, (p1 + p2)

2 ≡ p23 6= 0)

The integral is defined by

Cµ(p1, p2) ≡
∫

ddℓ

(2π)d
ℓµ

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2
= C11 p

µ
1 + C12 p

µ
2 (1.55)

and we can easily show that

C11 = −B0((p1 + p2)
2)

2p1 · p2
− C0(p1, p2)

C12 =
1

2p1 · p2
B0

(
(p1 + p2)

2
)
. (1.56)
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In fact we can contract eq. (1.55) with pµ1 and with (p1 + p2)
µ. We obtain

p1 · p2C12 =
1

2

∫
ddℓ

(2π)d
1

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2
[
(ℓ+ p1)

2 − ℓ2
]

=
1

2
B0

(
(p1 + p2)

2
)

p1 · p2 (C11 + C12) =
1

2

∫
ddℓ

(2π)d
(ℓ+ p1 + p2)

2 − ℓ2 − (p1 + p2)
2

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2

= −(p1 + p2)
2

2
C0(p1, p2)

and the solution to these two equations is (1.56).

1.3.4 The tensor three-point function Cµν(p1, p2)
(p21 = p22 = 0, (p1 + p2)

2 ≡ p23 6= 0)

Cµν(p1, p2) ≡
∫

ddℓ

(2π)d
ℓµℓν

ℓ2(ℓ+ p1)2(ℓ+ p1 + p2)2
= C21 p

µ
1p

ν
1 + C22 p

µ
2p

µ
2 + C23 p

{µ
1 p

ν}
2 + C24 g

µν

(1.57)
where

p
{µ
1 p

ν}
2 ≡ pµ1p

ν
2 + pν1p

µ
2 .

In fact, Cµν is symmetric in the exchange µ ↔ ν, so that the right-hand side of eq. (1.57)
must be symmetric. We get

C21 = C0(p1, p2) + 3
B0((p1 + p2)

2)

4(p1p2)

C22 = −B0((p1 + p2)
2)

4(p1p2)

C23 = − d

d− 2

B0((p1 + p2)
2)

4(p1p2)

C24 =
B0((p1 + p2)

2)

2(d− 2)
(1.58)

Notice that, if one is interested in the behavior of this integral for large integration momenta,
i.e. in the UV limit, all the external momenta pi can be neglected and the only coefficient
that survive is C24.

We ca contract both sides of eq. (1.57) with pν1, (p1 + p2)
ν , pµ1(p1 + p2)

ν and gµν . Then
by using the identity (for arbitrary k)

ℓ · k =
(ℓ+ k)2 − ℓ2 − k2

2
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and making use of the mass-shell conditions for p1 and p2, we obtain respectively

pµ1 [(p1p2)C23 + C24] + pµ2(p1p2)C22 =
Bµ(p1 + p2)

2
pµ1 [(p1p2) (C21 + C23) + C24] + pµ2 [(p1p2) (C22 + C23) + C24] = −(p1p2) Cµ(p1, p2)

(p1p2) [C22 + C23] + C24 = −B0(p1 + p2)

2
2(p1p2)C23 + dC24 = 0

With some trivial algebra, we can show that the solution of this system is given by eq. (1.58).
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Chapter 2

Gauge invariance

2.1 Classical electrodynamics

We start by considering classical electrodynamics. All the information we need to write the
equation of motion are inside the field strength tensor Fµν , defined by

Fµν = ∂µAν − ∂νAµ (2.1)

where Aµ is the gauge field.

There is a 1-1 correspondence between physical measurable objects and Fµν (F 0i =
−Ei,F ij = −εijkBk). We prefer to use Fµν because it make the theory manifestly Lorentz
covariant. For example, in this formulation Maxwell equations take the form

∂αF
αβ = −Jβ

ǫαβγδ∂βFγδ = 0 (2.2)

We note that the field Aµ is not uniquely determined by these equations. In fact the physical
object (Fµν) and Maxwell equations are invariant under the transformation

Aµ → A′
µ = Aµ + ∂µφ (2.3)

with φ an arbitrary scalar function. This transformation is called a gauge transformation.

Using classical electrodynamics as an example, we fix the gauge freedom (2.3). A good
choice is the Lorentz condition1

∂µA
µ = 0 (2.4)

1Later we will see that this is not the only possibility allowed. Anyway this gauge is very useful because
it leaves the theory explicitly covariant. For this reasons these types of gauge fixings are also called covariant

gauges.
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The physics does not change with this choice while Maxwell equations become simpler as
can be easily seen:

∂αF
αβ = ∂α(∂

αAβ − ∂βAα) = ∂α∂
αAβ = −Jβ (2.5)

Indeed, the term ∂α∂βAα = ∂β∂αAα is zero in this gauge frame.

Despite this choice, the gauge has not been entirely fixed. In fact we still have a residual
gauge freedom: if we consider as gauge parameter in (2.3) a function φ such that ∂µ∂

µφ = 0,
we see that Aµ still satisfies Lorentz gauge condition (2.4), so there is again a redundancy
in the Aµ definition. Potentials for which ∂µ∂

µφ = 0 are said to satisfy the Lorentz gauge.

The problem in the discussion above stays in the link between gauge symmetry and the
evaluation of the physical degrees of freedom of the field Aµ. We will now see this in details,
counting correctly the physical component of the gauge field. We will find that the residual
gauge freedom plays an important role in this task.

In the vacuum Jβ = 0, so in the the Lorentz gauge the equation of motion for the field
Aµ (see (2.5)) becomes

∂µ∂
µAα = 0 (2.6)

which has the solution
Aα = εαe

ikx + ε∗αe
−ikx (2.7)

if and only if kµkµ = k2 = 0. The next step is to determine εα, which is up to now a quadri–
vector whose components are generic functions of the momentum kµ. First of all one has to
impose the gauge fixing condition ∂αAα = 0. In momentum space this condition constraints
ε to be Lorentz perpendicular to k:

kαεα = 0 (2.8)

This means that now we have not four but three independent components of εα to
determine. The point is now that we know from experimental evidence (or, using a theoretical
approach, from Lorentz group representation theory) that photons have only two degrees of
freedom. So we have not yet fixed the Aα fields to be completely physical, but we have again
the residual gauge invariance that can help us.

If we use the residual gauge redundancy related to the gauge freedom, we can still make
the transformation Aµ → Aµ + ∂µφ with ∂µ∂

µφ = 0. For example we can choose

φ = iaeikx + h.c. , k2 = 0 (2.9)

Using this φ in the gauge transformation the potential Aµ takes the form

Aµ → A′
µ =

[
(εµ − akµ)e

ikx + h.c.
]
≡
[
ε′µe

ikx + h.c.
]

(2.10)

where a is completely arbitrary. This last fact can be used to obtain a zero value for one
component of the ε′µ and therefore to remain with only two free components as the physics
requires. In fact, choosing one component labeled by µ0, we can fix εµ0

= 0 putting a =
εµ0
kµ0

.
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At this point of the discussion is convenient to give an explicit example. We choose

kµ = k0(1, 0, 0, 1) εα = (ε0, ε1, ε2, ε3) (2.11)

This choice is consistent with the constraint k2 = 0, but we still have to impose k · ε = 0.

kα εα = k0 ε0 − k0 ε3 = 0 ⇒ ε0 = ε3 (2.12)

This means that ε = (ε0, ε1, ε2, ε0). Then we use the arbitrariness of the parameter a and
the residual gauge freedom to cancel, for example, the first and the last component of ε by
virtue of the following transformation:

ε′3 = ε3 − ak0 = 0 ⇒ a =
ε3
k0

=
ε0
k0

(2.13)

In this way it is simple to understand that only two of the four component of the vector εα
are physical, since we obtained εα = (0, ε1, ε2, 0). Now ε1 and ε2 are completely arbitrary
and they can’t be removed anymore because there is no more residual gauge freedom. With
this result for εα we can choose a basis made by the relevant physical components orthogonal
to k. For example we can choose

(
ε(1)
)

α
= (0, 1, 0, 0) and

(
ε(2)
)

α
= (0, 0, 1, 0), obtaining a

picture like

ε

ε
1

2

k

What is the physical meaning of this construction? Let’s try to see what happens if we
make a rotation. One can image that rotation of a θ angle along the direction of the z axis
give us informations about the angular momentum along that axis. The associated matrix
is

Rµν =







1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1






. (2.14)

We observe that k does not change after a rotation of a θ angle: Rµνk
µ = kν . The same

does not happens for εα, since we obtain ε
′

α = Rαβ ε
β. If we now want to make the physical

properties of this system more evident we can change the basis. Calling εα(1) and ε
α
(2) the old

basis

εα(1) = (0, ε1, 0, 0) = (0, 1, 0, 0)

εα(2) = (0, 0, ε2, 0) = (0, 0, 1, 0) (2.15)
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we define the new basis as

εα+ = εα(1) − iεα(2)
εα− = εα(1) + iεα(2) (2.16)

This new basis is more helpful to understand the physics of this system being the basis of
eigenvectors of the rotation matrix Rαβ. In fact, after the rotation we have

ε
′ α
+ = (0, cos θ − i sin θ,− sin θ − i cos θ, 0) = e−iθεα+
ε
′ α
− = (0, cos θ + i sin θ,− sin θ + i cos θ, 0) = e+iθεα−

(2.17)

So we have a plane wave that describes Aα, which under rotation transforms such that
its polarization vector εα → ε

′

α = eihθεα. The h defines a new property of the field Aα,
called helicity. In addition, for the helicity we obtained two possible values (±1): they
correspond to the two degrees of freedom of the classical electromagnetic field and in the
quantized theory they will be interpreted as the two polarization states of the carrier of the
interaction, the photon.

2.2 QED

2.2.1 Sum over polarizations

In the previous section we saw that a photon has two helicities, which means that we have
two physical polarizations. We can ask what are the consequences of this fact when we
calculate squared amplitudes in quantum electrodynamics.

We will skip all the difficulties of the “second quantization” of the fermionic field ψ and
of the field Aµ: we directly suppose to know what are the Feynman rules, i.e. the way to
calculate transition amplitude in QED.

Given an amplitude M =Mµε
µ, if we want to calculate the squared modulus we have

|M |2 =
∑

pol

MµM
∗
ν ε

µε∗ν (2.18)

where the sum is only on physical polarizations. Now the question is: what tensor do we
have to use when we meet

∑

pol εµε
∗
ν?

Since we have two different polarization vectors, the piece written as
∑

pol ε
µε∗ν is a sum

over εµ1 and εµ2 . For simplicity, choosing the photon momenta k along the z direction, the
sum gives

∑

pol

εµε
∗
ν = ε1µε

∗1
ν + ε2µε

∗2
ν =







0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0







(2.19)
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This matrix represents the sum over the physical polarizations. A question immediately
arises: why one usually use −gµν instead of (2.19)? In order to answer this question we will
point our attention on the different possibilities we have to fix the gauge.

Up to now we used the Lorentz gauge ∂µA
µ = 0. In this case the propagator has a simple

form. On the other hand we are propagating non physical degrees of freedom. A different
choice is given by the axial gauge. Axial gauges are defined fixing an axis such that ηµA

µ = 0
and we will see in section 2.3.3 how to modify the Lagrangian to make this. Different choices
of η gives us different gauges (for example we have temporal gauge if A0 = 0, or radiation

gauge if ~∇ · ~A = 0).

For example, fixing the z axis along the propagation of the plane wave, we have k =
k0(1, 0, 0, 1) and we can choose η = (1, 0, 0,−1) so that η2 = 0 but η · k 6= 0. The condition
ηµA

µ = 0 then becomes η · ǫ = 0, that together with ∂µA
µ = 0 =⇒ k · ǫ = 0 imply

η · ǫ = 0 =⇒ ǫ0 + ǫ3 = 0 (2.20)

k · ǫ = 0 =⇒ ǫ0 − ǫ3 = 0 (2.21)

(2.22)

so that we obtain ǫ0 = ǫ3 = 0, and we propagate only the two degrees of freedom.

We want now to analyze the sum over the polarizations in the axial gauge. We start
writing the more general formula for the sum over polarizations:

Σµν ≡
∑

ε=ε1,ε2

εµε∗ ν = Agµν + Bkµkν + Ckµην +Dηµkν + Eηµην (2.23)

In this gauge ηµA
µ is fixed to be zero and since Aµ = εµe

ikx + h.c., we have ηµε
µ = 0. Also

we have again kµε
µ = 0 because physical photons are transverse. We have now to calculate

the coefficients A,B,C,D,E. This can be done contracting Σµν with kµ, kν , ηµ and ην . We
have

kµΣ
µν = 0 kνΣ

µν = 0 (2.24)

When we expand the first equation in (2.24) we observe that the terms which multiply
B and C are zero since k2 = 0. For the second equation ibidem the same idea applies to the
terms with B and D. We have

Akν +D(η · k)kν + E(η · k)ην = 0

Akµ + C(η · k)kµ + E(η · k)ηµ = 0 (2.25)

Since η is still arbitrary we use this freedom to fix E = 0. This give us the relation

C = D = − A

k · η (2.26)
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Since also ηµεµ = 0, if we now contract Σ with η we obtain

Aην +B(η · k)kν + C(η · k)ην +Dη2kν = 0

Aηµ + B(η · k)kµ + Cη2kµ +D(η · k)ηµ = 0 (2.27)

Thanks to (2.26) there are cancellations between A and C in the first equation and between
A and D in the second. These cancellations lead to a new relation between the coefficients

B = −Dη
2

η · k =
Aη2

(η · k)2 (2.28)

The sum over the polarizations Σµν can be written now as

Σµν = A

(

gµν +
η2

k · ηk
µkν − 1

k · η (kµην + kνηµ)

)

(2.29)

We have now to calculate the value of the A coefficient. This is easily done by multiplying
with the metric gµν both sides of the previous relation and using g µ

µ = 4. We obtain the
equation

−2 = A(4 + 0− 2) ⇒ A = −1 (2.30)

The final form for Σµν is then

Σµν = −gµν + 1

k · η (kµην + kνηµ)− η2

k · ηk
µkν (2.31)

and this is the most general form for Σµν in the axial gauge2.

We are now ready to answer the previous question, which was: why in QED the sum can
be taken to be −gµν and not (2.19)? We need to calculate the amplitude for the process
qq̄ → γγ in QED.

2.2.2 Gauge invariance in q(p)q̄(p′)→ γ(k)γ(k′)

The two lowest order graphs contributing to this process

p

p-k

p′

k,µ

k′,ν
+

p

p-k′

p′

k,µ

k′,ν

2With the choice k = k0(1, 0, 0, 1) and η = k0(1, 0, 0,−1), we recover exactly the result we have written
in (2.19).
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give the structure

Mµν = v̄ (p′)

{

(−ieγν) i

p/− /k
(−ieγµ) + (−ieγµ) i

/k − /p′
(−ieγν)

}

u (p)

(2.32)

and the amplitude is obtained contracting with physical polarizations:

M =Mµνεµ(k) ε
′
ν(k

′). (2.33)

A gauge transformation in x-space

Aµ →Aµ + ∂µφ (2.34)

become in k-space
ǫµ → ǫµ + const× kµ (2.35)

Now, if we want to verify gauge invariance, we can contract Mµν with kµ, since this con-
traction corresponds to the usual ∂µM

µν = 0 in coordinate space. In other words we are
checking if the Ward identity is satisfied.

kµ(M
µν) = −ie2 v̄ (p′)

{

γν
p/− /k

−2 p · k /k + /k
/k − /p′

−2 p′ · k γν
}

u (p)

= −ie2 v̄ (p′)
{

γν
p/ /k

−2 p · k − /k /p′

−2 p′ · k γν
}

u (p)

= −ie2 v̄ (p′) {−γν + γν}u (p)
= 0. (2.36)

This comes from Noether theorem and conservation of electromagnetic currents.

In addition, notice that the index ν has not been contracted with the corresponding
photon momentum. So, gauge invariance holds independently from what the other photon
does. The gauge invariance identity (we have put brackets around the “dummy” index ν
since it plays no role)

kµM
µ(ν) = 0 (2.37)

in a reference frame quer the z axis is align along the direction of motion of the photon
implies that

k0M
0(ν) − k3M

3(ν) = k0(M
0(ν) −M3(ν)) = 0 =⇒M0(ν) =M3(ν) (2.38)

This then implied that we can use −gµµ′ to sum over the photon polarization, only the
transverse modes give a contribution.

In this way we have shown that the amplitude is gauge invariant for every emitted
photon independently from the other ones. This result is already implicit in the conservation
law ∂µJ

µ = 0: the photon emission does not affect the charge of the fermionic current,
just because photon does not take away any charge. Thus charge conservation in QED is
equivalent to gauge invariance which is equivalent to 2 only physical degrees of freedom.
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So we have proved that in QED one can safely use
∑

pol

εµεν∗ = −gµν (2.39)

and this choice is clearly simpler than (2.31).

Now we can move to non abelian gauge theories and try to work out all the consequences
that the requirement of gauge invariance by itself will force.

2.3 QCD

2.3.1 Gauge invariance in qq̄ → gg

The question is now: what happens if a non abelian charge is supported by the vertices of
the theory?

In this case we have to image that the vertex constructed with two fermions and a
gluon, the non abelian equivalent of the photon, contains a non abelian current that flows
out carrying the non abelian charge. We have to show what happens imposing the gauge
invariance in this situation. The usual relation ∂µJ

µ = 0 and the conservation of the non
abelian charge impose that the new vertex between the gluon and the fermions is

a,α

ij

= −igγαtaij (2.40)

where g is the gauge coupling, and (ta)ij are the generators of the non abelian group .

Gauge invariance in this situation has to be investigated analyzing the process qq̄ → gg,
the non abelian generalization of qq̄ → γγ. Following the previous QED calculation, the
relevant Feynman graphs for this process are

p

p-k

p′

k,a,µ

k′,b,ν

+

p

p-k′

p′

k,a,µ

k′,b,ν

(2.41)

In this case the amplitude is

Mµν
(1) = v̄(p′)

(
(
−igγνtb

) i

p/− /k
(−igγµta) + (−igγµta) i

p/− /k′
(
−igγνtb

)
)

u(p) (2.42)
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The check for gauge invariance of this process is fulfilled if kµM
µν = 0. However if we

contract the amplitude with kµ we do not obtain zero as in (2.36):

kµM
µν
(1) = −ig2(tatb − tbta) v̄(p′) γν u(p) (2.43)

This expression is not zero since [ta, tb] = ifabctc 6= 0, i.e. the current does not carry an
abelian charge.

If we are asking for gauge invariance we have to conserve the current, which means that
we want kµM

µν
(1) to be zero. This means that we have to cancel the non zero term given by

the commutator of the generators. The way out of this problem can be found adding new
interactions and new diagrams. The particles involved in these new interactions can be read
from the color structure of the amplitude (2.43) we want to cancel. In particular only a cubic
interaction between gluons gives exactly the structure constants fabc that are in (2.43).

With similar considerations on the process gg → gg we will see later in section 2.3.5 that
the theory needs also a quartic boson vertex. But for now let us focus on the amplitude
qq̄ → gg.

2.3.2 The ggg vertex

Every new interaction term one wants to add to a theory, to be accepted must respect the
symmetries of the theory. For example, just looking at the color representation of (2.43) we
were able to understand that we were looking for a cubic gluon vertex. In the same way, the
Lorentz symmetry strongly constraints the vertex one can write.

Moreover, to build up a renormalizable field theory, there is another constraint from the
fact that all the couplings coming from gauge symmetry must be dimensionless.

Last but not least, every interaction term involving identical bosonic or fermionic particles
must be completely symmetric or anti-symmetric in the exchange of these particles in order
to respect the statistics.

In this section we will point out that the physical constraints here listed are sufficient to
completely fix the interaction vertices we are looking for.

We start with the cubic bosonic vertex: in order to have a dimensionless coupling, we
must require that the vertex has the dimension of a momentum. Since the only dimensional
physical quantities we can use to build up the vertex are the three momenta pi carried by
the bosons, the vertex must be linear in the momenta.

