Effective Lagrangian of Soft-Collinear Effective Theory (SCET)

Our goal is to construct an effective Lagrangian built out of collinear, auti-collinear and ultra-soft quark and gluon fields (and ghost fields, but we will not write them out explicitly). Momentum conservation allows the following interactions involving different modes:

$$
\frac{\phi_c \dots \phi_c}{n_c \cdot n} \xrightarrow[n_{us}]{}
$$
\n
$$
\frac{\phi_c \dots \phi_c}{n_c \cdot n} \xrightarrow[n_{us}]{}
$$
\n
$$
\frac{\phi_c \dots \phi_c}{n_c \cdot n} \xrightarrow[n_{us}]{}
$$
\n
$$
\frac{\phi_c \dots \phi_c}{n_c \cdot n} \xrightarrow[n_{us}]{}
$$

but not

$$
\phi_c \dots \phi_c \quad \phi_{\overline{c} \dots \overline{c}} \quad \phi_{\overline{c} \dots \overline{c}} \quad \phi_{\mu_6 \dots \overline{c}} \quad \phi_{\mu_8 \dots \overline{c}} \quad \phi_{\mu_9 \dots \overline{c}}
$$

forbidden (hard interaction)

$$
\phi_c
$$
 ϕ_{us} ... ϕ_{us} , ϕ_c ϕ_{us} ... ϕ_{us}
\n $n_{us} \ge 1$ $n_{us} \ge 1$

momentum not conserved

$$
I + \int_{\text{GUE}} \text{EVAL}_{\text{H}} = \int_{\text{G}} + \int_{\text{U}} + \int_{\text{G}} \text{EVAL}_{\text{H}} + \int_{\text{G}} \text{EVAL}_{\text{H}}
$$

$$
+ \int_{\text{GUE}} + \int_{\text{GUE}} + \int_{\text{GUE}} \text{EVAL}_{\text{H}}
$$

It suffices to study the Lagrangian of collinear and ultra soft fields

Collinear quark field:

The spinor of a highly energetic (along z-axis), Light fermion satisfies:

$$
\not p \quad u_s(p) = m \quad u_s(p) \quad ; \quad m \ll E = p^\circ \approx p^\circ
$$
\n
$$
\Rightarrow \quad \psi \quad u_s(p) \approx 0 \quad (\text{up to } m/\varepsilon \text{ corrections})
$$

In analogy with HaET, we identify the large and small components of such ^a spinor using projection operators

$$
P_h = \frac{K\vec{\alpha}}{4} \qquad P_{\vec{k}} = \frac{\vec{\alpha}K}{4} \qquad (\overline{P}_h = 8^\circ P_h^+ Y^\circ = P_{\vec{k}})
$$

with

$$
P_n + P_{\overline{n}} = \frac{\{\kappa, \overline{\kappa}\}}{4} = \frac{2n \cdot \overline{n}}{4} = 1
$$

\n $P_n^2 = P_{n, j}$ $P_{\overline{n}}^2 = P_{\overline{n}, j}$ $P_n P_{\overline{n}} = 0 = P_{\overline{n}} P_n$
\nWe define:
\n $\overline{S}_n = P_n \Psi_c$, $\eta_n = P_{\overline{n}} \Psi_c$
\n $\Rightarrow \qquad \kappa \overline{S}_n = 0$ $(\overline{S}_n \text{ will describe a collinear}$
\n $\overline{N} \eta_n = 0$ *quark in SCET*)

To derive the power counting in λ , we consider (massless fermion): $\frac{h \cdot p}{2} + \overline{h} \cdot p \frac{m}{2} + P$ $\int \frac{d^{2}P}{(2\pi)^{4}} e^{-iP \cdot x} \frac{iP}{P^{2}+iQ}$ $P^+ \nu e$ λ 1 $\frac{1}{\lambda^2}$ $(\lambda, 1, \lambda)$ Hence:

$$
\langle o | T \{ \xi_n(x) \overline{\xi}_n(o) \} | o \rangle = \int \frac{d^4 p}{(2\pi)^4} e^{-i p \cdot x} \frac{i \overline{n} \cdot p}{p^2 + i e} \frac{d}{2} \sim \lambda^2
$$

