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It The Collinear Anomaly

There are kinematical situations in which the construction

of Scet as discussed so far in these lectures needs to be
modified because the ultra soft modes do not contribute

for some reason This can happen e.g

in the presence of masses mud

if cuts are imposed on transverse momenta

if the ultra soft scale is parametrically smaller
than the QCD scale e.g if I

n 1100
Q

Important examples of these three cases are

co electroweak Sudakov logarithms naw lying
transverse momentum distributions in Drell Yau

production pp s Z X W X ht X Z'tX
and jet veto cross sections

exclusive B meson decays such as B K 8

or B IT T K

In this lecture we first discuss a toy example and
then consider the factorization formula for the Drell Yan
boson qt distribution
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The massive Sudakov form factor

We reconsider the Sudakor form factor but this time
we put the external quarks on shell pi pi o and

introduce a gluon mass mud as an IR regulator

At one loop order the relevant contributions are

µ
a

QI q io7
s

t

p
g

pi p o

n teller I I at

Pr Pr

Working in a general Re gauge I find that the sum of
these contributions is gauge invariant at one loop

order The answer can be written as

tech 8hncpa F E
where

F x 2 1 11 Li G x I 3 4 eux It
In the limit Q q's m we obtain

F E en t 3en I 25 of



gg

It is instructive to compare this with our result for the
off shell and massless Sudakou formfactor for which
we found on page 74 setting Pi Pi p for simplicity

F Y Zeng t zeng c 25 t o É

Region analysis

We now perform a region analysis of the massive Sudakov

formfactor For simplicity we work in Feynman gauge 5 11

Then the vertex graph gives

I
a teepee

i CF95 aCpa 8 858 878 ucp Igy
Pr Pr

with
Ktp z KtPals

Is y É anti o ktpattio ktpattio

As usual we assign the scaling pin in N Q and

pin G N N Q to the external momenta In principle we

could choose a reference framewhere Pat Pat 0 in which

case pin o e o and pin 1,0 ol In either case we define

pi top Y n N Pat hP Y n I
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Hard region kin lien Q

We find

Ish folk
KtPatz Ktla

251 K ti o Ktp Ttio Ktp tio

Clearly this is a leading order un contribution

Evaluating the integral I find the following contribution
to the Sudakov formfactor

SFnQin CI tf 8
6

Ole

Collinear region K n Cal d Q

The contribution from WFR is like in full QCD

Sza CI I I i t ocel

Next consider the vertex graph in the collinear region We

obtain
I go

Ig fdik
t ktn h Pz nighy n yo

251 knit Io Ktp tio 2k Patio 4

N N I N

This is indeed a leading order contribution
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Anti collinear region Ken H N N Q

This is givenby an analogous expression

yo yo
ti p h KtpItn EI knit o 2k patio ktpattio Y

N I N N

Ultra soft contribution Kin NNM Q

In this region miss lk't and hence we mustexpand

I go

Igg fdik
ti Pi h h

Iggy n I
251 CW 2k Patio 2k Patio
N N I N

This is not a leading order contribution since the mass

term screens the much smaller loop momentum Due to

the absence of a quadratic term nk in the denominator
all poles in the complex k plane lie below the real axis
and hence the integral vanishes

More generally there are no pinch singularities because

the propagator carrying the ultra soft loop momentum

cannot go on shell Consequently the ultra softregion
does not exist
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Soft region Kin R R R Q

Let us try to construct something like the ultra soft region
but with a scaling such that In mind'Q Expanding

the integral under this hypothesis gives

I go

Igg fdik
ti Pi h h

Iggy n I
251 knit Io 2k Patio 2k Patio
T I I n

This is indeed a leading order contribution One can

show that this completes the list of the leading
regions

First evaluation of the low energy contributions

Evaluating the scalar integrals without the factor ya
in the collinear and soft regions using Feynman parameters
one finds