Consider now the Lorentz symmetry: we are writing the vertex for three vector bosons,
so it must have three Lorentz vector indexes one of which is carried by the momentum we
must use. So we can write this ansatz:

V µ1µ2µ3 ∝
∑

i 6=j 6=k

gµiµj Akl p
µk

l + ǫµ1µ2µ3

α

∑

i

Bi p
α
i (2.44)
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Here, Akl and Bi are respectively a 3 × 3 matrix and a 3–vector of coefficients, gµν is the
Minkowskian metric and ǫµ1µ2µ3

α is the Ricci symbol. The two addenda in the expression
above seem proportional since we have forgotten the color dependence, i.e. the structure
constants. These are instead very important when we impose on equation (2.44) the Bose
statistic: this is the last constraint we must satisfy. Since inside V there is this structure
constant fabc which is anti–symmetric, also the right side of (2.44) must be anti–symmetric
with respect to the boson indexes i, j, k. This means that the matrix Aij must be anti–
symmetric and that Bi = B. This last condition, with the conservation of the momentum
incoming in the vertex, implies that the term proportional to ǫµ1µ2µ3

α vanishes.

Bose statistic reduce thus (2.44) to be

V µ1µ2µ3 = Afabc
∑

i>j>k

gµiµj (pi − pj)
µk (2.45)

where A is a constant that can be fixed by imposing that the new graph from this vertex for
the process qq̄ → gg cancels the problematic (for the gauge symmetry) result (2.43). This
calculation will be performed in the next paragraph and will have other problematic aspects
that will make manifest the necessity of new quanta in the theory, the so–called ghosts.

However, here we anticipate the right result that will be used in the following: A = −g,
so that the triple vertex is

V µ1µ2µ3 = −gfabc
∑

i>j>k

gµiµj (pi − pj)
µk (2.46)

2.3.3 More comments on gauge invariance

Now that we have constructed by hand the gluon cubic vertex, we return to the problem of
gauge invariance in the process q(p) q̄(p′) → g(k) g(k′). The new graph to be added to (2.41)
coming from the triple gluonic vertex is

p

p + p′

p′

k,a,µ

k′,b,ν

This graph gives a contribution Mµν
(2) to the amplitude, which is

Mµν
(2) = v̄(p′)

(
−igγδtd

)
u(p)

i δdc

(p+ p′)2

(

−gδγ + (1− λ)
(p+ p′)δ(p+ p′)γ

(p+ p′)2

)

× gf bca
[
gνγ (−k′ − p− p′)

µ
+ gγµ (p+ p′ + k)

ν
+ gµν (k′ − k)

γ]

(2.47)
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If we want now to test the gauge invariance of this process we have to sum Mµν
(1) and M

µν
(2)

and contract the result with kµε′ν :

kµε′ν(Mµν) =
[
kµε′ν(M (1)

µν )
]
+
[
kµε′ν(M (2)

µν )
]

(2.48)

In QED we have already showed that this contraction is zero, also if we don’t require the
second gauge bosons to be physical3. Unfortunately here things are more involved.

The first contraction in (2.48) gives

kµε′ν(Mµν
(1)) = kµε′ν v̄(p′)

(
(
igγνtb

) i

p/− /k
(igγµta)− (igγµta)

i

p/− /k′
(
igγνtb

)
)

u(p)

= −ig2v̄(p′)
(

tbta/ε′
p/− /k

−2p · k /k + tatb/k
/k − p/′

−2p′ · k /ε′
)

u(p)

= −ig2v̄(p′)
(

tbta/ε′
−/kp/+ 2p · k

−2p · k + tatb
p/′/k − 2k · p′
−2p′ · k /ε′

)

u(p)

= −ig2
[
ta, tb

]
v̄(p′)/ε′u(p) (2.49)

while the second term gives

kµε′ν(Mµν
(2)) = v̄(p′)

(
−igγδtd

)
u(p)

iδcd

(p+ p′)2

(

−gδγ + (1− λ)
(p+ p′)δ (p+ p′)γ

(p+ p′)2

)

×
(
−gf bca

){

gνγ (−k′ − p− p′)
µ
+ gγµ (p+ p′ + k)

ν
+ gµν (k′ − k)

γ
}

kµε′ν

= −ig2 v̄(p′)γδu(p) td iδcd

(p+ p′)2
gδγf bca

{

gνγ (−k′ − p− p′)
µ

+ gγµ (p+ p′ + k)
ν
+ gµν (k′ − k)

γ
}

kµε′ν

= − ig2

(p+ p′)2
[
ta, tb

]
v̄(p′)

{

− 2/ε′ (k · k′) + /k (2k + k′) · ε′ + (/k′ − /k) k · ε′
}

u(p)

= − ig2

2k · k′
[
ta, tb

]
v̄(p′)

{

− 2/ε′(k · k′) + ε′ · k′/k + (/k + /k′)k · ε′
}

u(p) =

= −ig2
[
ta, tb

]
v̄(p′)

(
ε′ · k′
2k · k′/k − /ε′

)

u(p) (2.50)

where computations are done without using ε′ · k′ = 0. If we now sum the two contributions
(2.49) and (2.50) we do not obtain zero:

kµε′ν(Mµν) = −ig2
[
ta, tb

]
v̄(p′)

(
ε′ · k′
2k · k′/k

)

u(p) (2.51)

In fact, the second term in (2.50) does cancel the contribution coming from M(1), but the
first term remains. We have thus verified by an example that a QCD amplitude is gauge
invariant if and only if all the other gluons are physical, i.e. if their polarizations are transverse
(ε′ · k′ = 0). In QED any photon is gauge invariant by itself4, as eq. (2.36) shows, while here

3In fact we did only the contraction with kµ, leaving the other index free.
4This important property of Green functions is known as Ward identity.
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the situation is different. This is a crucial difference between an abelian theory (QED) and
QCD which is not abelian. Some consideration on the consequence of this fact are necessary.

First, one can ask if this result depends on the gauge fixing or it’s a consequence only
of the non-abelianity of the theory. The answer is the latter one: in any gauge frame the
contraction of an amplitude with more than one external gluon with one polarization vector
substituted by the corresponding momentum is zero only if all the other gluons are physical,
i.e. if ε

(i)
µ are such that ε(i) · k(i) = 0, for all i’s. For example in the axial gauge, where

LG.F. = − 1
2λ
(η · Aa)2, the gluon propagator is5

δab
i

p2 + iǫ

(

−gαβ + pαηβ + ηαpβ

p · η − λη2
pαpβ

(p · η)2
)

(2.52)

Equation (2.49) remaina the same while (2.50) becomes

kµε′ν(Mµν
(2)) = −ig2 [ta, tb] v̄(p′)

[(
/η

η · (k + k′)
+

/k

k · k′
)

(ε′ · k′)
2

− /ε′
]

u(p) (2.53)

so the sum again is not zero and again only if we impose also the second gluon to be physical
(ε′ · k′ = 0) we recover gauge invariance (and also the term that depends explicitly from the
gauge choice vanishes).

This result makes us suspicious that problems may arise also when we will need to sum
over physical polarizations. In fact, it was by virtue of gauge invariance of eq. (2.36) that in
QED we can use −gµν instead of the complicated tensor Σµν .

So the second question is now: are we obliged to use the correct but complicated sum Σµν

over the polarizations, or may we try to use −gµν again? The answer, that we will explain in
the next section, is that we can still use −gµν , but we have to find a mechanism that cancels
out the unphysical polarizations, without relying on Ward identity. In order to do that we
will have to add some new particles, called ghosts, which will cancel the longitudinal and
the temporal components of the squared amplitude.

2.3.4 Ghosts and sum over polarizations

The derivation of the correct ghost term in the Lagrangian and of the associated Feynman
rules is clear when one uses functional formalism and path integral. In brief, in addition to
the gauge fixing term, in non–abelian Lagrangians it is needed to add a new term that looks
like the following:

LF.P. = χ̄a(−∂µ∂µδac − g∂µfabcAb
µ)χ

c (2.54)

where F.P. stands for Faddeev-Popov. This term is necessary to integrate functionally only
over inequivalent gauge configurations.

5For simplicity we choose η2 = 0.
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Given (2.54), new particles appear and new Feynman rules follow. We have two new
color–octets degrees of freedom, the fields χa and χ̄a: from the Lorentz point of view these
fields are scalar but they instead are anticommuting. From this we deduce that they can
not be the quanta of real particles because they violate spin–statistic theorem. Moreover
they will appear as internal particles or will be pair–produced in final states and, being
anticommuting, loops made only of ghosts will take the usual fermionic minus sign. As (2.54)
shows, ghosts couple only to gluons giving the vertex represented in section 2.3.6, where an
outgoing (ingoing) arrow identifies a ghost (anti-ghost).

With these new rules we can come back to our previous question. In what follows
we will show that in the Lorentz gauge it is again possible to use −gµν for the sum over
physical polarizations, but only if we use ghosts: in other words, ghosts will cancel unphysical
polarizations.

Before the computations, we need to fix some notations for the amplitude M . With Mµν

it will be denoted the total amplitude for the process q(p)q̄(p′) → g(k)g(k′) as calculated
in the Lorentz gauge and before contracting with the external gluon polarization vectors
while M(v1, v2) will instead denote the quantity Mµν v

µ
1 v

ν
2 where v1 and v2 are generic four

vectors. Also for the following it will be useful the shortcut notation v
{µ
1 v

ν}
2 = vµ1 v

ν
2 + vµ2 v

ν
1

and (v1v2) = v1 · v2.

First of all we need to calculate the squared amplitude by making use of (2.31). Being Σ
tensors exactly the sum over physical transverse polarizations, we will denote this squared
amplitude by |M |2T . We will not use ghost particles because we are using only physical states.

|M |2T =MµνM
∗
ρσ Σµρ(k, η)Σνσ(k′, η′) (2.55)

where (we suppose for simplicity that the axis η and η′ are light-like)

Σµρ(k, η) = −gµρ + 1

(kη)
k{µη ρ} (2.56)

Expanding only one of the tensor Σ in (2.55), the second one for example, and remembering
that Σµρ(k, η) corresponds exactly to the sum over the physical polarizations of the first
gluon, we have

|M |2T =MµνM
∗
ρσ

[(
∑

pol

εµε∗ρ

)

(−gνσ) +
(
∑

pol

εµε∗ρ

)

k′{νη′σ}

(k′η′)

]

The second term is zero because it contains the contraction ofMµν with ε
µk′ν and ofM∗

ρσ with
ε∗ρk′σ and these terms vanish because of gauge invariance, as discussed in paragraph (2.3.3).
We stress that these terms vanish because the sum are exactly over the only physical polar-
izations, and this due to the fact we are using Σ tensors in the computation.

With simple manipulation and using the same idea, we obtain the following chain of
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equalities:

|M |2T = MµνM
∗
ρσ

(
∑

pol

εµε∗ρ

)

(−gνσ)

= MµνM
∗
ρσ

[

(−gµρ)(−gνσ) + k{µηρ}

(kη)
(−gνσ)

]

= MµνM
∗
ρσ

[

(−gµρ)(−gνσ) + k{µηρ}

(kη)
Σνσ(k′, η′)− k{µηρ}

(kη)

k′{νη′σ}

(k′η′)

]

= MµνM
∗
ρσ

[

(−gµρ)(−gνσ) + k{µηρ}

(kη)

(
∑

pol

ε′νε′∗σ

)

− k{µηρ}

(kη)

k′{νη′σ}

(k′η′)

]

= MµνM
∗
ρσ

[

(−gµρ)(−gνσ)− k{µηρ}

(kη)

k′{νη′σ}

(k′η′)

]

Expanding further only the second term in the previous equation, we have

MµνM
∗
ρσ

k{µηρ}

(kη)

k′{νη′σ}

(k′η′)

=MµνM
∗
ρσ

1

(kη)(k′η′)
[kµηρk′νη′σ + kµηρη′νk′σ + ηµkρk′νη′σ + ηµkρη′νk′σ]

The first and the last term in this relation are zero, as can easily see from (2.51) with
the replacement ε′ → k′. Thus at the end we are left with

|M |2T = MµνM
∗
ρσ(−gµρ)(−gνσ)−

1

(kη)(k′η′)
(M(k, η′)M∗(η, k′) +M(η, k′)M∗(k, η′))

= MµνM
∗
ρσ(−gµρ)(−gνσ)−

1

(kη)(k′η′)
(M(k, η′)M∗(η, k′) + h.c.) (2.57)

Using again (2.51) with the replacement ε′ → η′ we obtain:

M(k, η′) = −ig2 (k
′η′)

2(kk′)
v̄(p′)

(
[ta, tb]/k

)
u(p)

M(η, k′) = −ig2 (kη)

2(kk′)
v̄(p′)

(
[ta, tb]/k′

)
u(p)

that substituted in (2.57) gives at the end

|M |2T = MµνM
∗
ρσ(−gµρ)(−gνσ)− 2

∣
∣
∣
∣

g2

2(pp′)
fabcv̄(p′)/k tcu(p)

∣
∣
∣
∣

2

= MµνM
∗
ρσ(−gµρ)(−gνσ)− 2

(
g2

2(pp′)

)2

f cdaf cdbv̄(p′) (/k ta) u(p) ū(p)
(
/k tb
)
v(p′)

(2.58)

Now we want to calculate the squared amplitude for the same process trying to use −gµρ for
the sum over polarizations: this will obviously give the first term of (2.58). In the following
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we will calculate the squared amplitude for ghosts pair production and show that this is
exactly equal to the second term in (2.58) with a minus sign. In this way we will finally
answer the question at the end of the previous section.

The amplitude for producing a ghost of momentum k and an anti–ghost of momentum
k′ reads

p

p + p′

p′

k,a,

k′,b,

+

p

p + p′

p′

k,a,

k′,b,

(2.59)

M(qq̄ → χχ̄) = v̄(p′)(−igtdγδ)u(p)−igδγδ
dc

2(pp′)
(gf cbakγ)

= − g2

2(pp′)
f cbav̄(p′)(/ktc)u(p) (2.60)

and easily it can be shown that the amplitude for producing χ(k′)χ̄(k) is exactly the same.
If we square each of this contribution and sum them6, we are left with

|M(qq̄ → χχ̄)|2 = 2

(
g2

2(pp′)

)2

f cdaf cdb
[
v̄(p′) (/kta) u(p)ū(p)

(
/ktb
)
v(p′)

]
(2.61)

From eq. (2.61) we see that subtracting (2.61) from MµρM
∗
νσ(−gµν)(−gρσ) gives ex-

actly (2.58) and this answers the question about sum over polarizations: we learnt that
in QCD we can still use −gµν for the sum over polarizations but we have also to add to the
result so obtained the squared amplitude for producing ghosts (eq. (2.61)) with a minus sign.

One may wonder if this spoils any of the postulate of the theory, being in presence
of a negative probability. We know that ghost fields violate spin-statistic theorem, so in
principle there is neither postulate nor physical reason that should prevent some strange
thing to happen. From this calculation we evince that ghosts are a mathematical tool that
permit us to work in covariant gauges also in QCD, reconstructing the sum over physical
polarizations.

At a deeper level, one can convince himself that ghosts are fundamental to restore the
unitarity of the theory in covariant gauge fixing frames. Having not added their contribution
with the correct minus sign, we would have obtained a probability of transition qq̄ → gg
larger then the physical one (|M |2T ), clearly implying unitarity violation.

Finally, this computation shows that ghosts are required not only as intermediate states
to cancel non–physical states propagation in loop diagrams, but also as external particles
when one use

∑

pol ε
µε∗ν = −gµν .

6We have two contribution because if ghosts were physical particles, a ghost and an antighost would be
distinguishable for example because they carry a colour charge. Note also that obviously the interference
between the two graph is not permitted.

36



2.3.5 The gggg vertex: gg → gg

As already stated at the end of section 2.3.2, the triple gluonic vertex makes possible a new
scattering process: the elastic scattering of two gluons. At this point, the Feynman graphs
that give contributions to this process are

p,a,µ

p+p′,e,α

p′,b,ν

q,c,ρ

q′,d,σ

p,a,µ

p-q,e,α

p′,b,ν

q,c,ρ

q′,d,σ

p,a,µ

p-q′,e,α

p′,b,ν

q,c,ρ

q′,d,σ
(2.62)

For this new process, we can follow exactly what we did for the process qq → gg, checking
if the amplitude coming from these graphs respect gauge invariance. If this will not be the
case (as it will not be), in order to preserve the gauge symmetry we will be forced to admit a
new interaction vertex. The form of this vertex will be determined as in the precedent case,
using Lorentz invariance, Bose statistic and requiring that the theory stays renormalizable.

In order to check gauge invariance, we calculate the scalar product between the amplitude
Mµνρσ, given by the graphs (2.62), and one external momentum, say pµ. Moreover, in order
to simplify the calculations and to avoid all the non trivial subtleties of non abelian gauge
theories discussed in the previous section, we will fix the Lorentz gauge and require also that
the other external gluons are transverse, contracting the amplitude with their polarization
vectors (respectively, ενb (p

′), ερc(q) and ε
σ
d(q

′)).

It is also convenient to distinguish three different contribution to the amplitude Mµνρσ,
coming respectively from the s, t and u–channel. We start writing the contribution from the
s–channel: using the form of the triple vertex (2.46) one has

Mµνρσ
s = c

[
gµα (2p+ p′)

ν − gαν (p+ 2p′)
µ
+ gµν (p′ − p)

α]

×
[
gαρ (2q + q′)

σ − gαρ (q + 2q′)
ρ
+ gρσ (q′ − q)

α]
(2.63)

where

c = g2faebf ecd −i
(p+ p′)2

(2.64)

37



Contracting (2.63) with the momentum pµ and with the polarization vectors one obtain

Ms = Mµνρσ
s pµ εb,ν εc,ρ εd,σ

= c

{

(2p · εb)
[

(p · εc) (2q · εd)− (p · εd) (2q′ · εc) + (εc · εd)
(

p · (q′ − q)
)]

− (2p′ · p)
[

(εb · εc) (2q · εd)− (εb · εd) (2q′ · εc) + (εc · εd)
(

εb · (q′ − q)
)]

+(p · εb)
[(

εc · (p′ − p)
)

(2q · εd)−
(

εd · (p′ − p)
)

(2 ∗ ∗ ∗ ∗ ∗′ ·εc)
]

+(p · εb)
[

(εc · εd)
(

(p′ − p) · (q′ − q)
)]}

= c

{

2 (p · εb)
[(

(p+ p′) · εc
)

(q · εd)−
(

(p+ p′) · εd
)

(q′ · εc)
]

−s ∗ ∗ ∗ ∗ ∗
[

2 (εb · εc) (q · εd)− 2 (εb · εd) (q′ · εc) + (εc · εd)
(

εb · (q′ − q)
)]}

(2.65)

Using now the conservation of the momentum and the fact that we are working in the Lorentz
gauge, it is easy to verify that the terms not proportional to the Mandelstam variable s cancel
each other. Using also the definition of c (2.64), we find the result

Ms = ig2faebf ecd

{

2 (εb · εc) (q · εd)− 2 (εb · εd) (q′ · εc) + (εc · εd)
[

εb · (q′ − q)
]}

(2.66)

With similar tricks one finds the contribution from the other channels. From the t–channel
we have:

Mt = −ig2facef edb

{

2 (εc · εd) (q′ · εb) + 2 (εb · εc) (p′ · εd)− (εb · εd)
[

εc · (p′ + q′)
]}

(2.67)

while from the u–channel one gets

Mu = −ig2fadef ecb

{

2 (εc · εd) (q · εb) + 2 (εb · εd) (p′ · εc)− (εb · εc)
[

εd · (p′ + q)
]}

(2.68)

In order to sum these three contributions, we make use of the Jacobi identity

faebf ecd + fadef ecb − facef edb = 0 (2.69)

and we change the color factor of the last term of each channel in color factors of the other
two channels. Using again the conservation of the momentum and the gauge choice we did,
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we can write

M = Ms +Mt +Mu

= ig2
{

faebf ecd
[

(εb · εc) (p · εd)− (εb · εd) (p · εc)
]

+facef edb
[

(εb · εc) (p · εd)− (εc · εd) (p · εb)
]

+fadef ecb
[

(εb · εd) (p · εc)− (εc · εd) (p · εb)
]}

(2.70)

This result means that the amplitude described by the Feynman graphs (2.62) does not
satisfy the requirement of gauge invariance. So, exactly as for the process qq → gg, we are
forced to introduce a new vertex. From the color structure of equation (2.70), one can argue
that the vertex needed is a contact term of four gluons. Then, renormalizability tells us that
the vertex does not contain any dimensionful quantity and Lorentz symmetry says that the
vertex must support four vectorial indexes. This means that we must consider a vertex

V µ1µ2µ3µ4 ∝
∑

i 6=j 6=k 6=l

Aijkl g
µiµj gµkµl + B ǫµ1µ2µ3µ4 (2.71)

With Aijkl and B we denoted generic numerical coefficients. Even here, the proportionality
between the two addenda is due to the fact that we have forgotten the color structure:
this must be exactly that given in expression (2.70). So, we should reproduce three times
the structure given in (2.71), one for each couple of structure constants. We consider the
first couple faebf ecd and impose the Bose symmetry on the exchange of gluons indexes7: we
see immediately that we are forced to require that the coefficients Aijkl and B reproduce
a structure antisymmetric in the exchange of a ↔ b and of c ↔ d and symmetric in the
exchanges of pairs ab↔ cd. With similar consideration on the other two couples of structure
constants, we can write the vertex in this form:

V µ1µ2µ3µ4 = A1f
aebf ecd (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ A2f
acef edb (gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ A3f
adef ecb (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4) (2.72)

The constants Ai are determined requiring that this new vertex gives a contribution opposite
in sign to that of the amplitude (2.70). An easy inspection shows that this requirement fixes
Ai = ig2.

