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Exercise class 19 May 2022

Exercise 1

Perform the region analysis for the integral
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Solution
We first derive the exact expression for the integral using
that
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We now employ a standard formula for one loop integrals
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This leads to the exact answer
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We now performs the region analysis in I

dimensional regularization We need to
I 142

consider 5 regions in total

I Ip't s 142 s m II

It r f ply fit II t I fit j t I e m2

0 scaleless integrals

0

I Ip't n 142 s m

II r ITIp cpyicp.my ttYItipnIzt I
The integrals can be evaluated using a masterformula
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This leads to
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we can not only evaluate the leading term but also

power corrections in MYM2 41
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Notice that non zero contributions arise only if the
loop momentum is assumed to be commensurate with

one of the external scales Ip4 n M2 or Ip4 n m

Note also that in all cases we integrate over all Loop

momenta after the expansions of the integrand have
been performed The scene I t I precisely reproduces
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the exact result on page A 1 including the power
suppressed corrections

It is instructive to take a closer look at these two

integrals Notice that
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is UV finite but receives IR singular contributions

from the region where p2 so Expanding the result

in C we obtain
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similarly the integral
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is IR finite but UV divergent for Ip4 o Expanding

in c we find
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I soft

The divergences arise because after theTaylor expansion

II no longer contains the IR regulator in and I no

longer contains the UV regulator M In the sum

I hard t Isoft firm tea tent but t Met t OfY
the divergent terms cancel out In EFT jargon the

hard contribution is absorbed into a Wilson coefficient

while the soft contribution corresponds to the matrix
element of an EFT operator
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By construction the dependence on the factorization
scale µ cancels between the two contributions
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Exercise 2

Evaluate the collinear contribution

to i E f fdik io Ktp io 2K Pattio

to the Sadakov forumfactor and give an EET

interpretation
Solution
We combine the first two factors in the denominator using
a standard Feynman parameter
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For propagators that are linear in the loop momentum

it is convenient to use Feynman paraters de lo C

and the following waster formula

Feynman parameters for linear propagators
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This gives
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Using the identity
1
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we finally obtain
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This agrees with the expression given in the lectures

It is interesting to give a diagrammatic EFT interpretation

of this integral obtained by shrinking the hard propagator
to a point
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The SCET Feynman rules must reproduce the collinear

loop gra.ph shown on the right To this end SCET

must contain an unusual gig 8 vertex not present
in the full theory
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Exercise3

Evaluate the integral
N E
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using the method of regions

Solution

The integral depends on two scales the lower

integration limit xmin 1 and the parameter r We can

rewrite
do
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The exact expression for the integral is rather complicated
One finds hypergeometric function
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Let us reproduce this result including the first order
correction in fu using the method of regions The two
relevant regions are x n 1 and xn pi
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Region 1 X n I
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Note that the first integral converges for e o while for
the second one we need to assume that e 2 But this
is ok since at the final result is defined by
analytic continuation in e to the region e 2

Region 2 xu pi
This region is chosen such that the two terms in the
denominator are of the same order Setting x Yu
we obtain
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changing variables from y to z y we find
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The contribution from the Dirac S function converges
if we assume that E c 2 and if that condition is

satisfied it evaluates to zero The integral for the

first term converges for 2e es o Setting w plz
we find
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The sum In Iz correctly reproduces the exact result

for I given on page A 9 including the power correction

of 041 Any other region of values leads to

scaleless integrals