Io yipe Tle m fax x e x
E

Is yipe Tle m fda t
As expected the low energy contributions depend on the

IR scale m a Q Surprisingly however they contain



103

ill defined parameter integrals In otherwords the
standard dimensional regularization scheme does not

allow us to calculate these integrals even though the

original loop integral in full QCD is well defined

What is going on

The absence of the ultra soft region is very puzzling
since it implies that the massive Sudakou formfactor
is a two scale problem

a hard region

in collinear anti colliner soft regions

But we have seen earlier that it is impossible to

decompose a Sudakou double logarithm into two regions

en g H Y s Y
Indeed we needed three correlated scales to do so

Somehow the theory needs to find a way out of this
dilemma

collinear anomaly
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Analytic regularization

To deal with the divergences in theparameter integrals we
introduce analytic regulator by raising the denominators

of the Feynman propagators to a power 1 8 where Sal

is an infinitesimal parameter new scaleparameter

p It i o p'tm i o its

V A Smirnov hep ph 9703357

This regulator

preserves Lorentz invariance

breaks gauge invariance since it corresponds to

qt GD m2 oft list ga m2 d

It l a my't'd gA ft Frg g A 4th

This is not catastrophic because the regulator is only
needed in the various regions whereas loop integrals
in the full theory sum of their regions are always
well defined in dimensional regularization



105

It follows that we always must expand in 8 before
we expand in e The singular terms in the 8 regulator
will then cancel in the sum of all regions at fixed e

Secondevaluation of the low energy contributions

It is straightforward to evaluate the scalar loop integrals
with analytic regulators in place I find

v2datdatB f Ktp noPr
Ic 11 fEEP amino

tB htpatio
td

2kpet io

T et dntB
4 12e puton ratp

m

I dx x
t d d
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a T
singularity removed

dependence on hard
scaleQ2

T d d T 2 E d

Ie same expression with d c s d
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and

v2datdatB p p h Pz
Is 11 fSED amino

tB f 2kp no
td

2kpet io

T et dntB ft1 day'tdn
d

4 12e puton ratp
m

o

on 4 t any
x E if

d

fan tindi on on const

p
welldefinedfor g di

onto i i 50

byanalytic
but scaleless continuation

The analytic regulators make the integralswell defined as

long as we choose 8 82 But note the important effect

that these regulators introduce an anomalous dependence

of the low energy contributions on the hard scale Q2

which violates strict scale factorization

collinear anomaly

Becher MN 1007.4005

Let us see what happens when we expand in the analytic
regulators For the sum of all terms it does not matter in
which order we do this For concreteness we first take
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B so then dz s o and finally d so This leaves us with

T Eton
Ic 4 2 e rats

m
t
1

d I di T 2 e d
T 2 E

8 so i
yap e

t e m
t f t en t 4 e 412 e

Y e TCEI TCG

Io 14 2 e T e m
e E

M d I T 2 e
T 2 E d

I yipe tie m
o f f en f F 412 e

Because of the presence of the auphysical and not

gauge invariant regulator 8 only the sum of these
contributions is well defined

Ict I i
µ p e

T E m
t th fi t 4 e VE 2412 e

anomalous logarithm

Note

In cases where the soft contribution is not scaleless only the
sum Ict Iet Is of all low scale contributions is well

defined
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Using the above result expanding in e and adding the

WFR contribution we obtain for the low scale contributions
to the Sudakov formfactor

oFae lair M1 E E en fi t 5 Oles

Adding to this the hard contribution see page1001

SFnQin CI T1 8 I Ole

and the tree level result we find

F Oi m I t CI I E hi
hard

In 3hr 8 I
Ie t É E en t him

anti l collinear

enpi z en enfit 3h fit I

We see that all poles in e as well as all y dependent
terms cancel out When the dust settles we recover

exactly the result obtained in the full theory and

given on page 98

F E la t 3enE E 21
3
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The above discussion shows how a Sudakov doube log
is decomposed into regions in the case of a two scale
problem the presence of the collinear anomaly spoils
a clean scale separation

Expressed as a matching relation for the QCD vector
current we find in this case anomalyIFaisott