$$
\langle o | T \{ \eta_n(x) \overline{\eta}_n(o) \} | o \rangle = \int \frac{d^4 p}{(2\pi)^4} e^{-i p \cdot x} \frac{i n \cdot p}{p^2 + i e} \frac{\pi}{2} \sim \lambda^4
$$

$$
\langle o | T \{ \xi_n(x) \overline{\eta}_n(o) \} | o \rangle = \int \frac{d^4 p}{(2\pi)^4} e^{-i p \cdot x} \frac{i n \cdot p}{p^2 + i e} \frac{\pi}{2} \sim \lambda^4
$$

$$
\lambda^4 \qquad 1 \qquad \lambda^6
$$

$$
\lambda^4 \qquad 1 \qquad \lambda^7
$$

$$
\lambda^4 \qquad 1 \qquad \lambda^7
$$

It follows that largecomponents y smallcomponents $\mathbf{\Sigma_n} \sim \lambda$, $\eta_n \sim \lambda$

Note that these rules do not agree with naive analysis!

In analogy with HQET, we will integrate out the small components η_n and use the field ζ_n to describe a collinear quark in SCET

Collinear gluon field:

general cov The relevant two-point function to consider is: gauge ol T{ $A_c(x) A_c(b)$ [0)] = $\frac{a_1}{(2\pi)^4}$ e $\frac{1-p \cdot x}{p^2 + i\epsilon}$ $\left[-q^{rw} + (1-\overline{\xi}) \frac{p^{1/2}}{p^2} \right]$ λ^4 λ^2 1 various scalings

It would be incorrect to work in Feynman gauge $(s = 1)$ and conclude that $A^\mu_a \sim \lambda$ (as suggested by NDA). Rather, we need to decompose:

$$
A_{c}^{\prime\prime} = h \cdot A_{c} \frac{\overline{h}^{r}}{2} + \overline{h} \cdot A_{c} \frac{h^{r}}{2} + A_{c,1}^{\prime\prime}
$$

It follows from above that

$$
\langle o|T\{n.A_c(x) n.A_c(s)\} |o\rangle = \int \frac{d^4p}{(2\pi)^4} e^{-i p \cdot x} \frac{i \delta_{abc}}{p^2 + ie} \left[0 + (1-\xi) \frac{(n-p)^2}{p^2}\right]
$$

\n
$$
\frac{|o \lambda^4|}{\lambda^4} \frac{\lambda^4}{\lambda^2} \frac{\lambda^4}{\lambda^3}
$$

\n
$$
\langle o|T\{\overline{n}.A_c(x) \overline{n}.A_c(s)\} |o\rangle = \int \frac{d^4p}{(2\pi)^4} e^{-i p \cdot x} \frac{i \delta_{abc}}{p^2 + ie} \left[0 + (1-\xi) \frac{(\overline{n}.p)^2}{p^2}\right]
$$

\n
$$
\frac{|o \lambda^0|}{\lambda^4} \frac{\lambda^4}{\lambda^2} \frac{\lambda^6}{\lambda^2}
$$

\n
$$
\langle o|T\{A_{c,L}^{\mu_1\alpha}(x) A_{c,L}^{\nu_1\beta}(s)\} |o\rangle = \int \frac{d^4p}{(2\pi)^4} e^{-i p \cdot x} \frac{i \delta_{abc}}{p^2 + ie} \left[-q_{\perp}^{\mu\nu} + (1-\xi) \frac{p_{\perp}^{\mu}p_{\perp}^{\nu}}{p^2}\right]
$$

\n
$$
\frac{|o \lambda^2|}{\lambda^4} \frac{\lambda^4}{\lambda^2} \frac{\lambda^2}{\lambda^2} \frac{1}{\lambda^2}
$$

This also works for the mixed terms, e.g.:

$$
\langle o|T\{n.A_c(x) \overline{n}.A_c(s)\} |o\rangle = \int \frac{d^4P}{(2\pi)^4} e^{-iP\cdot x} \frac{i\delta_{ab}}{P^2 + ie}
$$

$$
\sim \lambda^2 \qquad \lambda^4 \qquad \lambda^2
$$

$$
\times \left[-n.\overline{n} + (1-\xi) \frac{n\cdot P \overline{n}\cdot P}{P^2} \right]
$$

etc.