So, the quartic contact vertex can be written in this form:

V µ1µ2µ3µ4 = ig2
{

faebf ecd (gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ facef edb (gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ fadef ecb (gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
}

(2.73)

and the gauge invariance is restored again.

7We link color index a with Lorentz index µ1 and so on.
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2.3.6 QCD Feynman rules

i kp
= δik

i

p/−m+ iǫ
a,α b,βk

= δab
i

k2 + iǫ

(

−gαβ + (1− λ)
kαkβ

k2

)

a bk
= δab

i

k2 + iǫ

a,α

ij

= −igγαtaij

a,α

b,βc,γ

pa

pb

pc
= −gfabc

[

gαβ (pa − pb)
γ + gβγ (pb − pc)

α + gγα (pc − pa)
β
]

a,α b,β

c,γ d,δ

= −ig2
[
f eacf ebd

(
gαβgγδ − gαδgγβ

)
+ f eadf ebc

(
gαβgγδ − gαγgβδ

)

+f eabf ecd
(
gαγgβδ − gαδgβγ

)]

a,α

cb

p = gfabcpα
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Chapter 3

Color algebra

3.1 SU(3) algebra

The SU(3) group is the group of 3× 3 unitary matrices U with unit determinant

U †U = UU † = 1, detU = eTr{logU} = 1. (3.1)

One can always write
U = eiωata , a = 1, . . . , N2 − 1 (3.2)

with ωa reals and matrices ta hermitian and traceless

ta = (ta)† , Tr{ta} = 0 (3.3)

Quark fields ψ are in the fundamental representation (3), anti-quarks in the anti-fundamental
(3̄) and gluons in the adjoint (8). Matter fields transform under SU(3) according to

ψ′(x) = U(x)ψ(x) (3.4)

ψ̄′(x) = ψ̄(x)U(x)†, (3.5)

color singlets can thus be formed out of a quark-antiquark pair via

∑

i

ψ∗
iψi →

∑

i,j,k

U∗
ijψ

∗
jUikψk =

∑

j,k

(
∑

i

U †
jiUik

)

ψ∗
jψk =

∑

k

ψ∗
kψk (3.6)

but it’s also possible to form color singlet from three quarks (or anti quarks) using

∑

i,j,k

ǫijkψiψjψk →
∑

i,j,k,l,m,n

ǫijkUilUjmUknψlψmψn =
∑

l,m,n

detUǫlmnψlψmψn (3.7)

In this way one can accommodate all observed hadrons and mesons in color invariant states.
Furthermore, since in a system with nq quarks and nq̄ antiquarks it’s possible to form color
singlet only if
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nq − nq̄ mod 3 = 0, (3.8)

it is easy to see that all these invariant states must have integer electric charge, provided the
usual charges assignments : 2

3
e for up type quarks and −1

3
e for down type ones. With these

choices the QCD Lagrangian can be written as

L = LG + LG.F. + LF.P. + LF (3.9)

where the pure gauge Lagrangian is

LG = −1

4
F a
µνF

a µν , F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (3.10)

the gauge-fixing part is

LG.F. = − 1

2λ

(
∂µAa

µ

)2
(3.11)

and the Faddeev-Popov one is

LF.P. = ∂µχ̄aDab
µ χ

b with Dab
µ = δab∂µ + igfabcAc

µ. (3.12)

Finally the fermion Lagrangian reads

LF =
∑

flavour

ψ̄i
f

(

iD/ ij
µ −mfδ

ij
)

ψj
f with Dij

µ = δij∂µ + igtaijA
a
µ (3.13)

where the SU(3) algebra tells us that

[
ta, tb

]
= i fabctc (3.14)

and we chose the convention

Tr{tatb} = TFδ
ab, TF =

1

2
. (3.15)

One can show that in this way the structure constants f are always reals and antisymmetric.
For example taking the complex conjugate of (3.14) one has

−i
(
fabc

)∗
(tc)† =

[(
tb
)†
, (ta)†

]

= −
[
ta, tb

]
(3.16)

because of hermiticity of t’s. Thus
(
fabc

)∗
= fabc. In the same way taking the trace of

ifabctctd =
[
ta, tb

]
td (3.17)

one gets

ifabcTFδ
cd = Tr{

[
ta, tb

]
td} (3.18)

fabc = −2iTr{
[
ta, tb

]
tc}. (3.19)

that shows that f is antisymmetric.
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We generalize now to the SU(n) group: the generic hermitian n × n matrix M can be
written as

M = nata + n0
In×n (3.20)

with n0 fixed by the trace to be n0 = Tr{M}/n. In the same way

Mtb = natatb + n0tb (3.21)

with na now fixed to na = 2Tr{Mta}. Thus

M = 2Tr{Mta}ta + 1

n
Tr{M}In×n (3.22)

Taking M =
[
ta, tb

]
one can re-derive the formula for fabc

[
ta, tb

]
= 2Tr{

[
ta, tb

]
tc}tc (3.23)

ifabctc = 2Tr{
[
ta, tb

]
tc}tc (3.24)

fabc = −2iTr{
[
ta, tb

]
tc}. (3.25)

Using Jacobi identities it’s also possible to define the adjoint representation by means of
matrices T , made by structure constants

(
T b
)

ac
= ifabc (3.26)

such that they satisfy
[
T a, T b

]
= ifabc T c. Defining now

T 2
ik = T a

ijT
a
jk (3.27)

one can show that
[
T b, T 2

]
= T bT aT a − T aT aT b = −

[
T a, T b

]
T a − T a

[
T a, T b

]
(3.28)

= −ifabcT cT a − T aifabcT c = −ifabc{T c, T a} = 0 (3.29)

T 2 is a Casimir of the representation and by Schur’s lemma it must be proportional to the
identity.

3.2 Color coefficients

Provided that the most important difference between QCD and QED is the non abelianity
of the former, it worths to separate the non abelian part evaluating color coefficients of
sequences of t matrices and then proceed as in usual QED computations. For example the
color coefficient for the fermion self energy correction is defined to be

i j k

taijt
a
jk ≡ CFIik (3.31)
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One can easily evaluate it taking the trace of the previous relation

Tr{taijtajk} = Tr{CFIik} (3.31)

1

2
δaa = CFn (3.32)

CF =
n2 − 1

2n
(3.33)

The gluon self energy diagram

a

b

c

d ifabcif cbd =
(
T b
)

ac

(
T b
)

cd

= CA Iad (3.34)

allows the definition of a new constant CA, but this will be evaluate later on since it is a
little bit involved.

Let’s instead apply (3.22) to a set of generic hermitian matrices

M i
k = δi(j)δ

(l)
k (3.35)

obtaining, after the trace

Tr{M} = δi(j)δ
(l)
i = δ

(l)
(j) (3.36)

Tr{Mta} = δi(j)δ
(l)
k t

a
ki = ta(l)(j). (3.37)

Thus

M i
k =

1

n
δ
(l)
(j)δ

i
k + ta(l)(j)t

a
ik. (3.38)

Diagrammatically this is equivalent to

j i

kl
=

(
1

n

) j i

kl
+ 2

j i

kl
(3.39)

where the n2 = 9 components of the left hand side are shared between the one component
of the singlet projector P(0) and the eight ones of the octect projector P(8). Let’s show that
they are true projectors:

P 2
(0) =

1

n2

j i

kl
=

n

n2

j i

kl
= P(0) (3.40)
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P 2
(8) = 4

j i

kl
= 4

1

2
δab

j i

kl
= P(8) (3.41)

P(0)P(8) =
2

n

j i

kl
∼ Tr{ta} = 0 (3.42)

Now using these projectors it’s easy to evaluate colour factor. For example closing the quark
line i− j in (3.39) as shown below one gets

j i

kl
=

(
1

n

) j i

kl
+ 2

j i

kl
(3.43)

which equals

n l k =

(
1

n

)

l k + 2 l k (3.44)

so that

l k =
1

2

(

n− 1

n

)

l k = CF l k . (3.45)

Furthermore, adding one extra gluon, one can recover that

j i

kl
=

(
1

n

) j i

kl
+ 2

j i

kl
(3.46)

or, in other words,

0 =

(
1

n

)

l k

b

+ 2

b

kl

. (3.47)

Thus, assumming that b is the color index of the emitted gluon, one gets the relation

tatbta = − 1

2n
tb (3.48)

which corresponds to

b

kl

= − 1

2n l k

b

=

(

CF −
CA

2

)

l k

b

. (3.49)
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The last equality will be verified as soon as we will find the value of CA. But we’re now
ready to perform this calculation: considering the following relation

tatcifabc =

(
1

2
[ta, tc] +

1

2
{ta, tc}

)

ifabc

=
1

2
[ta, tc] ifabc

=
1

2
ifacdtdifabc

=
CA

2
tb (3.50)

which has the graphical meaning

b

j

l

=
CA

2

b

j

l

(3.51)

applied to the following diagram

a

c

b

d

j

l

= ifabcif cbdtd = ifabc
(
tctb − tbtc

)

=
[
ta, tb

]
tb + ifacbtbtc

=
[
ta, tb

]
tb + [ta, tc] tc

= 2
[
ta, tb

]
tb = CAt

a

= 2
(
tatbtb − tbtatb

)

= 2ta
n2 − 1

2n
− 2

(

− 1

2n

)

ta = nta (3.52)

One finds
CA = n (3.53)

With these rules one can compute the colour factor for the generic graph. As an example
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let’s try to evaluate the color factor of the interference term







b

j

l







∗








b

j

l









= b

j

l

=
CA

2
b

j

l

=
CA

2
CF

=
CA

2
CF n . (3.54)
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Chapter 4

QED renormalization

1. To be done even if the quantum corrections were finite!

2. the same procedure cancels all the divergences at all orders

In the first chapters we analyzed many aspects of gauge theories. Time is ready to put all
those informations together and to look at the most important consequences that a quantum
field theory has on our knowledge of physics.

In this section we start the analysis of perturbative corrections to amplitudes in the
simplest context of QED. The bare Lagrangian is

L = ψ̄Bi/∂ψB − 1

4
F µν
B FB

µν − gBψ̄B /ABψB −mBψ̄BψB

The abelianity of the theory implies, as we have seen, that there is only one kind of vertex.
This point, though simplifying many calculations, does not exclude the possibility to fix the
principles governing renormalization and its main consequences.

As we have just seen in section 1, as soon as loop integrals are concerned, one has to use
a regularization technique in order to prevent the amplitude to diverge. In gauge theories,
dimensional regularization, though very mathematical, is a natural choice since it preserves
both gauge and Lorentz invariance. Other techniques are more physically based. Here we
adopt one of these, consisting in the introduction of an UV cutoff Λ in the loop integral.
This cutoff, in the Wilsonian way of thinking at quantum field theories, can be seen as the
last energy scale at which our theory is valid: we can look at the theory as an effective field
theory that makes sense up to Λ scale.

Dimensional regularization will be used in the next chapter, when we will study 1-loop
corrections to QCD amplitudes.

The basic blocks we need to renormalize the theory (at one loop), i.e. to extract finite
predictions from mathematical divergent quantities, are the computation of the fundamental
divergent Feynman diagrams: the fermion and the photon self energy and the vertex correc-
tions. Moreover, in all the computations we will assume for simplicity massless fermions.
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4.1 Fermion propagator

We consider the first order corrections to the propagator of a fermion. The Feynman integral
we have to calculate is The corresponding value1, in the Feynman gauge and neglecting the

p p+l p

l

α α

fermion mass, is given by

M =

∫ Λ d4ℓ

(2π)4
−i
ℓ2

(−ieBγα)
i

p/+ ℓ/
(−ieBγα)

= −e2B
∫ Λ d4ℓ

(2π)4
1

ℓ2
γα

1

p/+ ℓ/
γα

= 2e2B

∫ Λ d4ℓ

(2π)4
1

ℓ2
1

p/+ ℓ/
(4.1)

where Λ is the cutoff. In the last line we used the identity

γα γβ γα = −2γβ (4.2)

The proof is a direct consequence2 of the Clifford algebra {γα, γβ} = 2gαβ.

We observe that M has the dimension of an energy. Having fixed the mass m of the
fermion to be 0, the only dimensionful parameter in the integral (apart the cutoff, that plays
a different role) is the momentum pµ and since M is Lorentz-invariant, we can write

M = Ap/ (4.3)

The parameter A comes from the result of the loop integral and, since from (4.3) it has to be
dimensionless, we expect it to diverge at most logarithmically with Λ. We also note that (4.1)
does not diverge in the infrared region (ℓ → 0) because there is a /p in the denominator. In
order to find A, we derive (4.1) and (4.3) with respect to pµ. Using the relation

∂pµ

(
1

p/+ ℓ/

)

= − 1

p/+ ℓ/
γµ

1

p/+ ℓ/
(4.4)

1Having to calculate an amplitude, there would be the usual spinors ū (p) and u (p) at the extrema of
our expression. Actually we are not calculating an amplitude but a self-energy diagram so we do not need
to saturate polarization indexes with spinors.

2Note that (4.2) as it stands is true in four-dimension Minkowski spacetime.
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which is a consequence of s−1s = 1, with s = (p/+ ℓ/), we approde to the identity

Aγµ = −2e2B

∫ Λ d4ℓ

(2π)4
1

ℓ2
1

p/+ ℓ/
γµ

1

p/+ ℓ/

= −2e2B

∫ Λ d4ℓ

(2π)4
(p+ ℓ)α (p+ ℓ)β

ℓ2
[
(p+ ℓ)2

]2 γαγµγβ (4.5)

Up to now the computation is exact. At this point we neglect all the pmomentum dependence
in the integral (ℓ ≫ p) since we are now interested in the high momentum behavior of the
theory: in other words we want to extract the leading singularity of the integral in the UV
limit. After this assumptions the previous formula becomes

Aγµ ≃ −2e2B

∫ Λ d4ℓ

(2π)4
ℓαℓβ

(ℓ2)3
γαγµγβ

= −e
2
B

2
γαγµγ

α

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.6)

where the Lorentz dependence of the integrand can be extracted by replacing, under the
integral, ℓαℓβ with ℓ2gαβ/4. Using again (4.2) on the right hand side of (4.6) we have

A ≃ e2B

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.7)

Perform this integral is now an easy task: passing in Euclidean time and remembering that
the surface of a 4–dimensional sphere of radius one is 2π2 (see equation (1.23)), we get:

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
= i

π2

(2π)4
log

(
Λ2

µ2

)

(4.8)

So A becomes

A =
iαB

4π
log

(
Λ2

µ2

)

(4.9)

We observe that A diverges logarithmically with Λ as expected. Moreover, we have intro-
duced an arbitrary new energy scale µ. At this level the use of µ is required only to maintain
the argument of the logarithm dimensionless. Strictly speaking, the integral (4.8), as it
stands, would diverge also in the IR region but, as we pointed out earlier, this expression
comes from an integral that was free of IR divergences. For this reason the scale µ2 has not
a meaning deeper than that of being a generic scale obtained from the external momentum
p.

We now consider the sum of the graphs relative to the fermion propagator and its first
order correction. They are given by

p
+

p
+ O

(
α2
B

)
(4.10)
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and the related expression M is

M =
i

p/
+
i

p/
Ap/

i

p/

=
i

p/
(1 + iA)

≡ i

p/
Z2 (4.11)

where the renormalization constant Z2 (or the 1–loop correction to the propagator δ2 ≡
Z2 − 1) is defined by

Z2 = 1− αB

4π
log

Λ2

µ2
+O

(
α2
B

)

δ2 = −αB

4π
log

Λ2

µ2
+O

(
α2
B

)
(4.12)

Please notice that eq. (4.11) implies that the photon remains massless.

4.2 Vertex corrections

We now consider the first order correction to the QED vertex.

 µ

p

p′

l

(4.13)

Doing computation as before in the Feynman gauge, the graph of fig. (4.13) corresponds to
the following3:

Mµ =

∫ Λ d4ℓ

(2π)4
(−ieBγα)

i

/p′ + /ℓ
(−ieBγµ)

i

/p+ /ℓ
(−ieBγβ)

−igαβ
ℓ2

(4.14)

= −e3B
∫ Λ d4ℓ

(2π)4
γα

1

/p′ + /ℓ
γµ

1

/p+ /ℓ
γα

1

ℓ2

As in the fermion propagator loop, since we are interested in the UV behavior of the ampli-
tude, we can neglect p and p′ in the fermion propagators: collecting all the gamma matrices
outside the integral, we are left with

Mµ ≃ −e3Bγαγγγµγδγα
[∫ Λ d4ℓ

(2π)4
ℓγℓδ
(ℓ2)3

]

= −e3Bγαγγγµγδγα
[∫ Λ d4ℓ

(2π)4
gγδ
4

1

(ℓ2)2

]

(4.15)

3In (4.13) the momenta p and p′ flow out of the graph.
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where the Lorentz dependence of the integral within squared brackets can be extracted
multiplying it with gγδ. By repeated use of (4.2) we write

Mµ = −e3Bγµ
∫ Λ d4ℓ

(2π)4
1

(ℓ2)2

The integral is like that in the previous computation, so at the end we have

Mµ = −i e
3
B

16π2
γµ log

(
Λ2

µ2

)

The divergence is logarithmic, as power counting shows in eq. (4.14) and the meaning of µ2

is the same discussed in the previous paragraph.

