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II Construction of Soft Collinear EffectiveTheory

A long standing problem in QCD is how to systematically
account for long distance effects including power

correctionsin processes which do not admit a local OPE

OPE provides rigorous framework for an expansion
in powers and logarithms of the largescale for
euclidean processes

processes involving energetic light particles pose new
challenges pl has some large components but pi o

Consider eté s 2 jets

III
Its
III

highly collimatedjets of
particles largeenergy along

jetaxis small invariantmass
S

PI PI

PI En O O I Ei my

P Er o o e my j
E eÉ mi as

intrinsically Minkowskian process

what is there to integrate out
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Introduce small expansion parameter

an I can 0 15

Define two light like reference vectors along jet directions

htt 1 O O 1 AM 1 0,0 1

n O K 0 not 2

Decompose 4 vectors in a light cone basis spanned by
ut ut and two perpendicular directions

PM hip II hip 1 t pit

15
N QPan En ie ing If a ma

hi Pj Ent E my ZE 45 1 Q

put 0

similarly n py n 1 Q I Py n N Q Pj 0

Individual partous inside the jets can carry momenta

with the same scaling rules but these can also have

transverse components as long as pi s myo We
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thus find

partons inside jet 1 n pi h pi Pt I 1 R Q

collinear n collinear particles

partons inside jet 2 n pi ni pi Pit 1 N R Q

anti collinear E collinear particles

note pi n pi r pi t PIi n NQ2 both cases

These collinear particles have virtualities much less
than the hard scale Q s But in virtual diagrams

we can also exchange hard particles with

pit n Q i.e n pi ni pi p 1,1 1 Q

hard particles

We could try to integrate out these hard quantum
fluctuations and construct an EFT built out of
collinear and anti collinear particles However

one finds that this is not the whole story

It is instructive at this point to consider a concrete

example the off shell Sadako formfactor

to

194 IpitPry uP2
mi o
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One loop calculation

Zg Zg tech 81 up Zg 1 O as

offshell WFRfactor
Pr Pr WFR

fromcouplingrenormalization

p
p p p

i Cegs y fdik
m Ktr 8 Ktp 8 ucp

y ieee 2k Citi o Ktp t io Ktp Tio
7 D 4 2E

useFeynmangauge 3 1

For our purposes it suffices to focus on the scalar

loop integral

2PaP2
I it m fdik wi htpatio Ktr tio

In he t I t 0 É finite for e so
Sudakov double log

with
Q2 q io s i o c o non zero imag part

Pi pi i o o off shell IR regulators

note that Q p pal 2prop up to ON terms

In the CMS n g h q q 1 1,0 V5

n Pa t.pe pt N 1 0 is collinear

hips pig

hard

anti collinear
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We will now decompose this result into a sum of
contributions each depending on only a single scale

The hard contribution depending on Q arises from
hard quantum fluctuations Contributions from lower
scales will later be associated with low frequency
modes in the EFT

Method of regions Smirnov 1990s

Systematic method for performing Taylor expansions of
Feynman graphs Fp by decomposing them into regions

Fr I My Fr
y

Taylorexpansioninvariables

sum oversetsy
that are small ing

ofsubgraphs

Practical procedure roughly

1 determine largeand small scales in the graph

2 introduce factorization scales pi and divide the loop
integrals into regions in which each loop momentum is
related to one of these scales

3 perform a Taylor expansion in parameters that are
small in a given region
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4 after the expansion ignore the factorization scales

and integrate over the entire loop integration domain
in each region

For step 4 to be valid it is essential that Fr is

defined in dimensional regularization

follows fromvanishing of scaleless integrals

fdik Iya 0

Comment

A more rigorous treatment uses the notion of singular
surfaces

loop integrals in dim reg are contour integrals in the

complex momentumplane

non zero contributions result from pinch singularities
where contours cannot be deformed so as to avoid

the poles 1

s
O
s 7

this happens when some propagators go ou shell

happens only when some loop momenta match

external scales
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other off shell propagators can be expanded about
the singular surfaces no need for hard cutoffs

graph Fp is then equal to the sure of all singular
subgraphs

see e g Beneke Smirnov 19971

We will see how this procedure works in concrete

examples Every region we identify hard collinear

anti collinear I will be associated with either
a Wilson coefficient hard region or a field in the
low energy EFT see exercises for more details