We observe that the different components of the collinear gluon field scale like the components of ^a collinear momentum such that the covariant collinear derivative

$$
\dot{v} \, \partial_c^{\dot{r}} = \dot{v} \, \partial^{\dot{r}} + g_5 \, A_c^{\mu_1 a} \, t^{\alpha} \sim (\lambda_1^2 \, 1, \lambda)
$$

has homogeneous power counting in X

Important note:

The presence of ^a field with unsuppressed power counting, $\overline{n} \cdot A_c \sim 1$, is worrisome, since this will lead to an infinite number of operators with the same power counting in the EFT. We will see the implications of this observation later

Witra-soft quark field:

We have

$$
\langle o|T\{q_{us}(x) \overline{q}_{us}(o)}\}\rangle = \int \frac{d^{4}k}{(2\pi)^{4}} e^{-ik \cdot x} \frac{ik}{k^{2} + ie} \sim \lambda^{6}
$$

This gives:

$$
\boxed{q_{us} \sim \lambda^{3}}
$$

There are no large or small components in this case.

\n <p>Ultra-soft gluon fields:</p> \n	
\n <p>Ve find:</p> \n	
\n <p>co T{A_{us}_{us}_{us}(x), A_{us}_{us}_{us}(b)} o\rangle = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot x} \frac{i \delta_{ab}}{k^2 + ie} [-g^m + (1-\xi) \frac{k^h k^v}{k^2}]\n</p>	
\n <p>This gives:</p> \n	\n <p>$A_{us}^{*a} \sim \lambda^2$</p> \n

In the following we will derive the effective Lagrangian of collinear and ultra soft fields focussing on the Dirac Lagrangian. The Yang-Mills Lagrangian can be discussed in an analogous way

Introducing the decompositions $\psi \to \gamma_c + q_{us} = \xi_h + \gamma_h + q_{us}$ $A^{\mu} \rightarrow A^{\mu}_{c} + A^{\mu}_{\mu s}$

in the Dirac Lagrangian, we detain: $\overline{\Psi} : \overline{\Psi} \Psi \rightarrow (\overline{\xi}_{n} + \overline{\eta}_{n} + \overline{\varphi}_{\mu_{5}}) i \overline{\Psi}_{c+\mu_{5}} (\xi_{n} + \eta_{n} + \varphi_{\mu_{5}})$

where:

$$
\hat{u} \overrightarrow{\psi}_{\text{ctus}} = \left(i \hat{n} \cdot \hat{D}_c + g_s \hat{n} \cdot A_{us} \right) \frac{\overrightarrow{n}}{2} + \left(i \overrightarrow{n} \cdot \hat{D}_c + g_s \overrightarrow{n} \cdot A_{us} \right) \frac{\overrightarrow{n}}{2}
$$

+ $i \overrightarrow{\psi}_c^{\perp}$ + $g_s \overrightarrow{M}_{us}$

$$
\begin{array}{lll}\n\sigma(\lambda^4): & \overline{\xi}_n \frac{\overline{N}}{2} \left(i \, n \cdot D_c + g_5 \, n \cdot A_{us} \right) \xi_n + \overline{\eta}_n \frac{\mu}{2} \, i \, \overline{n} \cdot D_c \, \eta_n \\
& + \overline{\xi}_n \, i \, \overline{\psi}_c^{\perp} \, \eta_n + \overline{\eta}_n \, i \, \overline{\psi}_c^{\perp} \, \xi_n\n\end{array}
$$

 $\overline{\xi}_n$ gs $\overline{\mu}_{us}$ η_n + \overline{q}_{us} gs $\overline{\mu}_{c}$ $\overline{\xi}_n$ + \overline{q}_{us} $\frac{\mu}{2}$ gs $\overline{n} \cdot A_c$ η_n + h.c. $\sigma(\lambda^5)$

In the $\sigma(\chi^s)$ Lagrangian we have used that terms involving only a single collinear field are not allowed by momentume conservation. Note that all terms of $O(\lambda^5)$ and higher contain at least one ultra-soft field.