In order to calculate the vertex renormalization constant Z1 at 1–loop, we have to sum
this graph with the tree level vertex, obtaining

−ieBγµZ−1
1 ≡ (−ieBγµ) +

(

−i e
3
B

16π2
γµ log

(
Λ2

µ2

))

from which at the end we read (Z1 ≡ 1 + δ1)

Z−1
1 = 1 +

αB

4π
log

(
Λ2

µ2

)

+O(α2
B)

δ1 = −αB

4π
log

(
Λ2

µ2

)

+O(α2
B) (4.16)

4.3 Photon propagator

The one loop contribution to the photon propagator in the Feynman gauge is

β

k

l

α

k+l

= − (−ieB)2 Tr
∫ Λ d4ℓ

(2π)4
γα
i

ℓ/
γβ

i

ℓ/ + /k
(4.17)

which seems to diverge quadratically. We will show that this divergence is instead logarith-
mic. The contribution to the propagator coming out (4.17) is only transverse, due to Ward
identity, which means that if we contract this integral with kα or kβ we do obtain zero. This
means that the structure of the integral can be summarized as follows

− (−ieB)2 Tr
∫ Λ d4ℓ

(2π)4
γα
i

ℓ/
γβ

i

ℓ/ + /k
= B

(
kαkβ − k2gαβ

)
(4.18)

Since we want to calculate (4.17) this is equivalent to calculate B in (4.18). We also note
that since B is dimensionless it can only depend on the ratio Λ2/k2. We contract with gαβ

and use the identity (4.2) finding

2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

1

ℓ/ + /k
= −3Bk2 (4.19)
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The term which gives the dimensionful external scale is k and it appears in both the two sides
of (4.19). If we would now to simplify the calculation of the integral we should eliminate k in
the second side leaving it only in the integral. This can be achieved acting on the equation
with the derivative ∂kα and ∂kβ , using (4.4) we find

−3B∂kα∂kβk
2 = 2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/
∂kα∂kβ

1

ℓ/ + /k

−6Bgαβ = 2e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k
γβ

1

ℓ/ + /k
γα

1

ℓ/ + /k
+

1

ℓ/ + /k
γα

1

ℓ/ + /k
γβ

1

ℓ/ + /k

)

At this point we contract the equation with gαβ obtaining

−24B = 4e2BTr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k
γα

1

ℓ/ + /k
γα

1

ℓ/ + /k

)

B =
e2B
3
Tr

∫ Λ d4ℓ

(2π)4
1

ℓ/

(
1

ℓ/ + /k

)3

(4.20)

We can again make the approximation ℓ ≫ k. Recalling that /ℓ−1/ℓ−1 = 1/(ℓ2) and after the
trace, one gets

B =
4

3
e2B

∫ Λ d4ℓ

(2π)4
1

(ℓ2)2
(4.21)

where the integral is again the same as in the previous calculations. This one loop integral
contributes to the photon propagator when we sum it to the first piece. We have the structure

ν

k

µ + ν

k

αµ β + . . . (4.22)

which corresponds to

−ig
µν

k2
+

(

−ig
µα

k2

)

B(kαkβ − k2gαβ)

(

−ig
βν

k2

)

+ . . . (4.23)

Having instead made the calculation in Lorentz gauge we would have used the tree level
propagator with terms containing kµkν(1 − λ) and this would have given in (4.23) terms
proportional to kµkν . Nevertheless, the result would be the same since these terms do not
give any contribution because of gauge invariance. In fact the sum (4.21) will be connected
to an external conserved current or to a polarization vector. In both case we will hit the
kµ kν term with a current or a polarization vector and in both cases this will give a null
contribution. We thus obtain from (4.23)

−ig
µν

k2
(1 + iB) ≡ −ig

µν

k2
Z3 (4.24)
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Using (4.8) and applying it to (4.21) we get (Z3 ≡ 1 + δ3)

Z3 = 1− 4

3

π2

(2π)4
e2B log

(
Λ2

µ2

)

= 1− 2

3

αB

2π
log

(
Λ2

µ2

)

δ3 = −2

3

αB

2π
log

(
Λ2

µ2

)

(4.25)

For the photon propagator it is important to take a look also at the result that we obtain if
we try to sum all the radiative corrections. This corresponds to sum all the graphs made by
connecting more and more 1–particle irreducible Feynman graphs. We obtain a geometric
series like

−ig
µν

k2

+∞∑

n=0

(iB)n = −ig
µν

k2
1

1− iB
(4.26)

where B is the 1–PI graph and at one loop it is exactly our old B.

Despite its obviousness, equation (4.26) shows a fundamental property of QED: the
photon remains exactly massless even after higher order quantum corrections are considered.
In fact the pole is again at k2 = 0, i.e. it is not displaced by radiative corrections. This is
is an example of a fundamental property of Quantum Field Theories: an exact symmetry of
the Lagrangian (here the gauge symmetry) has deep consequences also on the way radiative
corrections manifest themselves. As we have just seen the local U(1) of QED forbids the
photon to acquire a mass after quantum corrections, forcing the propagator structure to be
transverse and lowering the degree of divergence from 2 to 0. Another well known example is
the (global) chiral symmetry of the Dirac massless Lagrangian that forces the fermion field
to stay massless even after loop corrections: from this argument follows that if the mass is
present in LDirac the self energy has to bee proportional to the mass itself, forcing again the
divergences of the one loop self energy to be logarithmical and not linear, as power counting
would tell.

4.4 The Lehmann–Symanzik–Zimmermann (LSZ) for-

mula

4.5 The running of the coupling constant

We begin analyzing the physical meaning of previous calculations, by recalling the definition
of renormalization constants Zi (see (4.12), (4.16) and (4.25))

Z1 ≡ 1 + δ1 (4.27)

Z2 ≡ 1 + δ2 (4.28)

Z3 ≡ 1 + δ3 (4.29)
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If we consider e−µ−→ e−µ− scattering and compute higher order virtual corrections to the
amplitude, at order e4B, we have to sum the following graphs

µ-

e
-

+

µ-

e
-

+

µ-

e
-

(4.30)

Box corrections (that are not UV divergent) and the vertex correction at the muon vertex
are not shown. This last correction will play a role when considering the renormalization
of the muon charge. We then considered only the radiative corrections on the lower half of
the diagrams (on the electron part of the amplitude) that means that in the following we
will think only to the prediction of the theory for the physical measurable electron charge
eP . From this it follows also that the second graph will contribute with a one half factor (or
square root factor). We thus have that the sum of the graphs goes like

∼ eB

(

1 +
1

2
δ3 − δ1 + δ2 + δ2

)

∼ eB Z
1/2
3 Z2

2 Z
−1
1 (4.31)

In addition, a factor
(

Z
1/2
2

)2

has been added, to comply with the LSZ formula4. In this

case, we’re dealing with external fermions (electrons), so we must multiply twice by Z
−1/2
2 .

We note that this gives exactly the same result that one would obtain adding only connected
diagrams shorn of self energy corrections on external legs and multiplying this result with a
Z

1/2
i factor for every external leg of type “i”, as in the standard LSZ formula. In both cases

the correct answer for the amplitude is

M ∼ eB Z
1/2
3 Z2 Z

−1
1 = eB Z

1/2
3 (4.32)

where we have used the fact that at the first order our calculation gives Z1 = Z2
5. Equation

(4.32) also suggests us that in some sense the renormalization of QED is related only to
the correction of the photon self energy (Z3): we will come back on this at the end of this
section.

From all these considerations, we are now left with something proportional to eB
√
Z3

and this will be our definition for the physical electron charge eP , since the cross section we
would obtain from the amplitude contains a (eB

√
Z3)

2 factor and the cross section is the
link between theory and measurable quantities. Thus we define6

eP =
√

Z3 eB (4.33)

4The usual conventions are i = 2 for fermions and i = 3 for gauge bosons.
5As we shall see later on, this equality holds at all orders, by virtue of Ward identities.
6Instead of eP , usually one calls this quantity the renormalized charge eR but in this part we will continue

to use eP in order to remind that this is the value that in the theory has the meaning of measurable, physical
electron charge.
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From the previous equation it is now easy to see how the physical charge varies with the
energy scale µ: at the scale µ2 its value is

eP (µ
2) = eB

{

1− 2

3

αB

2π
log

(
Λ2

µ2

)}1/2

≃ eB

{

1− 1

3

αB

2π
log

(
Λ2

µ2

)}

(4.34)

while at the scale µ2
0

eP (µ
2
0) = eB

{

1− 1

3

αB

2π
log

(
Λ2

µ2
0

)}

. (4.35)

The difference is thus no more dependent on the cutoff scale Λ

eP (µ
2)− eP (µ

2
0) = eB

1

3

αB

2π

{

log

(
Λ2

µ2
0

)

− log

(
Λ2

µ2

)}

=
e3B
24π2

log

(
µ2

µ2
0

)

. (4.36)

Now we are free to replace the bare charge eB with the physical (renormalized) one eP in
the right hand side of the previous equation, up to terms of higher order, finding

eP (µ
2)− eP (µ

2
0) =

e3P
24π2

log

(
µ2

µ2
0

)

+O
(
e4P
)
. (4.37)

The running of the coupling constant is thus

eP (µ
2) = eP (µ

2
0) +

e3P
24π2

log

(
µ2

µ2
0

)

+O
(
e4P
)
. (4.38)

The previous formula is very important since, given the value of the physical charge at one
fixed scale µ0, one can extrapolate the new eP value at any other scale µ, keeping in mind
that one have to remain in the perturbative regime.

Before going on, a remark on the way we introduced the scale µ is due: µ2 was a scale of
the order of the external momenta of the legs of which we calculated the radiative corrections.
In particular, looking at the graphs we added (eq. (4.30)), for the photon self energy and the
vertex corrections we can think at µ2 as the off–shellness of the virtual exchanged photon,
i.e. the typical scale of the process.

Keeping in mind all these observations, eq. (4.38) tells us a fundamental unexpected
thing: if we make two measurements for a process involving the electron charge at different
energies and we want to predict the correct result, we have to use different values for the
electron charge itself. In this sense we can also say that the constant eP is no longer a
constant but it runs in a way predicted by the theory. It is also clear that for the theory to
be predictive it is needed to fix the value of the constant at one scale7 and then use (4.38)
to extract the corresponding value at another scale and use it in the computation.

To obtain the running of the renormalized coupling αR one can proceed in a slightly
different way: it is useful to see how it works because we will use the following argument to

7Typically in QED one fix the fine-structure constant α to be equal to the low energy measured value
≈ 1/137 at the scale µ2 = m2

e.

56



obtain the running of the QCD coupling using dimensional regularization. Obviously, since
the theory is the same, the results will be equal to that expressed in (4.38).

The starting point is to consider that if we square (4.33) and then extract the value of
αB as a function of αR we obtain

αB = Z−1
3 αR (4.39)

The left hand side of this equation can not depend on the renormalization scale8 µ because
eB was a completely free parameter in the initial Lagrangian. Furthermore, since Z3 depends
on µ, also αR has to be a function of µ in order to have a meaningful equation. Taking the
full derivative of the previous equation with respect to log µ2 we obtain

0 =
dαB

d log µ2
=

d

d log µ2

{[

1 +
2

3

αB

2π
log

(
Λ2

µ2

)]

αR

(
µ2
)
}

= −2

3

αB

2π
αR

(
µ2
)
+

[

1 +
2

3

αB

2π
log

(
Λ2

µ2

)]
dαR (µ2)

d log µ2
. (4.40)

Solving the previous equation and recalling the definition of the beta function

β(αR(µ
2)) =

dαR (µ2)

d log µ2
(4.41)

one gets the QED beta function at the leading order

β(αR(µ
2)) =

2

3

αB

2π

[

1 +
2

3

αB

2π
log

(
Λ2

µ2

)]−1

αR

(
µ2
)
=

2

3

α2
R (µ2)

2π
+O

(
α3
R

)
. (4.42)

4.6 Ward identities

The Ward–Takahashi identity states that there is a relation between the vertex −iΓµ and
the inverse fermion propagator S−1

F , holding at every order in perturbation theory

−ikµΓµ(p+ k, p) = S−1
F (p+ k)− S−1

F (p) (4.43)

In the limit of soft photon momentum k→ 0, we have

−iΓµ = (−iγµ)Z−1
1 (4.44)

while the all order propagator are

SF (p) =
i

/p−m
Z2 (4.45)

so we can prove Z1 = Z2 at all order by simply substituting into (4.43), obtaining

−i/kZ−1
1 = −iZ−1

2 [/p+ /k −m− /p+m] ⇒ Z1 = Z2. (4.46)
8The only scale from which αB can depend is the scale Λ that in some sense was present from the

beginning, being the scale up to which the theory is valid. It was the maximum scale at which the Lagrangian
is supposed to be correct.
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4.7 QED renormalization in short

A straightforward way to understand QED renormalization (and in particular the fact that
it depends only on the renormalization constantZ3) is to consider the bare Lagrangian

L = ψ̄Bi/∂ψB − 1

4
F µν
B FB

µν − eBψ̄B /ABψB −mBψ̄BψB

and look how it is changed after the following rescaling . . .
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Chapter 5

QCD renormalization

As in QED we proceed through the usual fields strength renormalization, which means
that we introduce a set of renormalization constants Zi such that bare fields are related to
renormalized ones. Before doing that we shall show how each divergent contribution obtained
using bare fields can be correctly evaluated in the context of dimensional regularization. This
regularization prescription consists in doing all the calculations after having analytically
continued the number of spacetime dimensions to a value in which integrals does converge.
In doing so, in order to maintain the coupling constants dimensionless, one is forced to
introduce a dimensionful parameter µ which takes account for the extra dimensions keeping
the action dimensionless.

In a d-dimension space-time, the dimension of the Lagrangian is d. It follows from the
analysis of the kinetic terms, that the dimension of the fermionic field ψ is (d − 1)/2, and
the dimension of the gauge field Aν is (d− 2)/2. The coupling constant than has dimension
of (4 − d)/2. For this reason, in order to deal with a dimensionless coupling constant, one
explicitly add a mass parameter µ every time the coupling constant appears. In d = 4− 2ǫ,
one then replaces

g → gµǫ . (5.1)

5.1 Gluon self-energy

There can be four possible contributions to the gluon self energy at one loop. Let’s analyze
them separately. The first one is the fermion loop contribution, which gives, after the sum
over the nf flavors that can run in the loop,

a

µ

b

ν

l, i

l+k, j

k

=
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= −nf

∫
ddℓ

(2π)d
Tr

[
(
−igµǫtaij

)
γµ

i

ℓ/ + /k

(
−igµǫtbji

)
γν
i

ℓ/

]

. . . = −g2µ2ǫnf TF δ
ab Tr{γµγαγνγβ}

∫
ddℓ

(2π)d
(ℓ+ k)α ℓβ

ℓ2 (ℓ+ k)2

= −g2µ2ǫnf TF δ
ab 4

[
gµαgνβ − gµνgαβ + gµβgνα

] [
Bαβ(k) + kαBβ(k)

]

= −g2µ2ǫnf TF δ
ab 4

[
gµαgνβ − gµνgαβ + gµβgνα

]

[
dB0(k)

4 (d− 1)
kαkβ − k2B0(k)

4 (d− 1)
gαβ − B0(k)

2
kαkβ

]

= g2µ2ǫnf TF δ
ab B0(k)

(d− 1)

[
gµαgνβ − gµνgαβ + gµβgνα

] [
k2gαβ + (d− 2) kαkβ

]

= g2µ2ǫnf TF δ
ab B0(k)

(d− 1)
2 (d− 2)

(
kµkν − k2gµν

)
(5.2)

If we now put d = 4− 2ǫ and expand B0(k) around it’s pole at ǫ = 0 using (1.32) we find

. . . = g2µ2ǫnf TF δ
ab 2 (2− 2ǫ)

(3− 2ǫ)

i

(4π)2
CΓ e

iπǫ

ǫ (1− 2ǫ)

(
k2
)−ǫ (

kµkν − k2gµν
)

≈ i
αS

4π
δab
(

−4

3
nfTF

1

ǫ

)
(
k2gµν − kµkν

)
+O

(
ǫ0
)

(5.3)

This is exactly the same result, except for the color factor CF and the Kronecker’s δ, one
would have find in QED for the photon propagator, if he would have performed the calcula-
tion within dimensional regularization scheme.

The second contribution comes from a gluon loop of this kind

a

µ

b

ν

k

l, c, ρ 

k+l, d, σ

=

=
1

2

∫
ddℓ

(2π)d
(
−gµǫfacd [gµρ (k − ℓ)σ + gρσ (2ℓ+ k)µ + gσµ (−2k − ℓ)ρ]

)
·

·
(

−gµǫfd′c′b
[

gσ
′ρ′ (k + 2ℓ)ν + gρ

′ν (−ℓ+ k)σ
′

+ gνσ
′

(−2k − ℓ)ρ
′

])

·

·−igσσ′δdd
′

(k + ℓ)2
−igρρ′δcc′

ℓ2

where the meaning of primed indexes, that are not graphically represented, is trivial because
they are related to internal gluon propagator lines. The one half factor in front of the
integral comes instead from the symmetry factor of the Feynman graph. One has a factor
(
1
3!

)2
for vertices orientations, a factor 3 for possible contraction between one external leg

and the first vertex, a factor 2 for vertices interchange and a final factor 3 · 2 for internal
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vertex contractions. All this factors cancels out in the product, but there is also the 1
2!

term from the Taylor expansion of the functional integral, which remains. Using the same
argument it’s trivial to show that the symmetry factor for fermion or even ghost loops is 1.
There, indeed, there is only the 1

2!
factor from Taylor expansion to be multiplied by the 2

possible vertices interchange, since fermion (ghost) or antifermion (antighost) internal legs
are distinguishable. Returning to our calculation one has

. . . =
1

2
g2µ2ǫCAδ

ab

∫
ddℓ

(2π)d
[gµρ (k − ℓ)σ + gρσ (2ℓ+ k)µ + gσµ (−2k − ℓ)ρ] ·

·
[

gσρ (k + 2ℓ)ν + g ν
ρ (−ℓ+ k)σ + g ν

σ (−2k − ℓ)ρ

] 1

ℓ2 (ℓ+ k)2

= g2µ2ǫCA

2
δab
∫

ddℓ

(2π)d
[
(d− 6) kµkν + 5k2gµν + (2d− 3) kµℓν+

+(2d− 3) kνℓµ + (4d− 6) ℓµℓν + 2gµνkαℓ
α + 2gµνℓ2

] 1

ℓ2 (ℓ+ k)2

= g2µ2ǫCA

2
δab
[
B0(k)

(
(d− 6) kµkν + 5k2gµν

)
+ (2d− 3) kµBν(k)+

+ (2d− 3) kνBµ(k) + (4d− 6)Bµν(k) + 2gµνkαBα(k) + 2gµνA0]

= g2µ2ǫCA

2
δabB0(k)

[
(d− 6) kµkν + 5k2gµν − (2d− 3) kµkν − k2gµν+

+
4d− 6

4 (d− 1)

(
d kµkν − k2gµν

)
]

= g2µ2ǫCA

2
δabB0(k)

[

− 7d− 6

2(d− 1)
kµkν +

6d− 5

2(d− 1)
k2gµν

]

.

