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I Applications of SCET

The formalism we have developed in this course

has widespread applications in collider physics

heavy flavor physics and other fields Some important
examples are shown below alongwith some key references

Collider physics

DIS for x 1 DY production eté 2jets

MY Q LY a Q soft additional eventshapes
radiation

BecherMN hep ph 0605050 BecherMNXu LeeStermanhepph0611061
BecherMNPecjak 0607228 hep ph0710.0680 BecherSchwartz 0803.0342
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Inclusive decays B Xs8 and B Halt in the kinematic

region where MIamps
Bauer Pirjol Stewart hepph0109045
BoschLange MN Paz hepph0402094
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In all of these processes the relevant modes are collinear
or ultra soft and there are at most two collinear
directions ni and nil Jet processes at hadron colliders
are more complicated since they require introducing
12thsets collinear directions nil where the first two
refer to the beams

In this lecture we discuss the process

eté s 2 jets see 1803.04310byBecher

in more detail Rather than defining the jets through
some complicated jet algorithm non global logs

see 1508 06645 160502737 for a treatment in SCET

we consider an event shape which characterizes the

geometry of an event and measures how pencil like

it is The prototypical event shape is thrust

T I may I ii pit thrustaxis
in CMS

Here Q 15 Ipit is the total Cms energy massless

particles The event shape thrust varies between

Tmax 1 perfect alignmentof two jets and Twin 112

completely spherical event
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T 0.998 5 0.002 T 0.65 T 0.35

One defines t t t to measure the departure from
the perfect 2 jet limit We are interested in the

region where Tal

Thrust is soft and collinear safe meaning that its

value does not change under exactly collinear splittings

PI s Fiat Pib Piall Pib

and infinitely soft emissions

PI s Fiat Pib Ip b 0

This property ensures that the cross section doldt
is free of IR divergences However in the 2 jet
limit Tet the cross section receives largedouble

logarithmic corrections agent which need to be
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resummed to all orders of perturbation theory A
region analysis shows that the relevant modes are

hard Q c integrate out

anti collinear TQ

I SCET with R Tay
ultra soft t Q

We choose the thrust axis to define the reference
vectors

ht 1 Rt Al e Tt

By definition thrust is additive and we can separate

the sum over particles into sums in the various sectors

of SCET
ii pi o ni pis o

TQ Ipl Inf pill rightmovers leftmovers

kPa t Eposit n.ps.tt h.ps.i

collinear anti collinear softparticles
particles particles

h Pxe t a Px t h pis t t pig
n I I i n int
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The definition of the thrust axis ensures that the

total transverse momentum in each hemisphere vanishes

pi't piet pit 0

pit pic t pit o

É a

Pic o pie
up to power corrections

It follows that at leading power

ME Prot pis t pic t t.pe h pi's t

T Pxe n px t h pis t

Q n px t h pis t

NQ NQ

Mi Px t pts n Px h Pxe th pts t

Q h Pxe th pts t

NQ NQ

Up to power corrections we thus obtain

T Q2 ME ME Pic t Phx t Q n phys t h pts

Na Na NQ NQ
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The fact that thrust is additive in the collinear and
ultra soft contributions is important to establishfactorizationThe differential cross section is givenby

do
de Y IMleté 8 X 2k 8 p g 8 e taxi

x

LMHer thrustof
final stateX

X Leptonictensor

LM I
0 4 palp t pipi pipgaQ q s

Qq quarkelectriccharge
The hadronic tensor is vectorcurrent

Hur Lol Ltcol X XIJo o 2k 8 pi g 8 e taxi

We wish to compute the differential cross section in the

angle 0 of the thrust axis it with respect to the momentum

pi of the electron To do so we insert
21T

I Join 8 E E fdy fdooso 8 att
n o

contains 8 int 1

2k E fdos0 8 pic PI get up to
power cors

required by definition
of thrust axis
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Combining this 8 function with the 8 function from
momentum conservationgives