From now on we focus on the leading order SCET Lagrangian

$$
\mathcal{L}_{SCET} = \mathcal{L}_{c} + \mathcal{L}_{us} + \mathcal{L}_{c+us}
$$

with

$$
\mathcal{L}_{c} = \overline{\xi}_{n} \frac{\overline{x}}{2} i n \cdot D_{c} \xi_{n} + \overline{\eta}_{n} \frac{\overline{x}}{2} i \overline{n} \cdot D_{c} \eta_{n}
$$

+
$$
\overline{\xi}_{n} i \overline{\psi}_{c}^{+} \eta_{n} + \overline{\eta}_{n} i \overline{\psi}_{c}^{+} \xi_{n} + (\text{pure glue terms}) \sim \lambda^{4}
$$

$$
4c+us = \frac{1}{5}n \frac{1}{2}gsn-Aus \frac{1}{5}n + (pure glue terues) \approx \lambda^4
$$

$$
d_{us} = \overline{q}_{us} i \overline{\psi}_{us} q_{us} + (pure glue terms) \sim \lambda^{8}
$$

The leading order action is

$$
S_{scert} = \int d^{4}x \left(\frac{\mathcal{L}_{c} + \mathcal{L}_{ctus}}{\lambda^{4}} \right) + \int d^{4}x \frac{\mathcal{L}_{us}}{\lambda^{8}} \sim \lambda^{\circ}
$$

Since the field ξ_n contains the large components of the collinear spinor field, we can use it to describe collinear quarks and integrate out the power suppressed field η_n in the generating functional. Like in HQET, the functional determinant is just an irrelevant (divergent) constant. The resulting Lagrangian

is obtained by using the solution of the classical equation of motion:

$$
\frac{\delta \mathcal{L}_c}{\delta \overline{\eta}_n} = 0 \implies \frac{\psi}{2} \dot{v} \overline{n} \cdot D_c \eta_n + \dot{v} \overline{\psi}_c^{\perp} \xi_n = 0
$$

To solve this equation for η_n we introduce an ouxilliary regulator is to obtain

$$
\frac{\vec{\mu}\vec{\mu}}{4} \left(i \vec{n} \cdot \mathcal{D}_c + i \delta \right) \eta_n = -\frac{\vec{\mu}}{2} i \cancel{D}_c^1 \xi_n
$$

replace by: $P_{\vec{n}} + P_n = 1$
Y vanishes when acting on η_n

$$
\Rightarrow \qquad \boxed{\eta_n = -\frac{1}{i\bar{n}\cdot D_c + i\delta} \frac{\vec{\mu}}{2} i \vec{D}_c^{\perp} \vec{\xi}_n}
$$
\n
$$
\overline{O(\lambda^0)} \qquad \int_{arbitrary sign, since pole is unphysical}
$$

It is instructive to compare this to the corresponding expression in HQET:

$$
H_{\nu} = \frac{1}{2m_{\alpha} + i v \cdot D_{s}} i \phi_{s}^{\perp} h_{\nu} \qquad (\rightarrow p.16)
$$

In that case, the inverse differential operator could be expanded in powers of $iv \cdot D_5/m_a = O(\lambda)$. In the case of SCET, such an expansion parameter is lacking. Inserting the above solution into our expression for dc, we find:

$$
\mathcal{L}_{c} = \overline{\xi}_{n} \frac{\overline{K}}{2} in D_{c} \overline{\xi}_{n} - \overline{\xi}_{n} i \overline{\psi}_{c}^{\perp} \frac{\overline{K}}{2} \frac{1}{i \overline{n} \cdot D_{c} + i \delta} i \overline{\psi}_{c}^{\perp} \overline{\xi}_{n}
$$

+ (pure glue terms)

The inverse of a derivative is an integral, but what is the inverse of a covariant derivative?