= g2µ2ǫCAδ
ab B0(k)

4(d− 1)

[
(6− 7d)kµkν + (6d− 5)k2gµν

]
. (5.4)

At this point one proceed exactly as before, substituting d = 4− 2ǫ and expanding around
the pole

. . . = g2µ2ǫCA

4
δab

i

(4π)2
CΓ e

iπǫ

ǫ (1− 2ǫ)

(
k2
)−ǫ
[

−22− 14ǫ

3− 2ǫ
kµkν+

19− 12ǫ

3− 2ǫ
k2gµν

]

≈ i
αS

4π
CAδ

ab 1

ǫ

[
19

12
k2gµν − 11

6
kµkν

]

+O
(
ǫ0
)

(5.5)

There’s another graph involving gluons loop but it’s contribution is zero in the massless limit
since it’s proportional to A0 and there is no scale involved (see (1.29)).

a

µ

b

ν

l

k ∼
∫

ddℓ

(2π)d
1

ℓ2
= A0 = 0 (5.6)
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The last, but not the least, graph to be considered is the ghost loop

a

µ

b

ν

l

l+k

k

c

d

=

= −
∫

ddℓ

(2π)d
gµǫfacd (ℓ+ k)µ gµǫf bdcℓν

i

ℓ2
i

(ℓ+ k)2

= −g2µ2ǫCAδ
ab

∫
ddℓ

(2π)d
ℓµℓν + kµℓν

ℓ2 (ℓ+ k)2

= −g2µ2ǫCAδ
ab [Bµν(k) + kµBν(k)]

= −g2µ2ǫCAδ
abB0(k)

[
d kµkν

4 (d− 1)
− k2gµν

4 (d− 1)
− kµkν

2

]

= g2µ2ǫCAδ
ab B0(k)

4 (d− 1)

[
k2gµν + (d− 2) kµkν

]
(5.7)

Expanding eq. (5.7) around ǫ = 0, in d = 4− 2ǫ dimensions, we get

. . . = g2µ2ǫCAδ
ab 1

4 (3− 2ǫ)

[
k2gµν + (2− 2ǫ) kµkν

] i

(4π)2
CΓ e

iπǫ

ǫ (1− 2ǫ)

(
k2
)−ǫ

≈ i
αS

4π
CAδ

ab 1

ǫ

[
1

12
k2gµν +

1

6
kµkν

]

+O
(
ǫ0
)

(5.8)

The first important observation that can be made at this point is that by summing the
contributions from gluons and ghosts loop one obtain a propagator that is purely transverse.
By adding the gluon-loop contribution of eq. (5.4) to the ghost one, we get

. . . = g2µ2ǫCAδ
abB0(k)

2− 3d

2 (d− 1)

[
kµkν − k2gµν

]
. (5.9)

In an expansion in ǫ this becomes1

(5.5) + (5.8) = i
αS

4π
CAδ

ab 1

ǫ

5

3

[
k2gµν − kµkν

]
+O

(
ǫ0
)

(5.10)

Going on and summing the first contribution, i.e. eq. (5.3), one gets the one loop correction
to gluon propagator

(5.3) + (5.5) + (5.8) = i
αS

4π
δab

1

ǫ

(
k2gµν − kµkν

)
[
5

3
CA − 4

3
nfTF

]

+O
(
ǫ0
)

(5.11)

1Strictly speaking one should sum also (5.6), but is is zero.
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The full propagator at one loop is thus

a, µ b, ν
=

i

k2
δab (−gµν) +

i

k2
δaa

′

(−gµα) ·

·
[

i
αS

4π
δa

′b′ 1

ǫ

(
k2gαβ − kαkβ

)
(
5

3
CA − 4

3
nfTF

)]
i

k2
δb

′b
(
−gβν

)

= − i

k2
δabgµν

[

1 +
αS

4π

1

ǫ

(
5

3
CA − 4

3
nfTF

)]

. (5.12)

The last equality is possible since terms containing kα or kβ always give zero when the
propagator is contracted with a conserved current, as happens in QED. We can now define
the renormalization constant Z3 at one loop as the content of square bracket of (5.12)

Z3 = 1 +
αS

4π

1

ǫ

(
5

3
CA − 4

3
nfTF

)

(5.13)

5.2 Quark self-energy

As in the QED case, the one loop self energy of the quark is given only by the following
graph:

p, i p+l, k p, j

l, a, µ

=

∫
ddℓ

(2π)d
(−igµεtajkγ

µ)
i

/ℓ+ /p
(−igµεtakiγµ)

−i
ℓ2

= −g2µ2εtajkt
a
ki

∫
ddℓ

(2π)d
γµ

1

/ℓ+ /p
γµ

1

ℓ2

= (d− 2)g2µ2εtajkt
a
ki

∫
ddℓ

(2π)d
1

/ℓ+ /p

1

ℓ2

where in the last equality we have used γµγαγµ = (2 − d)γα that is the d–dimensional
generalization of (4.2). Using the properties of colour matrices algebra and the results of the
corresponding section, we have

... = (d− 2)g2µ2εδijCFγµ

∫
ddℓ

(2π)d
ℓµ + pµ

ℓ2(ℓ+ p)2

= (d− 2)g2µ2εδijCFγµ [Bµ(p) + pµB0(p)]

= (d− 2)g2µ2εδijCFγµ

[

−B0(p)

2
pµ + pµB0(p)

]

= g2µ2εδijCF/p

(
d− 2

2

)

B0(p)
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Before going on, we stress that to proceed we have to assume that the quark momenta
is such that p2 6= 0, otherwise this graph would vanish, since massless bubbles are zero in
dimensional regularization, as showed in the first section.

As before, we can now expand around the pole at ε = 0:

... = g2µ2εδijCF/p(1− ε)
i

(4π)2
CΓe

iπε

ε(1− 2ε)
(p2)−ε

≈ g2δijCF/p
i

ε(4π)2
+O

(
ǫ0
)

=
1

ε

αS

4π
CF δij i /p+O

(
ǫ0
)

As usual, the final step consists in extracting from this result the right expression for the
renormalization constants. We have to sum this virtual correction to the bare propagator,
obtaining

i j
= δij

i

/p
+

(

δik
i

/p

)[
αS

4π
CFδkl

i/p

ε

](

δlj
i

/p

)

= δij
i

/p

[

1− 1

ε

αS

4π
CF

]

From the last equation, we are left with

Z2 = 1− αS

4π

1

ε
CF (5.14)

5.3 Quark-gluon vertex corrections

The one loop corrections to the vertex gqq are given by two diagrams. The first one is

a, µ

p, i

p′, j

l, b, ν

p+l, m

l-p′, n
=

∫
ddℓ

(2π)d
(
−igµǫtbjmγ

ν
) i

ℓ/− /p ′
·

· (−igµǫtamnγ
µ)

i

ℓ/ + /p

(
−igµǫtbniγν

)
(

− i

ℓ2

)

= −
(

CF −
CA

2

)

taji g
3µ3ǫ

∫
ddℓ

(2π)d
γν (ℓ/− p/ ′) γµ (ℓ/ + p/) γν

ℓ2 (ℓ− p ′)2 (ℓ+ p)2

where the contribution of the color factors in the integral is estimated using (3.48). From
now on, we will make some simplifications, since we’re interested only in the UV behavior

64



of the theory. For this reason the momenta p and p ′ will be neglected. Such a dramatic
simplification proves to give the correct result anyhow, provided that one keeps in mind that
some dimensionful quantity that was present at the beginning is now missing. Neglecting p
and p ′ one thus gets

−g3µ3ǫtaji

(

CF −
CA

2

)∫
ddℓ

(2π)d
γνℓ/γµℓ/γν
(ℓ2)3

(5.15)

To calculate the integral in (5.15) we have to make the replacement, valid only inside the
integral,

ℓδℓδ′ =
gδδ′

d
ℓ2, (5.16)

obtaining

−g3µ3ǫtaji

(

CF −
CA

2

)∫
ddℓ

(2π)d
1

d

γνγδγµγδγν
(ℓ2)2

(5.17)

The product of the five gamma matrices can be reduced to

γνγδγµγδγν = (2− d)γνγµγν = (d− 2)2γµ (5.18)

The resulting integral is thus

−g3µ3ǫtaji

(

CF −
CA

2

)

γµ
(d− 2)2

d

∫
ddℓ

(2π)d
1

(ℓ2)2
. (5.19)

The last integral is not zero! Actually, unlike the case of A0, it is not true that it does
not carry any physical dimension, it is dimensionless only because of our approximation of
neglecting external momenta. Had we performed the full calculation we would have obtained
that the integral does depend on a dimensionful parameter Q, made by combination of
external momenta. For this reason, in order to reduce the integral to one that it’s easily
evaluable, we can reintroduce that scale substituting

∫
ddℓ

(2π)d
1

(ℓ2)n
→

∫
ddℓ

(2π)d
1

(ℓ2 −m2)n
= (−1)n

i

(4π)
d
2

Γ
(
n− d

2

)

Γ(n)
(m2)

d
2
−n (5.20)

In doing so we have recovered the missing dimension in such a way that the divergent
behavior of the integral is not altered. This last point is crucial to obtain the correct result.

If we now put d = 4− 2ǫ, and work in the limit ǫ→ 0 we obtain the final result

−igtajiγµ
αS

4π

1

ǫ

(

CF −
CA

2

)

(5.21)

The second diagram gives instead the contribution

a, µ

p, i

p′, j

l, k

b, β

c, γ
p+p′

=

∫
ddℓ

(2π)d
(
−gµǫfabc

) [
gµβ (−2p− p ′ + ℓ)

γ
+
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+gβγ (−2ℓ+ p− p ′)
µ
+ gγµ (ℓ+ 2p ′ + p)

β
]

−i
(ℓ− p)2

−i
(ℓ+ p ′)2

(
−igµǫγγt

c
jk

) i

ℓ/

(
−igµǫγβt

b
ki

)

=

∫
ddℓ

(2π)d
(
−gµǫfabc

) [
gµβ (−2p− p ′ + ℓ)

γ
+ gβγ (−2ℓ+ p− p ′)

µ
+

+gγµ (ℓ+ 2p ′ + p)
β
] −i
(ℓ− p)2

−i
(ℓ+ p ′)2

(
−igµǫγγt

c
jk

) i

ℓ/

(
−igµǫγβt

b
ki

)

(5.22)

Since, as shown in (3.50), ifabctctb = CA

2
ta in front of the integral we have a factor

−g3µ3ǫCA

2
taji (5.23)

The momenta p and p ′ can be neglected even in this computations of the integral, provided
that the dimensionful parameter that we’re casting away will be reintroduced later. So one
has

. . . = −g3µ3ǫCA

2
taji

∫
ddℓ

(2π)d

(
gµβℓγ − 2gβγℓµ + gγµℓβ

)
γγγργβℓ

ρ

(ℓ2)3
(5.24)

We can now exploit again the replacement (5.16) and also γµγµ = d. This implies

∫
ddℓ

(2π)d
γµ + 2 (d−2)

d
γµ + γµ

(ℓ2)2
=

4d− 4

d
γµ
∫

ddℓ

(2π)d
1

(ℓ2)2
(5.25)

At this point we proceed exactly as before, substituting the divergent integral as in (5.20),
since the problem is the same. The final result is

−igtajiγµ
αS

4π

1

ǫ

3

2
CA (5.26)

Summing now the tree level and the one loop contributions we obtain the gqq vertex at one
loop

a, µ

i

j

= −igtajiγµ − igtajiγ
µ αS

4π

1

ǫ

(

CF −
CA

2
+

3

2
CA

)

. . . = −igtajiγµ
(

1 +
1

ǫ

αS

4π
(CF + CA)

)

(5.27)

We can now define the renormalization constant Z1 via

Z−1
1 = 1 +

αS

4π

1

ǫ
(CF + CA) (5.28)
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At this point let’s take a breath and analyze how the Lagrangian is affected by this higher
order corrections. The bare qqg vertex reads

gBψ̄ /Aψ (5.29)

where, since we are in D = 4 − 2ǫ, the bare coupling constant gB is dimensionful. Now,
replacing bare fields with renormalized ones in the Lagrangian by virtue of

ψB = Z
1/2
2 ψR, Aµ

B = Z
1/2
3 Aµ

R (5.30)

we get
gB Z2 Z

1/2
3 ψ̄R /ARψR. (5.31)

In principle one can extend this argument even at the others vertices 2 of the theory, finding
a combination of multiplicative factor for each one of them. Nevertheless these factor are
not arbitrarily free, since the BRS symmetry constrain them to combine in such a way that
the Lagrangian remains gauge invariant. To cut a long story short, one can demonstrate
that there are a set of relations between these vertex correction factors (Slavnov–Taylor
identities) by virtue of which one can introduce a single renormalization factor and use a
single gauge coupling instead of different ones for different vertices. Calling this common
renormalization of the bare gauge coupling Zg and extracting the dimensionful parameter µ
in such a way that the renormalized coupling gR becomes dimensionless

gB = Zg gR µ
ε (5.32)

one gets that the quark–gluon vertex in the Lagrangian becomes now

gR µ
ε Zg Z2 Z

1/2
3 ψ̄R /ARψR. (5.33)

But, from the evaluation of one loop corrections, we know that the qqg vertex gets Z−1
1 as

a correction factor. Hence, since what we can actually measured can only be the vertex,
we ask that all the divergent factors obtained by rescaling fields must be cancelled by the
multiplicative vertex correction factor Z−1

1 just computed. In this way when one extract a
physical quantity from a measurement he gets a finite number. This correspond in this case
at the definition

Z1 = Zg Z2 Z
1/2
3 (5.34)

Returning now to the Zg definition we find that, using (5.13), (5.14) and (5.28) the
renormalization constant for the gauge coupling is

Zg =
Z1

Z2Z
1/2
3

= 1− αS

4π

1

ǫ
(CF + CA) +

αS

4π

1

ǫ
CF −

1

2

αS

4π

1

ǫ

(
5

3
CA − 4

3
nFTf

)

= 1− αS

4π

1

ǫ

(
11

6
CA − 4

6
nfTf

)

≡ 1− αS

ǫ

b0
2

(5.35)

where

b0 =
1

12π
(11CA − 4nfTf ) (5.36)

2In QCD these are the 3–gluon, 4–gluon and ghost-gluon vertex
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5.4 The running coupling constant and the β function

After the long calculations performed in previous sections, it’s time to point out, as done in
the QED case, what is the underlying physical meaning.

First of all, we resume here the results just found separating the one loop corrections as
δ’s (see equations (5.13), (5.14), and (5.28)):

Z1 = 1 + δ1 δ1 = − αS

4π

1

ε
(CF + CA)

Z2 = 1 + δ2 δ2 = − αS

4π

1

ε
CF

Z3 = 1 + δ3 δ3 =
αS

4π

1

ǫ

(
5

3
CA − 4

3
nfTF

)

(5.37)

Moreover, at the end of the last section it was shown that the coupling renormalization
constant Zg = (1 + δg) is related to the others Z’s through (5.35), so that

δg = −αS

ǫ

b0
2

(5.38)

Knowing the form of renormalization constant for the coupling Zg, it’s easy to write the
relation between bare and renormalized α’s as

αB = Z2
g µ

2ε αR (5.39)

A very important observation that can be made at this point is that αB must be blind with
respect to a change in renormalization scale µ. This result is somehow expected since µ is a
parameter introduced in order to keep αR dimensionless, while in general αB can depend on
some other physical scale Λ. This implies that αR = αR (µ2) must depend on this parameter
µ that can be thought as the scale at which we are studying a process or we are making a
measure in an experiment.

In order to work out the µ dependence of αR we compute the beta–function. Deriving
(5.39) with respect to log(µ2) one gets:

0 = 2µ2αR
dZg

dµ2
+ ǫZgαR + µ2Zg

dαR

dµ2

=

(

1 + 2
αR

Zg

dZg

dαR

)

β (αR) + ǫαR (5.40)

where the beta–function is defined by

β (αR) = µ2dαR

dµ2
. (5.41)
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With easy algebra and using (5.39) we find that at one loop order:

β (αR) = −b0 α2
R +O

(
α3
R

)
(5.42)

Solving this differential equation one has:

−b0
∫ µ2

µ2
0

dµ̄2

µ̄2
=

∫ αR(µ2)

αR(µ2
0)

dαR

α2
R

(5.43)

which implies

αR

(
µ2
)
=

αR (µ2
0)

1 + αR (µ2
0) b0 log

(
µ2

µ2
0

) (5.44)

Several remarks are now necessary. First of all, in (5.44) we can read the relation between the
value of the coupling constant at different scales in the perturbative regime, but it’s important
to remember that the particular functional form of such a relation (5.44) is obtained as a
first order approximation, hence it’s validity is limited at that order.

A second observation concerns the role of the regularization parameter ǫ. In QED, in
order to regularize the theory, we introduced an UV cut–off Λ that disappeared as soon as one
look at physical quantities such the coupling constant. This permitted us to take the limit
(Λ → ∞) safely. Remembering that, it’s not surprising that the same thing happens to ǫ
parameter in dimensional regularization: though the renormalization constants Z’s strongly
depends on ǫ, this parameter disappears when we look for physical quantities.

Last but not least, one can use (5.44) to find the limit of validity of calculations performed:
it is clear that if at the scale µ one has αR (µ2) ∼ 1, next to leading corrections become as
important as leading order ones, hence perturbative expansion loses sense. So, it is crucial
to understand how αR (µ2) varies with µ2. But the sign of the beta–function gives us these
informations: let’s suppose to fix αR (µ2

0) at a scale µ2
0 < µ2 from a physical measurement.

Then (5.44) tells us that αR (µ2) > αR (µ2
0) if b0 is negative, i.e. if β (αR) has positive sign.

This is analogue to what happens in QED.

In a non abelian gauge theory with Nf flavors, instead, we see from (5.35) that this only
happens if Nf >

11
2
Nc. In this regime the theory has an IR fixed point and perturbative

calculations can be made only in this energy region since the coupling constant grow up with
the scale.

In the opposite regime, characterized by Nf <
11
2
Nc, the beta–function is negative and we

have an UV fixed point. This phenomenon is called asymptotic freedom and it means that
the perturbative series can be trusted only at high energy while at low energy the theory is
strongly coupled, so that any PT expansion loses sense.

The third possibility is that Nf = 11
2
Nc. In this case the beta–function is always zero and

the theory exhibits conformal invariance. In fact in this regime αR (sµ2) = αR (µ2) where
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s is a scaling factor. So, if we are in weak coupling regime at the scale µ2, we can apply
perturbative theory to any other energy scale.

Experiments show up that a theory that aims to describe strong force effects must be
strongly coupled at low energy and weakly coupled at high energy. Fortunately, this happens
in QCD: here we have Nc = 3 colors and Nf = 6 flavors, so that Nf <

11
2
Nc and we have an

UV asymptotically free and IR strongly coupled theory.

At this point of the analysis it is important to fix an energy scale with respect to which
define the UV and IR phases. We take this scale as the scale µ2

0 at which the coupling
constant αR (µ2

0) diverges and we call it Λ2
QCD. From (5.44) we see that

αR

(
µ2
)
=

[

b0 log

(

µ2

Λ2
QCD

)]−1

(5.45)

Using this relation and measuring αR (µ2) at an arbitrary scale µ one can extract a value,
valid as one loop result, for ΛQCD ≃ 250 MeV

Notice that this argument is not theoretically self-consistent since we are using some
results obtained by means of PT expansion in a regime in which the theory it’s strongly
coupled. Anyway it helps us to fix approximately the ideas on what IR and UV means in
QCD.

A similar calculation could be performed also in QED, in fact taking CA = 0 and Tf = 1
we can derive from (5.38) that in QED b0 = − 1

3π
(we set Nf = 1 too). So, from (5.45) and

taking (µ2 = m2
e)

3, one has at one loop:

Λ2
QED = m2

ee
3π

αe(m2
e) ≃ m2

e e
215

≃ 10554 GeV2 (5.46)

That is why nobody talks about ΛQED: it is a scale bigger than Plank scale. At such a
scale gravity effects becomes non negligible and this fact must be accounted for if one wants
a gauge field theory that could be correct even at that scale.

5.5 Strong coupling renormalization-scheme dependence

The MS renormalization of the strong coupling constant at one loop is given by

α0 = αS

(

1− cΓ
ǫ
b0
αS

2π

)

(5.47)

where

b0 =
11CA − 4nF TF

6
. (5.48)

3Remember that at the electron mass scale αe

(
m2

e

)
= 1/137

70



The MS ultraviolet counterterm for the scattering amplitude at one loop that should be
added to the unrenormalized result is then

n

ǫ

[

−cΓ b0
αS

2π
Atree

]

, (5.49)

where n is the order of the tree-level amplitude in αS.

*** Missing all the discussion on the renormalization-scheme dependence ***

5.6 The Callan–Symanzik equations

Is there a general lesson about renormalizability that we can learn from the previous para-
graphs of this section? The answer is obviously positive. Consider a general local4 operator
O. One can write that the effects of renormalization on O are to introduce a renormaliza-
tion constant ZO that relates the bare operator O0 to the renormalized one OR, so that this
last quantity does not depend on the regularization parameter, like the cut–off Λ or the ǫ
parameter in dimensional regularization, that one must introduce in order to keep control
of UV divergences.

The drawback of this is to introduce a dependence in OR from a new scale µ, called
renormalization scale, that it’s nothing but the point where the subtraction that cancels the
infinities coming from loop integrals takes place.

In one formula, for a cutoff regularized theory, one has:

OR (k, gR (µ) , µ) = Z−1
O

(

gR (µ) ,
Λ

µ

)

O0 (k, g0,Λ) (5.50)

or, conversely,

O0 (k, g0,Λ) = ZO

(

g0,
Λ

µ

)

OR (k, gR (µ) , µ) (5.51)

We explicited the dependence of O’s both from the bare and renormalized coupling constants
keeping in mind that it’s always possible the express one of these quantities with to respect
the other: g0 = g0

(
gR,

µ
Λ

)
and vice versa.