8 p g 8 pic 8 Pat Pxe t Pxs q 8 pic

28 h Pxe Q d n pyo Q 8 pic 8 pic t

We finally introduce new variables

Mi pic ME pie w n pis th pis

TQ Mi t ME Qu

by multiplying the hadronictensor with thedummy integral

I fam 8 Mi pic dm 8 ME pic Idw Icw npis a pis

This leads to
Tay

i
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Here Xc Wi't's and Xe Wi't are the gauge
invariant collinear building blocks after decouplingof
the ultra soft gluons and Su Sa are the soft Wilson

lines

I
c neath Meeee

n
us

At this stage one defines jet and soft functions via
the matrix elements in the different sectors of scet

Jet functions
s s

M

n n

color
conservations

ince x o

Note that this is the spectral representation of a collinear
quark propagator c f Section 7.1 in Peskin Schroeder
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At lowest order Xc are singlequark states and we find

g deas 2po Unis Pis In a p s 8 8 Mi d pi 8 213 Q

tmall.ae
zit semi

It follows that

J M 8 MY O as

This jet function is known to 3 Loop order in QCD
Becker MN hep ph 0603140 2 Loop

Bruiser Liu Stahlhofen 1804.09722 3 Loop

At 1 loop order one finds hep ph 0402094

JCM 8 M YES 117 148CMY 4 lumper
T

m
3 14,4

r r

0125
generalized plus
distributions

The jet function in the anti collinear sector is defined as

E

1
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At this point we obtain the following trace over Dirac
matrices

tr rt I 4 g I n t 291

Also the four color indices in the ultra soft matrix
element get contracted in pairs

Soft function

The prefactor Nc has been introduced such that at

leading order

S w 8 w t Oaks shapefunction
hepph 9311325

calculableonly 9902341

if W AQCD

This function is known at 2 loop order in perturbationtheory

Becker Schwartz 0803.0342 Note that for w n Naco i.e

T go the shape function is a genuinely nowperturbativeobject which must be extracted from data
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Cross section

Combining all pieces we obtain the cross section

d's
de dooso I

NotQEx2
2s

1 0050 I cul s io g l
N

x dm dm Idw 8 t MitMit is w
S

O O O

x J Mi p J MEM S wir

wife e
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h

us

This is a paradigmatic example of the derivation of
a QCD factorization formula using SCET The scale
dependence of the various functions arises after
renormalization of the SCET current operator see the
last Lecture
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Resummation of large logarithms

The theoretical prediction for the cross section is

independent of the renormalization scale m However

for each fixed choice of u there are large logs
it at least some of the component functions Cr
J and S The strategy is therefore to calculate these

functions at their natural scales and then

evolve run them to a common and arbitrary
scale m by solving their RG equations

Q Is Cul s io m Mh

M n Ea Moi f Mi y J MEM
V

µ
a V

a

WNTQ Ms S w y

For the hard watching coefficient we havediscussed

the solution of the RG equation in the previous
lecture see pages 75 77 The RG equations for
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convolution Also the RG equations take on a local

form Becher MN hep ph 0605050 and one obtains

Mad I Y M 2icusp as lug Ye 28gas I Y m

Mad 5 Y p 2icusp as lug 28 28 as 5 g p

They can be solved using the same techniques as for
the hard function The fact that the cross section is
RG invariant Mdd Girl 0 implies

2Tcusp as enpi t 2K as Cyt

j j4icusp as lug Ye 48g as

52Icuspas lug 28E 28 as I 0

8s as 282 as Yu as

This consistency condition is satisfied to all orders in as
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regionwhere nowperturbativeComparison with data effectscanbeimportant

I ALEPH 5 91.2GeV

BecherSchwartz 0803.0342

The watching of a resumed scet prediction valid for
Tae onto a prediction obtained using fixed orderperturbationtheory valid for T 06 is performed as follows

E matched E sinned optimal prediction for tea

SCET

I ddt fixedorder ddt
resummed reexpanded

inpowersofasT
subtraction to avoid doublecounting

optimal prediction for T 011 vanishes for T s o