To define the above expression properly, we introduce
\nthe collinear Wilson Line: large conponent light-like direction
\n
$$
\overbrace{W_c(x)} = P exp(i g_s \int_{-\infty}^{0} dt \overbrace{n} \overbrace{A_c(x + t\overline{n})})
$$

This is analogous to the definition of the soft Wilson Line in HQET (see p. 21). It follows that:

$$
\left[\begin{array}{cc} \vec{i} & \vec{n} \cdot \vec{D}_c & W_c(x) \end{array}\right] = 0
$$

$$
\Rightarrow i\pi \cdot D_c W_c(x) \phi_c(x) = W_c(x) i\pi \cdot \partial \phi_c(x)
$$

or
or
collinear fields

As a differential operator, it follows that: W_c^{\dagger} (x) i $\overline{n} \cdot D_c$ W_c (x) = i $\overline{n} \cdot \partial$

This in turn implies

$$
\frac{1}{i\bar{n}\cdot D_c + i\delta} = W_c \frac{1}{i\bar{n}\cdot \partial + i\delta} W_c^+
$$

 G proof: apply W_c^+ i. T. D_c ... W_c on both sides

The second terme in the Lagrangian can now be written in the form:

$$
\overline{\zeta}_{n} i \overline{\psi}_{c}^{1} \frac{\overline{\chi}}{2} \frac{1}{i \overline{n} \cdot D_{c} + i \delta} i \overline{\psi}_{c}^{1} \xi_{n}(x)
$$
\n
$$
= \overline{\zeta}_{n} i \overline{\psi}_{c}^{1} W_{c} \frac{\overline{\chi}}{2} \frac{1}{i \overline{n} \cdot \partial + i \delta} W_{c}^{+} i \overline{\psi}_{c}^{1} \xi_{n}(x)
$$
\n
$$
= (\overline{\zeta}_{n} i \overline{\psi}_{c}^{1} W_{c})(x) \frac{\overline{\chi}}{2} (-i) \int d^{}^{}(\overline{W}_{c}^{+} i \overline{\psi}_{c}^{1} \xi_{n})(x + i \overline{n})
$$

$$
\frac{\text{coker:}}{\text{i } \bar{n} \cdot \partial_x \left(-\text{i}\right)} \int_{-\infty}^{\infty} \text{d}t \; \varphi(x + \overline{n}) = \overline{n} \cdot \partial_x \int_{-\infty}^{\frac{n \cdot x}{2}} \text{d}t' \; \varphi\left(\frac{\overline{n} \cdot x}{2} n + x_1 + \frac{1}{2} \overline{n}\right)
$$
\n
$$
= \frac{\overline{n} \cdot n}{2} \; \varphi(x) = \varphi(x)
$$

Note that the lower integration limit "- " is appropriate for our choice of the "is" regulator. If the collinear fields $(w_c^+ \dot w_c^+ \xi_n)(x + t\bar n)$ carry total momentum Pe_p then the t-integral gives:

$$
(-i)
$$
 $\int_{-\infty}^{0} dt e^{-i p_c \cdot (x + i \pi)}$ requirement to change
convergence at t $\rightarrow -\infty$
= $(-i) e^{-i p_c \cdot x} \int_{-\infty}^{0} dt e^{-i (\pi \cdot p_c + i \delta)} t = \frac{e^{-i p_c \cdot x}}{\pi \cdot p_c + i \delta}$

This indeed corresponds to the action of the inverse differential operator

$$
\frac{1}{i\bar{n}\cdot\partial+i\delta} e^{-i\bar{p}_{c}\cdot\bar{X}}
$$

This leads to the final form of the leading order SCET Lagrangian

$$
\mathcal{L}_{c}(x) = \overline{\xi}_{n} \frac{\overline{x}}{2} i n \cdot D_{c} \xi_{n}(x)
$$

+ $(\overline{\xi}_{n} i \overline{\psi}_{c}^{\perp} W_{c})(x) \frac{\overline{x}}{2} i \int_{-\infty}^{0} dt (W_{c}^{\dagger} i \overline{\psi}_{c}^{\perp} \xi_{n})(x + t\overline{n})$
+ (pure glue terms)