It’s important to stress that ZO has to depend both from Λ and from µ. The dependence
from Λ is required because of the dependence of O0 from this scale, in order to form an
object Λ–independent, but since it is adimensional, as we want OR and O0 with the same
dimension, we are forced to introduce on the right side of (5.50) the renormalization scale µ
and use it to keep all argument of ZO dimensionless.

4To avoid any misunderstanding, we prefer to stress that local has the meaning that O is in general a
function of only the difference between two spacetime point |x− y|, i.e. is a function of a single momentum
k.
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Let us now fix the cut–off Λ and the bare coupling g0: for example we can safely take
the limit Λ → ∞ since equation (5.50) assure us that in this limit its left hand side is well
defined.5

If we now derive both side of (5.51) with respect to log µ we get zero on left hand side,
since O0 does not depend on the renormalization scale, while on the right side we have:

d

d log µ

[

ZO

(

g0 (Λ) ,
µ

Λ

)

OR (ki, gR (µ) , µ)
]

=

=

(
∂

∂ log µ
+

dgR
d log µ

∂

∂gR

)

[ZO OR] = 0. (5.52)

Defining as usual

β (gR) =
dgR
d log µ

(5.53)

equation (5.52) takes the form

(
∂

∂ log µ
+ β

∂

∂gR

)

[ZO OR] = 0. (5.54)

Noticing that ZO does depend on µ but not on gR, we can rewrite the previous equation as

(
∂

∂ log µ
+ β

∂

∂gR
− γO

)

OR = 0 (5.55)

where we have introduced a new function γO defined by

γO (gR) = −∂ logZO

∂ log µ
(5.56)

This is called renormalization group (RG) equation or Callan–Symanzik equation6. The

5Strictly speaking the independence of OR from Λ in the massless limit it’s not true for scalar field theories
(Weinberg, Phys.Rev. D 8-10, 1973)

6What shown it’s just a particular case of the general Callan-Symanzik equation for the T-ordered product
( < . . . > ) of a string of n fields plus the insertion of a local operator O. Such an object, that may be
defined by

G (n,1)(p1, . . . , pn; k) =< φ(p1) . . . φ(pn) OR(k) > (5.57)

is related to a Green’s function of bare fields via the rescaling

G (n,1)(p1, . . . , pn; k) = Z−n/2(µ) Z−1
O

(µ) < φ(p1) . . . φ(pn) O0(k) > (5.58)

Now, defining the beta-function as usual, eq. (5.53), and introducing the gamma-function γ = −∂ logZ
∂ log µ , one

can shown that Green’s functions containing a local operator O do obey a CS equation of the form

(
∂

∂ log µ
+ β

∂

∂gR
− nγ − γO

)

G (n,1) = 0 (5.59)

which reduces to (5.55) for n=0.
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problem one has to face now is how to find a solution to the Callan–Symanzik equation (5.55).
In general one can keep two different approaches: the first one is to try to find a solution
in a perturbative expansion with respect to the coupling constant g, while the second one
is more formal and gives a solution valid to all orders. Since the Callan-Symanzik equation
does not rely on perturbative approach it’s important to realize that the first approach is
more limited than the second one, although it can be more intuitive.

Because of this last aspect, let’s start from the first approach. Consider an observable
R which is adimensional and depends on the external momenta in such a way that they
produce only one relevant dimensionful scale s.

R = R

(

g (µ) ,
s

µ2

)

(5.60)

where µ is the renormalization scale. In order to avoid misunderstandings, all the quantities
we are considering are physical ones (g = gR, . . .). With an abuse of notation we forget the
index R from now on.

Just to give an example, R may be thought as the ratio between the cross section for
scattering (e+e− → hadrons) and (e+e− → µ+µ−):

R =
σ (e+e− → hadrons)

σ (e+e− → µ+µ−)
(5.61)

This R is adimensional and depends on the external momenta through the Mandelstam
variable s = (pe+ + pe−)

2, with canonical dimension [s] = 2.

Since we’re talking about a physical quantity, not a local operator nor a Green’s function
and there is only a single scale in the problem, the only γ’s that can appear in the CS
equation are those related to fields strength renormalization. But physical quantities cannot
depend on an arbitrary shift in the value of the fields, so

(
∂

∂ log µ2
+ β

∂

∂α

)

R = 0 (5.62)

A better argument to show that R can’t be renormalized by a Z factor it’s simply to
look at it as the product of conserved currents for whom every Zj = 1.

Since we’re following the perturbative approach, let’s take now α ≪ 1 and expand all
the terms appearing in (5.62) in power series of α:

R =
∞∑

n=0

fn α
n
(
µ2
)

β = −
∞∑

n=0

bn α
n+2
(
µ2
)

(5.63)

The expansion of the beta–function is in accord with the general result for a non–abelian
gauge theory that we found in equation (5.42).
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Substituting back one gets that equation (5.62) becomes

0 =
∞∑

m=0

∂fm
∂ log µ2

αm −
∞∑

n=0

bnα
n+2

∞∑

k=0

kfkα
k−1

=
∞∑

m=0

∂fm
∂ log µ2

αm −
∞∑

n=0

αn+1

n∑

k=0

kfkbn−k (5.64)

From the last formula it’s easy to extract the generic order term in α. Let us consider
the first ones: at order α0 and α1 one gets contribution only from the first sum in (5.64).
This means that f0 and f1 must be independent from the renormalization scale µ. So we
can choose f0 = 1 and f1 = a1. Nevertheless this two terms have very different meaning:
f0 comes from tree integrals and it is not strange that it does not feel any renormalization
effect. Instead f1 comes from one–loop integrals. So Callan–Symanzik equation tells us
that at one–loop all UV divergences has to cancel out without any further renormalization,
otherwise f1 would take dependence on the renormalization scale!

At the generic order αn, with n ≥ 2, from (5.64) one has instead

∂fn
∂ log µ2

=
n−1∑

k=1

kfkbn−k−1 (5.65)

Resolving the equation for fn gives:

f2 = a1b0 log
µ2

s
+ a2

f3 = a1

[

b20 log
2 µ

2

s
+ b1 log

µ2

s

]

+ 2a2b0 log
µ2

s
+ a3

f4 = a1

[

b30 log
3 µ

2

s
+

5

2
b0b1 log

2 µ
2

s
+ b2 log

µ2

s

]

+

+a2

[

3b20 log
2 µ

2

s
+ 2b1 log

µ2

s

]

+ 3a3b0 log
µ2

s
+ a4

f5 = · · · (5.66)

where ai are integration constants. In general, keeping for every fi the highest terms in
log µ2

s
, one can write

fn = a1

(

b0 log
µ2

s

)n−1

+ · · · (5.67)

Using this relations in (5.63) the power series expansion for R can be expressed in the form

R = 1 + a1 α
(
µ2
)

[
∞∑

n=0

(

α
(
µ2
)
b0 log

µ2

s

)n
]

+ a2 α
2
(
µ2
)
+ · · ·

= 1 + a1
α (µ2)

1 + α (µ2) b0 log
s
µ2

+ a2 α
2
(
µ2
)
+ · · · (5.68)
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If we now use the running of the coupling constant (5.44) we arrive to an important
result7 :

R = 1 + a1 α (s) + a2 α
2
(
µ2
)
+ · · · (5.69)

Let us resume what we have done: we started expanding R by using the coupling α at the
renormalization scale µ2. Then RG equation implies that if one is able to resum contributions
containing a single logarithm for every power of α coming from every order, i.e. (α log(µ

2

s
))n,

the physical observable R looses its dependence on µ2 at first order, depending then only on
the physical scale s. This is just the statement that the running of the coupling constant
effectively resums all the leading logarithms.

If one wants to extend this argument to the term proportional to a2 he has to consider
also the next to leading logarithms in (5.66), i.e. he has to consider also b1 terms. So it is no
more possible to use for αs the formula in (5.44) since it was derived using only the leading
term in the expansion of the beta–function (see equation 5.42).

We remark again that α (s) in equation (5.69) comes from the sum of terms to all order
in α (µ2): this is a crucial point and has many consequences. First of all it implies that
all truncated power expansions depend on the renormalization scale µ2. Only considering
contributions to all powers in α (µ2) the dependence from µ2 is lost and the sum of the series
is supposed to depend only on s. The previous calculation shows that it happens at the first
order in α(s). Since usually one knows only the first terms of a perturbative expansion, the
choice of the renormalization scale becomes fundamental.

The example we have here studied shows that if the physical quantity one is considering
depends on only one scale, it is clever to use this scale as renormalization scale in the
expansion. In more complicated cases the right choice is not so clear. This is the so called
renormalization scale dependence problem.

From an experimental point of view this can be dramatic. However it happens that the
dependence of physical quantities is weaker and weaker as the perturbative order of the
expansion is increased. Actually, what is usually done is to vary the renormalization scale
µ up by a multiplicative factor 2 and down by one half and then consider this band as an
error band giving in some sense the order of magnitude of the next order correction.

As anticipated before, one can derive a formal solution of the CS equation without the
explicit use of perturbation theory. In this final part we will see how this works for a physical
adimensional observable in the case of massless particles. We will see how the logarithm
resummation can be expressed in a single formula: in particular the argument will show in
a compact way the fact that the better choice for the argument of the running coupling is
the typical scale of the process.

Let’s start with a massless theory. For example we can think again at the observable R

7In the case that R is the ratio defined in (5.61) there would be an extra factor
(

nC

∑

f q
2
f

)

in front of

the series (5.69)
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as the ratio defined in (5.61) as calculated in massless QCD but the argument is the same
for all observables as the one defined in (5.60). The equation R must obey is (5.62) that we
recall here for convenience, with the definition t = log (s/µ2):

[

− ∂

∂t
+ β(α)

∂

∂α

]

R = 0 (5.70)

The general solution to this equation must have the following behavior:

R

(

α
(
µ2
)
,
s

µ2

)

= R (α (s) , 1) (5.71)

The proof goes as follows. From the definition of the beta function the following equality
holds:

t =

∫ ᾱ

α

dα′

β(α′)
(5.72)

where ᾱ = α(µ2 = s) is a function of s. Taking the derivative of (5.72) with respect to t one
obtains

1 =
1

β(ᾱ)

∂ᾱ

∂t
⇒ ∂ᾱ

∂t
= β(ᾱ)

while deriving with respect to α gives

0 =
1

β(ᾱ)

∂ᾱ

∂α
− 1

β(α)

∂α

∂α
⇒ ∂ᾱ

∂α
=
β(ᾱ)

β(α)

Then every function of ᾱ is a solution of (5.70):

[

− ∂

∂t
+ β(α)

∂

∂α

]

F (ᾱ) =

[

−∂ᾱ
∂t

∂

∂ᾱ
+ β(α)

∂ᾱ

∂α

∂

∂ᾱ

]

F (ᾱ)

=

[

−β(ᾱ) ∂
∂ᾱ

+ β(ᾱ)
∂

∂ᾱ

]

F (ᾱ) = 0 (5.73)

We used the chain rule and the two relation just obtained. But now if we requireR (α (µ2) , s/µ2)
to be a solution of (5.70) then it has to be equal to the general solution obtained as a function
of ᾱ only, and this closes the proof.

From equation (5.71) it is clear that if one wants to avoid at all order in the result the
presence of large logarithms of the ratio s/µ2, i.e. if one wants to resum them in a consistent
way, then the correct choice for the renormalization scale is µ2 = s. We have recovered the
result obtained with a perturbative analysis.
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Chapter 6

Infrared-safe variables and jets

6.1 Infrared divergencies

6.2 e+e−→ qq̄ at NLO in QCD

6.3 Soft emission in QED

Let’s now concetrate on QED case. Infrared divergences in QED with masses can arise only
from photons with soft momenta. The contributions to these divergences originate from
real photons with energy lower than some experimental treshold for resolvability, i.e. some
detector lower cut-off Ee, and virtual photons with k22 < E2

e after Wick rotation.

We start by studing the multiple emission of n soft photons from an external leptonic
leg, without caring if these photons are real or virtual.

Calling p′ the momentum of the lepton and k1, . . . , kn the momenta of the photons we
can study the Dirac structure of this diagram. In the soft limit multiple emissions factorize,
but each propagator before an emission gives a divergent contribution

1

(p′ + ki)2 −m2
=

1

2p′ · ki
→ ∞ (6.1)

Thus the amplitude becomes

ū(p′)(−ieγµ1
))
i(/p′ + k/1 +m)

2p′ · k1
(−ieγµ2

)
i(/p′ + k/1 + k/2 +m)

2p′ · (k1 + k2) +O(k2)
. . .

. . . (−ieγµn
)
i(/p′ +

∑n
i=1 k/i +m)

2p′ ·
∑n

i=1 ki +O(k2)
(iMhard) . . . (6.2)

where, since the photons are soft, we can neglect the ki in the numerators and the O(k2)
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terms in the denominator. Simplifying the Dirac structure one gets

ū(p′)γµ1(/p′ +m)γµ2(/p′ +m) · · · = ū(p′)γµ1
(
γµAp′µA

+m
)
. . .

= ū(p′)
(
2gµ1µAp′µA

− γµAp′µA
γµ1 +mγµ1

)
+ · · · = ū(p′) 2p′µ1

+ . . .

= ū(p′) 2p′
µ1 2p′

µ2 . . . (6.3)

and equation (6.2) becomes

ū(p′)

(

e
p′µ1

p′ · k1

)(

e
p′µ1

p′ · (k1 + k2)

)

. . . (iMhard) . . . (6.4)

The particular structure of the subsequent emissions in the previous formula can be derived
even thanks to eikonal approximation, which we will study later for QCD soft emissions.

We have now to sum over all the possible different ordering of photons insertions. For the
moment we do not care about possible overcounting, such the case of two photon attached
togheter to form a single virtual photon, since we’ll take care of this later.
There are n! different possible ordering of the external photons momenta. This means that
we have to sum n! diagrams. To do this sum we start by defining a permutation Π. Let’s
take an integer i, in the range [1, n], and define Π(i) as the result of the permutation. Notice
thatΠ(i) must be in the same range of i. For example if we have three integer 1, 2, 3 and
we have a permutation such that 1 → 3, 2 → 1, 3 → 2, we have Π(1) = 3, Π(2) = 1 and
Π(3) = 2. In order to sum over all the different permutations we have to use the following
formula

∑

perm

1

p · kΠ(1)

1

p · (kΠ(1) + kΠ(2))
. . .

1

p · (kΠ(1) + · · ·+ kΠ(n))
=

1

p · k1
1

p · k2
. . . (6.5)

proof

For n = 2 (6.5) can be easily verified

1

p1

1

p1 + p2
+

1

p2

1

p1 + p2
=

(
1

p1
+

1

p2

)
1

p1 + p2
=

1

p1

1

p2
(6.6)

Suppose now that (6.5) holds for n− 1, we can now demonstrate it for n.

∑

perm

1

p · kΠ(1)

1

p · (kΠ(1) + kΠ(2))
. . .

1

p · (kΠ(1) + · · ·+ kΠ(n))
(6.7)

=
1

p ·∑i ki

∑

perm

1

p · kΠ(1)

1

p · (kΠ(1) + kΠ(2))
. . .

1

p · (kΠ(1) + · · ·+ kΠ(n−1))

The last formula is independent from kΠ(n). If now we call i = Π(n) we can formally write
the sum over the permutations as

∑

Π

=
n∑

i=1

∑

Π′(i)

(6.8)
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where the second term in the right hand side of (6.8) holds for the other n−1 contributions.
In this way the sum over the permutations (6.7) becomes

1

p ·∑ k

n∑

i=1

1

p · k1
. . .

1

p · ki−1

1

p · ki+1

. . .
1

p · kn
(6.9)

We have now to multiply each term in the last sum with a factor p·ki
p·ki

, from which we obtain

(6.5). Q.E.D.

Returning to our problem and applying (6.5) we have

ū(p′)

(

e
p′µ1

p′ · k1

)(

e
p′µ2

p′ · k2

)

. . .

(

e
p′µn

p′ · kn

)

(6.10)

In the case of a second lepton leg, with ingoing momentum, it’s easy to show that the
various contribution to the propagator are the same except for a minus sign for each photon,
since

(p−
∑

ki)
2 −m2 = −2p ·

∑

k (6.11)

If we now consider diagrams containing n soft photons connected in all the possible orders
to two external leptonic legs, one with incoming and the other with outgoing momentum,
we have for the amplitude the result

ū(p′)Mhardu(p) e

(
p′µ1

p′ · k1
− pµ1

p · k1

)

e

(
p′µ2

p′ · k2
− pµ2

p · k2

)

. . .

. . . e

(
p′µn

p′ · kn
− pµn

p · kn

)

(6.12)

After that we have to separate the contribution coming from the virtual and the the real
photons, deciding what of these photons are reals and what are virtuals. A virtual photon
actually it’s nothing but a couple of photons with momenta ki and kj such that ki = −kj = k.
After that we have to multiply for the propagator of this virtual photon and integrate over
k, obtaining

X ≡ e2

2

∫
d4k

(2π)4
−i
k2

(
p′

p′ · k − p

p · k

)(
p′

−p′ · k − p

−p · k

)

(6.13)

The 1/2 factor in the previous formula is due to simmetry of the the exchange of ki and kj.
If we have m virtual photons we have to follow the same procedure for each single photon,
the resulting simmetry factor being 1/m!. Summing all the contributions due to the virtual
photons we have

ū(p′)(iMhard)u(p)
∞∑

m=0

Xm

m!
= ū(p′)(iMhard)u(p) e

X (6.14)

For the emission of a real photon we instead have to multiply by its polarization vector, sum
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over the polarizations and integrate the squared amplitude over the real photon phase space
obtaining

Y ≡
∫

d3k

(2π)3
1

2k
e2(−gµν)

(
p′µ

p′ · k − pµ

p · k

)(
p′ν

p′ · k − pν

p · k

)

(6.15)

In the case of n different real emissions we still have the factor 1/n! (n identical bosons in
the final state). This implies that the cross section for an emission of any number of real
photons is

∞∑

n=0

dσ

dΩ
(p→ p′ + nγ) =

dσ

dΩ
(p→ p′)

∞∑

n=0

Y n

n!
=
dσ

dΩ
(p→ p′)eY (6.16)

If we now combine the two previous results, in order to consider the cross section due to the
emission of both real and virtual photons we obtain

(
dσ

dΩ

)

measured

=

(
dσ

dΩ

)

0

e2XeY (6.17)

where in the left hand side of the previous equation it appears the differential cross section
as we can experimentally measure it, while in the right hand side there is the bare one,
multiplied by the two Sudakov exponential factor due to the emission or to the exchange
of infinitely many soft photons. If we try to evaluate these exponential, for example, for
the n-jet cross section, we can use the calculation already done for QCD. The only subtlety
is to put, at the end of the day CF = 1 and CA = 0 to recover correct QED results. The
exponentiation of the two jet cross section then follows straightly from (6.36) and gives

σ2j = σ0

(

1− 2αS

π
CF log ε log δ

2 +
1

2!

(
2αS

π
CF log ε log δ

2

)2

. . .

)

= σ0 exp

{

−2αS

π
CF log ε log δ

2

}

(6.18)

The three jet cross section instead becomes

σ3j = σ0

(

2αS

π
CF log ε log δ

2 −
(
2αS

π
CF log ε log δ

2

)2

. . .

)

= σ0

(
2αS

π
CF log ε log δ

2

)

exp

{

−2αS

π
CF log ε log δ

2

}

(6.19)

and so on. The generic term n emissions is thus

σnj = σ0
1

(n− 2)!