48h4 Claim EnWo 81 Stash Wisn aim
ifpresent
r

no interactions betweendifferentsectors
but requires analytic regularization

The threesectors are decoupled in SCET because

c te n N T R t 1 N R n 1,1 d hard

c t s n Nil N t R R R n d 1 a hard collinear
411 IN

Both have virtualities s IQ and are thus integrated
out in the low energy EFT

modes if present or
two step matching III L

QCD SCET he hi s SCET 2 C E s

I
integrateout hard Etwithi see above

modes
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Note that in our example the hard matching coefficient

Cy is simply inherited from scet and indeed we find
after renormalization

Cu a p It Cfds en Y 3 eng 8 I45

which coincides with the result we found on page7.5

It follows that as before

my Cv Q Tiasp as eng t k as Cv Qin

which in turn implies that

Mof steer
2 r tous

p as en
Q t k as Iet 2 y
in

collinearanomaly

Why anomaly

After decoupling the different sectors of SCET are each
equivalent to full QCD and they are therefore invariant
under separate Lorentz boosts in each sector

rapidity

p s p coshy p'sinky n p s etnap
p s p coshy posinhy ni p s et a p
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In SCET 2 this separate boost invariance is a classical

symmetry of the effective Lagrangian which is broken

by quantum effects analytic regularization This is an

anomaly in the usual sense of QFT but in the context

of SCET Overall Lorentz invariance is of course not

broken but the

saggy

boosts must be

performedin all sectors of SCET 2

UP A SCET SCET 2
E

E

I T
y

Ia

T C to
us poet s

top top
invariance under invariance under
separate Lorentzboosts globalLorentzboosts

Redefining the auxiliary scale r s a p t we havefrom
page 107 not boost invariant

Ic n É
f
t independent ratio

scales m2and a p

g gyp

depends on collinear

p p nope Ism2depends on collinear
scales m and nip is boost invariant
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XI Drell Yan Production at Small q
BecherMN 1007.4005

Consider the production of a Drell Yan boson at small

transverse momentum

Interesting cases
q M2

q

8 s ete
Wt Zo also Higgs scalar gginitiated

Z Mtg

At El M

R qt M

We consider the case of a virtual photon for concreteness
see Becher MN Wilhelm 1212.2621 for pp s h case

Using SCET technology one finds the same regions as
in the case of the massive Sudakov formfactor
collinear anti collinear and no soft region scaleless
The ultra soft region cancels out to all orders In the

limit where gram one can derive the factorization

format

naive factorization in x space
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Here Cr is the hard matching coefficient of the vector
current givenabove and Wisn

naively

are generalized x dependent PDFs For X III 1 0

one recovers the standard PDFs The relevant

kinematic variables in the expression for the cross section

are

y rapidity of V in the LAB frame

3 te e 3 te e Y with E M'tÉ
s

As defined above the x dependent PDFs appear to be

universal i.e process independent functions

characterizingthe nucleon N However this would be in conflict
with the RG invariance of the cross section In order

to cancel the m dependence of Icu1 the product

of the two x dependent PDFs must depend on the

hard scale M due to the collinear anomaly

M
n

anomalous dependence
On g M2
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Only this product of PDFs is unambiguously defined
and it carries a process dependence via the anomalous

dependence on the hard scale q The cross section

formula shown above thus does not achieve a complete

scale separation

Can we control the f dependence of the productofPDFs

Introducing analytic regulators in the same way as for the
Sudakov form factor one can show that

In Bgin Zi XIM BEIN ZzXiM q2
In Bqin luv'xi za Xi y In BginalenY Zz xism

This is analogous to the results on p 107 once we

substitute in xp and a s q The condition that

the unphysical regulators drop out requires that to all

orders in perturbation theory the two terms must be

linear in luv i.e

bn Bgin Zi XIM BEIN ZzXiM g
In Bgin Zi Xi y In Bgin Zz Xi y Ink q FaqXfm

env xt en t
ga
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State of the art predictions
Becker Neumann 2009.11437 BecherMN 1007.4005
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The End