Coupling to ultra-soft gluous:

Besides the collinear Lagrangian, the leading-order SCET Lagrangian contains interactions of collinear fields with the component n. Aus of the ultra-soft gluon field:

$$
\mathcal{L}_{\text{ctus}} = \overline{\xi}_n \frac{\overline{n}}{2} g_s n \cdot A_{\text{us}} \xi_n + \text{Cpure glue terms}
$$

Let us look at the structure of these interactions in nove detail:

In the method of regions it is important that we expand the Feynman integrands consistently to leading order in λ . This means that we should expand

$$
\rho_c^{\dagger} \uparrow = \rho_c^{\dagger} + k_{us}^{\dagger} = (n \cdot p_c + n \cdot k_{us}) \frac{\overline{n}^{\dagger}}{2} + (\overline{n} \cdot p_c + \overline{n} \cdot k_{us}) \frac{\overline{n}^{\dagger}}{2} + \rho_c^{\dagger} + k_{us}^{\dagger} + k_{us}^{\dagger}
$$

= $(n \cdot p_c + n \cdot k_{us}) \frac{\overline{n}^{\dagger}}{2} + \overline{n} \cdot p_c \frac{\overline{n}^{\dagger}}{2} + \rho_c^{\dagger} + k_{us}^{\dagger} + k_{us}^{\dagger}$
 $\Rightarrow p_c^{\dagger} + k_{us}^{\dagger} + \overline{n} \cdot k_{us}^{\dagger} = n \cdot k \frac{\overline{n}^{\dagger}}{2} \qquad \text{must expand}$

This implies that 4-momentum is not conserved at the verfex:

To implement this rule at the Lagrangian level, we must perform a <u>multipole expansion</u> of the ultre-saft fields whenever they interact with collinear fields.

$$
x^{\mu} = n \cdot x \frac{\overline{n}^{\mu}}{2} + \overline{n} \cdot x \frac{h^{\mu}}{2} + x_{\perp}^{\mu}
$$

\n
$$
= x_{+}^{\mu} + x_{-}^{\mu} + x_{\perp}^{\mu}
$$

\n1 x_{-}^2 x_{-}^1 (since $x \cdot p_c \sim 1$) with collinear fields

$$
\Rightarrow \phi_{\mu_{s}}(x) = \phi_{\mu_{s}}(x_{-}) + x_{\perp} \cdot \partial_{\perp} \phi_{\mu_{s}}(x_{-}) + (x_{+} \cdot \partial_{-} + \frac{x_{\perp}^{h} x_{\perp}^{v}}{2} \partial_{\mu_{s}}^{+} \partial_{v}^{+}) \phi_{\mu_{s}}(x_{-}) + ...
$$

4 generates series of higher-order termes in λ

At leading order in λ , the correct form of the effective Lagrangian Hus contains:

$$
\mathcal{L}_{\text{C+us}}(x) = \overline{\xi}_n(x) \frac{\overline{n}}{2} g_s n \cdot A_{us}(x) \xi_n(x) + \text{Cpure glue terms}
$$

For the vertex shown above, the action
$$
\int d^4x \, d_{\text{Hug}}(x)
$$

\n
$$
\frac{4}{2} \bar{n} \cdot x \, n \cdot k_{us} = x \cdot (\frac{\bar{n}}{2} \, n \cdot k_{us}) = x \cdot k_{us+}
$$
\n
$$
\int d^4x \, e^{-x \cdot (p_c^2 \cdot x - p_c \cdot x - k_{us} \cdot x_c)} = (2\pi)^4 \, S^{(4)}(p_c^2 - p_c - k_{us+})
$$

$$
\int \int_{0}^{2\pi} \int_{0}^{2\
$$

Note the important fact that ultra-soft quarks do not interact with collinear fields at leading order! In principle, it is possible to go to higher orders in the expansion in λ (\rightarrow a topic of intensive current research), but we will focus on the leading terms in this course