(
2αS

π
CF log ε log δ

2

)(n−2)

exp

{

−2αS

π
CF log ε log δ

2

}

= σ0
1

(n− 2)!
λ(n−2)e−λ (6.20)

The last expression is interesting because shows that summing over n all the contributions the
exponential that appears cancels out the one already present, giving us back σ0. Furthemore
we have found that the generic n-th term obeys a Poisson distribution function, this implies
that the average number of jets is

λ = 〈njet〉 = 2 +
2αS

π
CF log ε log δ

2 (6.21)
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6.4 Soft emission in QCD

Soft emissions are very important both in QCD and QED because of their large number. In
fact, we will see that since the emission spectrum behaves as dk0

k0
, the probability to emit a

soft particle is very large. Let’s concentrate to the QCD case studying the emission of a soft
gluon from an off-shell photon decaying in a qq̄ couple:

k,α

p

p′

Γµ

+
k,α

p

p′

Γµ

Mµ = ū(p) εα(k) (−igγα)ta
i

p/+ /k
Γµ v(p′) +

ū(p) Γµ i

−p/′ − /k
εα(k) (−igγα) ta v(p′)

= ū(p) g ta
{

/ε
p/+ /k

2p · k Γµ − Γµ p/′ + /k

2p′ · k /ε

}

v(p′)

In previous formulae we considered a generic vertex form factor Γµ. Being in the soft
approximation (k << p, p′) we can neglect now the /k factors in the numerator, so using
Dirac equations one gets

Mµ
soft ≈ ū(p) g ta

{
p · ε
p · k Γµ − Γµ p′ · ε

p′ · k

}

v(p′)

which can be cast in the form

Mµ
soft = g ta ū(p) Γµ v(p′) εα(k)

{
pα

p · k − p′α

p′ · k

}

= g ta ū(p) Γµ v(p′) εα(k) J
α (6.22)

with Jα called the eikonal current. We have just showed how soft gluon emission from a
quark line factorize into the product of an emission factor times the underlying amplitude.
This is exactly what one would have expected since long wavelength radiation doesn’t know
anything about the spin: the soft limit is a classical limit while the spin is a pure quantistic
object. Furthermore it worths noticing how the soft approximation doesn’t spoil the current
conservation equation kαJ

α = 0.

In the same way one can evaluate the soft emission amplitude from a gluon line . Starting

81



from an amplitude Ac,µ and neglecting k with respect to p one has

c,µ

k,a,α

p,b,β

A

Msoft ≈ −Ac,µ ig f
abc pα

p · k εα(k) ε
′µ(p) (6.23)

From the factorization properties seen in previous calculations one can easily extract the
“Feynman rules” for soft gluons emissions. They read

p,ip,j

k,a,α

= g taij
pα

p · k (6.24)

p,ip,j

k,a,α

= − g taij
pα

p · k (6.25)

p,b,βp,c,γ

k,a,α

= −ig fabc gβγ
pα

p · k (6.26)

Armed with these rules let’s return to the qq̄ pair production from the decay of an off-
shell photon. The amplitude for the emission of an extra soft gluon was calculated in (6.22)
so the differential cross section, obtained after squaring, summing over polarizations and
colors, reads

dσg =
∑

spin

|A0|2g2 εαε∗β CF

( −2pαp′β

(p · k)(p′ · k)

)
d3k

(2π)3 2k0
dφ2 (6.27)

where |A0|2 is simply ū(p) Γµ v(p′) of (6.22) times its hermitian conjugate. The last formula
can be simplified using dσ0 to indicate the differential cross section without gluon emission
and considering that if the emitted gluon is soft p and p′ are almost anti parallel. Defining
θ the angle between the gluon momentum k and p, θ′ that between k and p′ and θpp′ that
between p and p′ one has in this limit θpp′ ≈ π and θ′ ≈ π − θ. So one gets

dσg = dσ0 g
2 CF

(
p · p′

(p · k)(p′ · k)

)
k0dk0d cos θ

(2π)2
dϕ

2π

= dσ0
αSCF

π

dϕ

2π

dk0

k0
(1− cos θpp′) d cos θ

(1− cos θ)(1− cos θ′)
(6.28)

= dσ0
αSCF

π

dϕ

2π

dk0

k0
2 d cos θ

(1− cos θ)(1 + cos θ)
(6.29)
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At this point if one evaluates the integral over the phase space to get the real emission
cross section one encounters singularities in the soft k0 → 0 and collinear θ→ 0, π limits. But
since the total cross section is an infrared safe observable, we know, from the KLN theorem,
that the sum of real and virtual cross section must be finite. So one can write down the
virtual differential cross section at hand

dσv
dk0d cos θ

= − dσ0
2αSCF

π

∫
√

s/2

0

dk′0

k′0

∫ 1

−1

d cos θ′

(1− cos θ′)(1 + cos θ′)
·

δ(k0)

2
[δ(1− cos θ) + δ(1 + cos θ)] (6.30)

Beware that the integrals appearing in the previous equation aren’t phase space integrals:
equation (6.30) actually represents a differential cross section. Those integrals are only a
clever parametrization of the loop integral of virtual graphs, in order to get two formulae,
the real one and the virtual one, with the same variables. One can now easily verify that
doing the integral over the phase space of the sum of (6.29) and (6.30) the singular part of
the cross section completely disappears, leaving only a finite result.

6.5 Sterman–Weinberg jets

Jet rates are an example of infrared safe observables calculable in field theory. Loosely
speaking a jet is intended to be a bunch of particles near in the phase space. Because of
this lack of rigour in the definition of what a jet is, several jet constructing algorithm can be
defined. The first that has appeared in the literature and one of the simplest is the Sterman–
Weinberg jet algorithm. We say that an event contributes to a jet à la Sterman-Weinberg,
that depends on the two parameter δand ε, if there exist two cones of width δ that contain
all of the energy of the event except for an ε factor. For example in the case of the event
represented in the figure below

e+ e

δ

E

E2

3

E1

−

where E1,E2 and E3 are the only particles outside the cones, the event is accepted as a
Sterman–Weinberg jet only if

E1 + E2 + E3 < εETOT. (6.31)
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We now present an explicit calculation for the event e+e− → qq̄. We already know that the
NLO real emission correction, i.e. the emission of an extra gluon, gives an infrared divergent
contribution. However, because of the infrared safety of jet definition we used, we can evade
the questions about the divergent probability of the event gq̄q.

First of all we have to extimate what are the contributions to the jet event. The diagrams
we have to take in account are the Born amplitude, the virtual and the real corrections. In
the case of Born and virtual amplitude we’re left with a back to back kinematic even in the
final state, so there always exist a cone, with width δ, that contains all but an ε part of the
total energy. Hence these diagrams always contibute to the jet event. Their contribution
can be easily evaluated

Born + Virtual = σ0 − σ0 CF

2αS

π

∫ E

0

dk0
k0

∫ 1

−1

d cos θ
1

1− cos2 θ
(6.32)

As far as we concern the contribution of the real gluons we have to distinguish two cases

• If the energy of the gluon, i.e. the only particle outside the jet ,is k0 < ǫE, the event
contributes to the 2–jet cross section and we have to calculate the integral

R1 = σ0CF

2αS

π

∫ εE

0

dk0
k0

∫ 1

−1

d cos θ

1− cos2 θ
(6.33)

• If k0 > ǫE we have to take in account only the case where θ is inside the cone defined
by δ. The integral to calculate is thus

R2 = σ0CF

2αS

π

∫ εE

0

dk0
k0

[∫ δ

0

d cos θ

1− cos2 θ
+

∫ π

π−δ

d cos θ

1− cos2 θ

]

(6.34)

The 2–jet cross section is now given by summing all the contributions. Doing this sum it is
immediate to observe that the singularities are absent in the integral, which means that we
have an infrared safe quantity. The final integral results

Born+Virtual+Real = σ0 − σ0CF

2αS

π

∫ E

εE

dk0
k0

∫ π−δ

δ

d cos θ

1− cos2 θ
(6.35)

The final result for the two jet cross section at the first order is thus

σ2j = σ0

(

1− 2αS

π
CF log ε log δ

2

)

. (6.36)

Notice that the previous result remains finite as long ε and δ are taken finite. At this order
the calculation of σ3j is straightforward. Knowing σ2j and conidering that we are studing
the process e+e− → qq̄g we know that σ = σ2j + σ3j = σ0. This implies that σ3j

σ3j =
2αS

π
CF log ε log δ2 (6.37)
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Thus the more σ2j becomes small, the more σ3j gets large. This can be pratically obtained
lowering ε and δ in the jet definition. However, some care is required since lowering the
parameters one encounters values of them for whom σ2j gets negative. This result has the
physical interpretation that the infrared safety of SW jet definition is vanishing since the
more the integrals approach singularities the more they feels the soft and collinear divergences
and the perturbative series loses sense. If we want a correct physical result we have to be
able to resum the series. This resummation can be explicitly done in QED, while in QCD
this can’t be done to all order since the more the gluon emitted becomes soft, the more the
coupling αS associated with its emission becomes large. That coupling does indeed depend
on the transverse momentum of the emitted gluon1

αS = αS(k⊥) (6.38)

and thus the resummation in the limit k⊥ → 0 does not exponentiate as in QED, because of
the IR slavery of QCD.

6.6 Angular ordering

A more interesting property of soft gluons is the angular ordering of subsequent emissions.
This can be proved returning to the previous example of a virtual photon decaying in a
qq̄ pair with an extra soft gluon. The real differential cross section is exactly the same
until (6.28), but now we can’t assume p and p′ anti parallel. Retaining the right angular
dependence we can rewrite (6.28) redefining

θ = θi

θ′ = θj

θpp′ = θij = θi − θj

and using the identity

1− cos θij
(1− cos θi)(1− cos θj)

=
1

2

[
cos θi − cos θij

(1− cos θi)(1− cos θj)
+

1

1− cos θi

]

+

+
1

2
[i↔ j]

≡ W(i) +W(j) (6.39)

The last definition is useful since each of the W can be viewed as a sort of radiation prob-
ability from the corresponding (anti-)quark line. Mind that they aren’t actually true prob-
abilities because the W ′s are not positive defined. Nevertheless they are important since
each of them is singular only in the limit of gluon emission parallel to the corresponding
(anti-)quark, while they are finite in the limit of gluon emission parallel to the other one:

W(i) →∞ if cos θi → 0 W(i)→ finite if cos θj → 0

W(j)→∞ if cos θj → 0 W(j)→ finite if cos θi → 0

1Strictly speaking the natural argument for αS would be of the order of k⊥, but using k⊥ is a good
approximation.
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To prove the angular order property of W(i) we consider, without loosing generality, the
following three-momenta configuration

p

k

p’

φ

θ
ij

θ
i

θ
j

z

y

x

Having chosen p in the z direction and p′ in the (x, z) plane we are left with

p = p0 (1, 0, 0, 1)

p′ = p′0 (1, sin θij, 0, cos θij)

k = k0 (1, sin θi cosϕ, sin θi sinϕ, cos θi). (6.40)

At this point, comparing k · p′ = k0p′0(1 − cos θj) with what one would obtain from (6.40),
one can extrapolate a relation between the angles:

1− cos θj = 1− cos θij cos θi − sin θij sin θi cosϕ

≡ a− b cosϕ (6.41)

What we want is to evaluate the integral of Wi over the azimuthal angle , so we start to
consider only the integral of the ϕ-dependent part

I(i) ≡
∫ 2π

0

dϕ

2π

1

a− b cosϕ
(6.42)

Defining z = eiϕ we can use the residue theorem to simplify the evaluation of the integral:

I(i) =
1

2π

∫

|z|=1

dz

iz

1

a− b
2

(
z + 1

z

)

=
i

πb

∫

|z|=1

dz

(z − z−)(z − z+)
(6.43)

where

z± =
a±

√
a2 − b2

b
(6.44)
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Since only z− can lie inside the integration contour we have

I(i) = −2

b
Res
{ 1

(z − z−)(z − z+)
; z = z−

}

=
2

b

(
1

z+ − z−

)

=
1√

a2 − b2
=

1
√

cos2 θi + cos2 θij − 2 cos θi cos θij

=
1

| cos θi − cos θij|
. (6.45)

Hence from (6.39) one has
∫ 2π

0

dϕ

2π
W(i) =

1

2

1

1− cos θi

[
1 + (cos θi − cos θij)I(i)

]

=
1

2

1

1− cos θi

[

1 +
cos θi − cos θij
| cos θi − cos θij|

]

(6.46)

so

∫ 2π

0

dϕ

2π
W(i) =







1

1− cos θi
if θi < θij

0 if θi > θij

(6.47)

The same machinery holds for W(j) which results

∫ 2π

0

dϕ

2π
W(j) =







1

1− cos θj
if θj < θij

0 if θj > θij

(6.48)

The resulting picture is that soft gluon radiation from the (anti)quark leg is admitted only in
a cone of angle smaller than that between quark and antiquark momenta. Moreover one can
consider the radiation inside the two cones as being uncorrelated. Thus the graphs in which
the emission is from quark or antiquark can be summed incoherently, being their interference
completely taken into account for by constraining the emission to be within those cones.

Repeating the calculation for the emission of an extra soft gluon, one finds the same
relations between subsequent angles, but this time applied to each of the previous dipole.
To see that these two contributions can be summed incoherently let’s analyze more in detail
the contributions to qq̄g final state from the decay of a gluon of momentum q. Using the
soft “Feynman rules” (6.24-6.26) one has

k,α
p

p′

+
k,α

p

p′

+
k,α

p

p′
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= (−igfabc)
q · ε
q · k t

cMborn + tbMborn(gt
a)
p · ε
p · k + (−gta) p

′ · ε
p′ · k t

bMborn

=

[

g ta tb
(
q · ε
q · k − p′ · ε

p′ · k

)

+ g tb ta
(
p · ε
p · k − q · ε

q · k

)]

Mborn (6.49)

The two factors correspond to the two possible ways in which color can flow in previous
graphs: the initial gluon can be color connected to the quark or to the antiquark. The soft
gluon can thus be seen as emitted independently from the quark or the antiquark. Actu-
ally this description is not entirely correct since when one tries to evaluate the probability,
squaring the amplitude and summing over spin and color, one has the interference term that
spoils this simplistic result. Nevertheless one finds that the interference term is suppressed
by a factor 1/n2 since its color factor is

=

(

CF −
CA

2

)

CF n = −CF

2
= −n

2 − 1

4n
= O(n)

compared to

= C2
F
n =

(n4 − 2n+ 1)

4n
= O(n3).

As a result, the emission of a soft gluon can be described, at the leading order in 1
n2 expansion,

as the incoherent sum of the emission from the two color currents.

Returning to our analysis of an additional gluon emission one finds that one can consider
the two color contributions to qq̄g as independent emitters: one where the color connection
is between quark and initial gluon and the other where it is between antiquark and initial
gluon. The emission of the additional gluon will thus be constrained to be either in the cone
formed by the gluon and the quark or within the cone made by the gluon and the antiquark.
In both cases the emission angle will be smaller than the angle of the first gluon. This leads
straightly to angular ordering with successive emissions taking places within cones with an-
gles smaller and smaller.

We can summarize previous results concerning soft gluon emission from the parton i
using the generator of its colour group representation T

a
i , where a is the color index of the

emitted gluon. Schematically

a

i i′
T

a
i =







tai′i for outgoing q or incoming q̄

−(tai′i)
T for outgoing q or incoming q̄

ifai′i for gluon
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Being generators of color representations, T ’s satisfy

T
2
i =







CF if i is a quark or a antiquark

CA if i is a gluon

In this way, given a generic process, the emission of the soft gluon of momentum k and color
a from any leg of momentum pi can be described by

Jµa =
∑

incoming

T
a
i

pµi
p · k −

∑

outgoing

T
a
i

pµi
p · k (6.50)

where the sum is split between incoming and outgoing emission leg. One can easily verify that
the current conservation kµJ

µa = 0 still holds since color conservation implies
∑

i T
a
i = 0.

6.7 Large-angle soft-gluon emission

Let’s now concentrate on large angle soft gluon radiation, in particular let’s consider the most
general case of an incoming parton p0 splitting, because of the interaction with some external
field V , in a bunch of partons with small relative angles and emitting a large angle soft gluon
either from one initial or finale state leg. The process can be graphically represented by

θ θ

k k
V

pj  θij

pi

θi0p0

where the smallness of relative angles between partons with respect the angle of gluon emis-
sion is accounted for assuming

θ ≫ θi0

θ ≫ θij ∀j

Here θi0 is the angle between the emitting particle and the initial parton direction while θij
is that between the emitting particle and another generic final state parton pj. With these
assumptions all radiation factors are almost the same

pµi
pi · k

≈ pµ0
p0 · k

∀i (6.51)
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thus the eikonal current

Jµa = T
a
0

pµ0
p0 · k

−
∑

i

T
a
i

pµi
pi · k

can be simplified in

Jµa =
pµ0
p0 · k

[

T
a
0 −

∑

i

T
a
i

]

=
pµ0
p0 · k

T V (6.52)

because of color conservation, where T V is the generator of the color representation of the
scattering field V . Thus the probability of emitting a large angle soft gluon is proportional
to the color charge of the interacting field, irrespectively of the parton that actually emits
the gluon. This mechanism is called color coherence and a typical example where it is
important can be found in Higgs production. Here two competitive process are the most
importants: weak boson fusion and gluon-gluon fusion via top quark loop. In the former
case the scattering field is aW or a Z, which are colorless, so one would expect a suppression
of large angle soft gluons. In the latter instead there is the interaction with gluon fields, so
one finds many large angle soft gluons, being thus able to distinguish experimentally the two
process.
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Chapter 7

Initial-state singularities

7.1 The näıve parton model

7.2 The “improved” parton model

7.2.1 The Sudakov decomposition

7.2.2 The DGLAP equations

7.2.3 Leading-logarithmic resummation, Mellin moments
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Appendix A

Useful mathematical functions

A.1 The Γ and B functions

The Gamma function is defined by

Γ(z) ≡







∫ ∞

0

dx e−xxz−1 Re z > 0

∞∑

k=0

(−1)k

k!

1

k + z
+

∫ ∞

1

dx e−xxz−1 Re z < 0, z 6= −n, n ∈ N0

(A.1)

With a simple change of variables x→ x2

Γ(z) =

∫ ∞

0

dx e−xxz−1 = 2

∫ ∞

0

dx e−x2

x2z−1 (A.2)

It can be easily shown that

Γ(1) = 1 (A.3)

Γ

(
1

2

)

=
√
π (A.4)

Γ(z + 1) = z Γ(z) (A.5)

Using eq. (A.2) and changing to polar coordinates (x = r cos θ, y = r sin θ) we can write

Γ(a) Γ(b) = 4

∫ ∞

0

dx dy e−x2−y2y2a−1x2b−1

= 4

∫ ∞

0

dr r

∫ π/2

0

dθ e−r2r2a+2b−2 (sin θ)2a−1 (cos θ)2b−1

= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 2

∫ ∞

0

dr e−r2 r2(a+b)−1

= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 Γ(a+ b) (A.6)
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Since d sin2θ = 2 sin θ cos θ dθ we can write

Γ(a) Γ(b)

Γ(a+ b)
= 2

∫ π/2

0

dθ (sin θ)2a−1 (cos θ)2b−1 =

∫ 1

0

d sin2θ
(
sin2θ

)a−1 (
cos2θ

)b−1
(A.7)

Calling x = sin2θ we have

Γ(a) Γ(b)

Γ(a+ b)
=

∫ 1

0

dx xa−1(1− x)b−1 (A.8)

We can define the “beta” function as

B(a, b) ≡
∫ 1

0

dx xa−1(1− x)b−1 = 2

∫ π
2

0

dθ (sin θ)2a−1 (cos θ)2b−1 =
Γ(a) Γ(b)

Γ(a+ b)
. (A.9)

A useful expansion is given by

Γ(1 + ǫ) = 1− γE ǫ+
6 γ2E + π2

12
ǫ2 +O

(
ǫ3
)
, (A.10)

where γE = 0.5772157 . . . is the Euler-Mascheroni constant.