Region analysis of the Sudakov formfactor

We now decompose the scalar one loop integral

i2PaP2
I it m fdik Mio htpatio ktla t id

p g p

tee

into regions where the loop momentum 1st

is hard collinear and anti collinear
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a hardregion Ktn 111,1 Q

Expansions of propagators

Ktp k't 2k p t pi

K t 2k nope trip I pet t pi
1 1 N y a f
Is t Cn k nope t OCR e KtPy

drop

Ktp lit E k nope t OIR e Kt Patt

with
pi top 1 pal n p NI null vectors

This gives Taylorexpansionof 2PaPz

2Pa Pat
In it m fdik wi Ktp Fi o KtPatio

Q2
T

e
la É t en'mTate I t

1
g

t Ole

appearance of double and single poles in E

IR divergences since integral is UV finite

result depends on hard scale Q only and on

the factorization scaler
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b collinear region Ktn R 1 R Q

Expansions of propagators

Ktp k't 2k p t pi

K't n k hop tho k hop t 2kt pet t pi
N N I I n a a p

d

nothing to expand

Ktp Is't n ka p th kn p t 2kt past pi
N N N y y x x x

T K hop t 0112 I 2k Pat
a

drop

This gives

2Pa Pat
I it m Sdk Mio Ktp tio 2k patio

Tate I I I luff flu't Y't Ole
RE pi

appearance of double and single poles in E
IR divergences since integral is UV finite

result depends on collinear scale Pi only
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c anti collinear region K n I d I Q

We find an analogous contribution

Io rate I I I lug flip Y't Ole

PI p

sum of the three contributions

In t Ie t Ie

Patel I I en enÉ la 1

flu to flu I lit I Ole

surprisingly this does not reproduce the exact result

on p 24 and also uncancelled IR divergences remain

It follows that we have failed to identify at least

one relevant region Combining the three logs in the

coefficient of the le pole we get

above te te en M
Q
Pipi

t

suggest that missing region corresponds to scale

pipi
a

n a Q a collinear scale Pi n n Q
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d ultra soft contribution

There is a strong physics reason suggesting that we
need another mode corresponding to a momentum

region in the low energy effective theory An EFT

built out of colliner and anti collinear particles
would contain two disjunct sectors because no vertices

connecting both types of particles are allowed

pet t pet n 1,1 d hard

A1 N C N R

Physically it would be strange if the two jets
could not interact in the low energy theory since

they need to neutralize their color The Largest

on shell mode that can connect to both collinear
and anti collinear particles without taking them

far off shell is the ultra soft mode

pis n N N N pis n I Q

C E
7

us

messenger
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Let us evaluate the ultra soft contribution to the
Sudakou form factor Kin N N N Q

k t p t k t m k hop t to k hope t 2kt pet t pi
N I I N I i n p

d

wokhip t pi t 093 2k Pe t pi
drop

Ktpal vi k hop t pi t OLÉ x 2k pet p

This gives
2Pa Pat

Inge in m fdik wi 2k p t pi ti o 2k Pat Pitio

Tate 1 t d enMa flu MQ Y Ole
PiPi PiPi

Adding this result to the expression on page 30 we find

Int Ic t Ie t Ius

flu th flu't I lit flu MQ I Ole
Pip 3

hard collinear anti collinear ultra soft

h Q
R2
thE t

I
3

OLE

This agrees with the original expression on p 24
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Comments

The decomposition of Sudakov double logarithms into
a sum of logarithms depending on a single physical
scale requires the presence of three correlated scales

logscale

a
Q hard

i

p Na anti collinear

pay
an

a Q ultra soft

The ultra soft scale is physical and characterizes

soft exchanges between the two jets
get

ultra softexchanges

It.ME are needed for
Funny colorneutralization

The process can be calculated in perturbative QCD only

if the ultra soft scale is much larger that Aaa

else need nonperturbative soft functions
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Note on conventions

Different authors use different names and choices of
X to define the various modes A common alternative

convention is to choose a n y Iabove and define

pi n 111,11 Q hard

Ph I l N2 Q hard collinear

PIE n C1 R N Q anti hard collinear

pls n R R N Q soft

The names are different but the physics is the same