A.2 The angular volume Ωd in d dimensions

In order to compute the total angular volume in d dimensions we proceed as follows. We
consider the integral I

I ≡
(∫ ∞

−∞

dx e−x2

)d

=
(√

π
)d

(A.11)

and we rewite the lhs of the equation as

I =

∫ ∞

−∞

dx1 dx2 . . . dxd e
−(x2

1+x2
2+...+x2

d) =

∫

dΩd

∫ ∞

0

dr rd−1e−r2 (A.12)

The r integration can be performed using eq. (A.2)

I = Ωd

Γ
(
d
2

)

2
(A.13)

so that

Ωd =
2π

d
2

Γ
(
d
2

) (A.14)
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A.3 The δ distribution

La δ di Dirac è una distribuzione (o funzione generalizzata) definita dal seguente integrale
(a < b)

∫ b

a

dx f(x) δ(x− x0) =

{

f(x0) a < x0 < b

0 altrove
(A.15)

dove f(x) è una funzione sufficientemente regolare nell’intorno di x0. Inoltre, x0 deve ap-
partenere all’intervallo di integrazione. Altrimenti l’integrale è zero. Dalla (A.15) segue
immediatamente che ∫

dx δ(x− x0) = 1 (A.16)

e, con un semplice cambio di variabili nell’integrale, che

δ(a (x− x0)) =
1

|a| δ(x− x0) . (A.17)

A partire dall’eq. (A.15), possiamo anche dare un significato alle derivate della delta. Per
esempio, integrando per parti (a < x0 < b)

∫ b

a

dx f(x)
d

dx
δ(x− x0) =

∫ b

a

dx
d

dx
[f(x) δ(x− x0)]−

∫ b

a

dx
df(x)

dx
δ(x− x0)

= f(x) δ(x− x0)
∣
∣
∣

b

a
−
∫ b

a

dx
df(x)

dx
δ(x− x0)

= −
∫ b

a

dx
df(x)

dx
δ(x− x0) = −

(
df

dx

)

x=x0

. (A.18)

Quindi possiamo scrivere in modo formale

d

dx
δ(x− x0) = −δ(x− x0)

d

dx
. (A.19)

Le derivate di ordine superiore si calcolano integrando ripetutamente per parti, scaricando
una alla volta le derivate dalla δ sulla funzione.

La funziona a gradino
Dalla definizione (A.15) si può scrivere (a è un parametro dato)

∫ x

−∞

dy δ(y − a) =

{

0 x < a

1 x > a
≡ θ(x− a) (A.20)

chiamata anche “funzione θ”. Derivando l’equazione si può dare significato preciso alla
derivata di un gradino

d

dx
θ(x− a) = δ(x− a) (A.21)
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Importante identità
Una relazione molto importante è la seguente

δ [g(x)] =
∑

i

δ(x− xi)

|dg/dx(xi)|
, (A.22)

dove gli xi sono le radici (semplici) di g(x) nell’intervallo di integrazione.

“Rappresentazioni” della δ

In generale, ogni funzione “molto piccata”, normalizzata a 1 e con la larghezza che va a zero,
può essere usata come “rappresentazione” della distribuzione δ.

1.
δ(x) = lim

ǫ→ 0
R(x, ǫ) (A.23)

dove

R(x, ǫ) =







0 x < −ǫ
1

2ǫ
−ǫ < x < ǫ

0 x > ǫ

(A.24)

2.

δ(x) = lim
α→∞

sinαx

πx
(A.25)

3.

δ(x) = lim
ǫ→ 0

1

π

ǫ

x2 + ǫ2
(A.26)

4.
δ(x) = lim

α→∞

α√
π

exp(−α2x2) (A.27)

5.

δ(x) = lim
α→∞

sin2 αx

παx2
(A.28)

6.

lim
ǫ→ 0

1

x+ iǫ
= VP

1

x
− iπδ(x) (A.29)

dove “VP” indica l’integrazione fatta in Valor Principale, ovvero, se a < 0 < b e ǫ > 0

VP

∫ b

a

dx
1

x
f(x) = lim

ǫ→ 0

{∫ −ǫ

a

dx
1

x
f(x) +

∫ b

ǫ

dx
1

x
f(x)

}

(A.30)

Esercizio: Dimostrare l’eq. (A.22).
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Esercizio: Verificare che le funzioni dall’eq. (A.23) all’eq. (A.30) sono normalizzate a 1.

Esercizio
Dimostare che ∫ 1

0

dx

∫ 1

0

dy
δ(1− x− y)

(ax+ by)2
=

1

ab
(A.31)

Esercizio
Dimostare che

2

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
δ(1− x− y − z)

(ax+ by + cz)3
=

1

abc
(A.32)

Esercizio
Dimostare che

6

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz y
δ(1− x− y − z)

(ax+ by + cz)4
=

1

ab2c
(A.33)

A.4 The dilogarithm function

The dilogarithm function is defined by

Li2 (x) = −
∫ x

0

dz
log(1− z)

z
x ≤ 1 , (A.34)

and an immediate consequence of this definition is the following expansion in powers of ǫ
∫ 1

0

dx x−1−γ ǫ (1− αx)β ǫ =

∫ 1

0

dx x−1−γ ǫ
[
1 + β ǫ log(1− αx) +O

(
ǫ2
)]

= − 1

γ ǫ
− β ǫLi2 (α) +O

(
ǫ2
)
. (A.35)

It can easiky be shown that
∫ α

0

dz
log(1 + βz)

z
= −Li2 (−αβ) (A.36)

One of the most used properties is the analytic continuation of the dilogarithm function

Li2 (x± iη) = −Li2

(
1

x

)

− 1

2
log2 x+

π2

3
± iπ log x x > 1 , (A.37)

that can be demonstrated with the help of

log(−x± iη) = log x± iπ x > 0 . (A.38)
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In addition

∫ 1

0

dx x−1+βǫ 1

(1 + αx)1+γǫ
= (1 + α)−βǫ

∫ 1

0

dx x−1+βǫ

(

1− α

1 + α
x

)(γ−β)ǫ

α > −1 ,

(A.39)
where we have used the projective transformation

x→ x

1 + α (1− x)
. (A.40)
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Appendix B

A few radiative corrections

B.1 The vertex correction

p

p’

q

µ
k  = Vµ

Figure B.1: Vertex correction.

We consider now the vertex correction depicted in Fig. B.1. All momenta are incoming,
satisfying p′µ + pµ + qµ = 0, p2 = p′2 = 0, q2 = 2 p · p′ = s. We define the vertex correction
as (trivial color factors and coupling constants not included)

V µ =

∫
ddk

(2π)d
v̄(p′)γα

(
k/− p/′

)
γµ (k/ + p/) γαu(p)

1

k2(k + p)2(k + p+ q)2
. (B.1)

We deal first with the numerator, and we contract the index α in d̄ dimensions. We obtain

N ≡ v̄(p′)γα
(
k/− p/′

)
γµ (k/ + p/) γαu(p) =

(
4− d̄

)
v̄(p′)

(
k/− p/′

)
γµ (k/ + p/) u(p)

− 2 v̄(p′) (k/ + p/) γµ
(
k/− p/′

)
u(p), (B.2)

that can be further simplified using

p/u(p) = 0, v̄(p′)p/′ = 0, (B.3)
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to

N = v̄(p′)
{
2
(
2− d̄

)
kµk/ +

[(
d̄− 2

)
k2 + 4 (p · k − p′ · k − p · p′)

]
γµ
}
u(p). (B.4)

The loop integration is performed in d dimensions, and we get

V µ =

[

−2− d̄

2− d
B0(q)

︸ ︷︷ ︸

k/kµ

+(d̄− 2)B0(q)
︸ ︷︷ ︸

k2γµ

−4B0(q)
︸ ︷︷ ︸

(p·k−p′·k)γµ

−2q2C0(p, q)
︸ ︷︷ ︸

p·p′γµ

]

v̄(p′)γµu(p), (B.5)

where B0 and C0 are the two- and three-point scalar functions (see Passarino-Veltman). We
can finally write

V µ =

[
d̄(d− 3) + 14− 6d

d− 2
B0(q)− 2q2C0(p, q)

]

v̄(p′)γµu(p). (B.6)

This is a completely general expression that can be further specified in CDR and DR:

• CDR: d̄ = d
V µ =

[

(d− 7)B0(q)− 2q2C0(p, q)
]

v̄(p′)γµu(p), (B.7)

• DR: d̄ = 4

V µ =

[

2(d− 1)

2− d
B0(q)− 2q2C0(p, q)

]

v̄(p′)γµu(p). (B.8)

The expressions for the scalar integrals in d = 4− 2ǫ dimensions are given by (q2 = s)

B0(p) ≡ B0(s) (B.9)

C0(p, q) ≡ C0(s) (B.10)

where

B0(s) =
i

(4π)2
cΓs

−ǫeiπǫ
1

ǫ(1− 2ǫ)
(B.11)

C0(s) =
i

(4π)2
cΓs

−1−ǫeiπǫ
1

ǫ2
(B.12)

with

cΓ = (4π)ǫ
Γ2(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
. (B.13)

We can then write the QCD vertex correction for qq̄ (color indexes i and j) with a vector
particle, as

• CDR:

V µ = δij CF

(
µ2

q2

)ǫ
αS

4π
cΓ

{

− 2

ǫ2
− 3

ǫ
+ π2 − 8 + iπ

[

−2

ǫ
− 3

]

+O (ǫ)

}

v̄(p′)γµu(p)

(B.14)
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• DR:

V µ = δij CF

(
µ2

q2

)ǫ
αS

4π
cΓ

{

− 2

ǫ2
− 3

ǫ
+ π2 − 8 + 1 + iπ

[

−2

ǫ
− 3

]

+O (ǫ)

}

v̄(p′)γµu(p)

(B.15)

Please note the difference of one unit (here written in red) between the two expressions in
curly braces.

The same results can be obtained if we first perform the loop integration and then we
contract the indexes in the corresponding space.

B.2 Radiative corrections to external heavy-quark lines

l

h+l
h k k

aaµ ν
i j

Figure B.2: Quark self-energy Σij(h).

In this section we describe how to treat loop corrections to external heavy-quark lines
and how to compute the mass counterterm. We follow the same steps described in Ref. [12].

The one loop correction to a quark propagator is defined as

Σij(h) =

∫
ddl

(2π)d
(
−igSµǫγνtajk

) i

h/+ l/−m
(−igSµǫγµtaki)

−igµν
l2

, (B.16)

where the sum over repeated indexes is meant and µ is the mass parameter of the dimensional
regularization, introduced in order to keep gS dimensionless. With a little algebra we have

Σij(h) = −g2
S
µ2ǫ−2ǫCF δij

∫
ddl

(2π)d
γµ (l/ + h/+m) γµ
l2 [(h+ l)2 −m2]

= −g2
S
µ2ǫ−2ǫCF δij

∫
ddl

(2π)d

(
2− d̄

)
(h/+ l/) + d̄ m

l2 [(h+ l)2 −m2]

= −g2
S
µ2ǫ−2ǫCF δij

{
[(
2− d̄

)
h/+ d̄ m

]
∫

ddl

(2π)d
1

l2 [(h+ l)2 −m2]

+
(
2− d̄

)
∫

ddl

(2π)d
l/

l2 [(h+ l)2 −m2]

}

. (B.17)
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In the last integral we can replace

lµ → l · h hµ
h2

=
1

2

{[
(h+ l)2 −m2

]
− h2 − l2 +m2

} hµ
h2

, (B.18)

and we obtain

Σij(h) = −g2
S
µ2ǫ−2ǫCF δij

{

[(
2− d̄

)
h/+ d̄ m

]
B0(h

2)

+
h/

2h2
(
2− d̄

)[(
m2 − h2

)
B0(h

2)− A0(m
2)
]

}

= −g2
S
µ2ǫ−2ǫCF δij

{[(

−1 + ǫ− ǫ− (1− ǫ+ ǫ)
m2

h2

)

h/+ (4− 2ǫ+ 2ǫ)m

]

B0(h
2)

+
h/

h2
(1− ǫ+ ǫ)A0(m

2)

}

, (B.19)

where

A0(m
2) ≡

∫
ddl

(2π)d
1

l2 −m2
, (B.20)

B0(h
2) ≡

∫
ddl

(2π)d
1

l2
1

(h+ l)2 −m2
, (B.21)

and we have used d̄ = 4− 2ǫ+ 2ǫ.

We are interested in the expansion of Σij(h) around h/ = m

Σij(h) = Σij(h)|h/=m
+ (h/−m)

∂Σij(h)

∂h/

∣
∣
∣
∣
h/=m

+O
(
(h/−m)2

)
. (B.22)

Using the identity

h/ h/ = h2 ⇒ 2h/ ∂h/ = ∂h2 ⇒ ∂

∂h/
= 2h/

∂

∂h2
, (B.23)

so that
∂Σij(h)

∂h/

∣
∣
∣
∣
h/=m

= 2m
∂Σij(h)

∂h2

∣
∣
∣
∣
h/=m

, (B.24)

and

A0(m
2) =

i

(4π)2
cΓ
(
m2
)−ǫ

m2

(
1

ǫ
+ 1 +O (ǫ)

)

, (B.25)

B0(m
2) =

i

(4π)2
cΓ
(
m2
)−ǫ
(
1

ǫ
+ 2 +O (ǫ)

)

, (B.26)

∂B0(h
2)

∂h2

∣
∣
∣
∣
h2=m2

=
i

(4π)2
cΓ
(
m2
)−ǫ 1

m2

(

− 1

2ǫ
− 1 +O (ǫ)

)

. (B.27)
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we can write

Σij(h) = −g2
S
CF

i

(4π)2
cΓ

(
µ2

m2

)ǫ

δij

{[
3

ǫ
+ 4 + 1

]

m+ (h/−m)

[

−3

ǫ
− 4− 1

]}

+O
(
(h/−m)2

)

≡ δij

[

−i δm− i (h/−m) zQ

]

+O
(
(h/−m)2

)
, (B.28)

where

δm =
g2
S

(4π)2
cΓCF

(
µ2

m2

)ǫ [
3

ǫ
+ 4 + 1

]

m

zQ = − g2
S

(4π)2
cΓCF

(
µ2

m2

)ǫ [
3

ǫ
+ 4 + 1

]

. (B.29)

The full quark propagator at first order reads

GQ(h) =
i δij
h/−m

+
i δik
h/−m

Σkl(h)
i δlj
h/−m

+O
(
α2

S

)

=
i δij
h/−m

(1 + zQ) +
i δik
h/−m

(−i δm)
i δkj
h/−m

+
O (h2 −m2)

h/−m
. (B.30)

If we want that the pole of the propagator is not displaced by radiative corrections, so that
m corresponds to the pole mass definition, we have to add a mass counterterm to cancel the
second term of the above expression. For this reason, we define the Feynman rule for the
mass counterterm as the insertion, in the fermion propagator, of the vertex −imc, where

mc ≡ −δm = − g2
S

(4π)2
cΓCF

(
µ2

m2

)ǫ [
3

ǫ
+ 4 + 1

]

m . (B.31)

In this way, slightly off-shell, the quark propagator behaves like

GQ(h) =
i δij
h/−m

ZQ , (B.32)

with

ZQ = 1 + zQ = 1− g2
S

(4π)2
cΓCF

(
µ2

m2

)ǫ [
3

ǫ
+ 4 + 1

]

. (B.33)
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Appendix C

Problems

1. Compute the self-energy corrections to a quark propagator of mass m at first order in
αS. Derive the LSZ ZQ and the mass counterterm.

2. Compute the self-energy corrections to a gluon propagator, due to a massive-quark
loop (quark mass m) at first order in αS. Derive the LSZ Zg.

3. Compute the collinear limit for g → gg splitting (see fig. C.1) i.e. derive the singular
part of the square of the invariant amplitude when two collinear gluons are produced.

lk+l

k

Ac
σ

µ

ν

γσ
a

b

c

Figure C.1: Gluon splitting into a gg pair.

Check your answer against the following

∑

col,spin

AabA†
ab ≃ g2s

2 l · k 4CA

{

−
[

−2 +
1

z
+

1

1− z
+ z (1− z)

]

gσσ′

− 2 z (1− z)(1− ǫ)

[
k⊥σk⊥σ′

k2⊥
− g⊥σσ′

2− 2 ǫ

]}

Aσ
c (t)A

†σ′

c (t)

Suggestion: please note that, in the collinear limit, the amplitude for the emission of
two gluons in the final state can be decomposed into two parts: the first one contains
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the graph where the two gluons are emitted by a single virtual one (see fig. C.1), and
the other one contains all the other graphs

Aab =

{

Aσ
c (l + k)

iPσγ(k + l)

(k + l)2
(−gs) fabc Γµνγ(−k,−l, k + l) +Rµν

ab

}

ǫµ(k) ǫ̃ν(l) ,

(C.1)
where a and b are the colour indexes of the final gluons, P is the spin projector of the
gluon propagator, gs is the strong coupling constant, fabc are the structure constants
of the SU(3) gauge group, ǫ and ǫ̃ are the polarization vectors of the final gluons, Γµνγ

is the Lorentz part of the three-gluon vertex

Γµνγ(−k,−l, k + l) = (−k + l)γgµν + (−2l − k)µgνγ + (2k + l)νgµγ , (C.2)

and the gluon spin projector is given by

P σγ(p) = −gσγ + ησpγ + ηγpσ

η · p ≡ −gσγ⊥ , with η2 = 0 . (C.3)

In addition, use the following Sudakov decomposition

kµ = z tµ + ξ′ηµ + kµ⊥ (C.4)

lµ = (1− z) tµ + ξ′′ηµ − kµ⊥ , (C.5)

with k⊥ such that
t · k⊥ = 0 , η · k⊥ = 0 . (C.6)

4. Compute the collinear limit for the g → qq̄ splitting (see fig. C.2), i.e. the singular part
of the square of

Aij = Aσ
c (k + l)

iPρσ(k + l)

(k + l)2
ū(k)

(
−igsγρtcij

)
v(l) , (C.7)

where P is given by eq. (C.3) and tc are the generators of SU(3) gauge symmetry.

l

k+l

k

Ac
σ

ρσ

i

j

c

Figure C.2: Gluon splitting into a qq̄ pair.

5. Following what has been done for the calculation of Pqq, compute Pgq and Pgg.
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M

k

p
p+k

Figure C.3: Heavy quark splitting.

6. Compute the Altarelli-Parisi splitting function PQQ for a final-state quark Q of mass m
(see fig. C.3).

Suggestions: Start from the following

A0(p) = M†
0(p)M0(p) =M †(p) (p/+m)M(p) (C.8)

A(p, k) = M†(p, k)M(p, k) = g2s CF
1

(2 p · k)2 M
†
0(p+ k) N M0(p+ k) (C.9)

N =
∑

pol

ǫ∗µǫν [p/+ k/ +m] γµ (p/+m) γν [p/+ k/ +m] (C.10)

and derive

A(p, k) ≃ 8παS

z(1− z)

(1− z)2m2 − k2⊥
PQQ A0

(p

z

)

(C.11)

PQQ = CF

[
1 + z2

1− z
− 2z(1− z)m2

(1− z)2m2 − k2⊥

]

(C.12)

7. Cosider the scattering of two protons at center-of-mass equal to
√
S. After suggesting

a reasonably-simple and physically-sound form for the parton distribution function for
a u and d quark in a proton, compute the contribution from the ud scattering to the
total cross section for pp→ud+X at order α2

S
in QCD.

8. Compute the first-order QCD corrections to the deep-inelastic process e−q→ e−q in
dimensional regularization.

Do the calculation both in the Lorentz and in the axial gauge. What can you learn
from this?

106



Bibliography

[1] Warren Siegel, Phys. Lett. B84, 193 (1979).

[2] Warren Siegel, Phys. Lett. B94, 37 (1980).

[3] D. M. Capper, D. R. T. Jones and P. Van Nieuwenhuizen, Nucl. Phys. B167, 479
(1980).

[4] G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, Nucl. Phys. B187, 461 (1981).

[5] L. V. Avdeev and A. A. Vladimirov, Nucl. Phys. B219, 262 (1983).

[6] A. Buras and P. H. Weisz, Nucl. Phys. B333, 66 (1990).

[7] L. F. Abbott, Nucl. Phys. B185, 189 (1981).

[8] Z. Kunszt, A. Signer and Z. Trocsanyi, Nucl. Phys. B411, 397 (1994) [arXiv:hep-
ph/9305239].

[9] K. Ellis, J. Stirling and B. Webber, “QCD and Collider Physics”.

[10] S. Catani, M. H. Seymour and Z. Trocsanyi, Phys. Rev. D55, 6819 (1997) [arXiv:hep-
ph/9610553].

[11] S. Dawson, Nucl. Phys. B359, 283 (1991).

[12] Carlo Oleari, Ph.D. thesis, arXiv:hep-ph/9802431.

107


