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We study the renormalization properties of the Wilson loops containing cusp singularities. In 
particular, we calculate the two-loop contribution to the cusp anomalous dimension Fcusp(7 , g) 
and investigate its behaviour in the limit of large and small cusp angles 7. The general form of 
Fcu~p(y, g) is established in the limit of large minkowskian cusp angles 7, and the analyticity 
properties of /"cusp with respect to 7 are investigated. The relation of these results to the 
nonleading infrared behaviour of the quark form factor is demonstrated. 

I. Introduction 

One of the most promising approaches for studying the infrared behaviour of 
quantum chromodynamics is the attempt to formulate the non-abelian gauge theory 
in the loop-space. Instead of the gauge-dependent entities and Yang-Mills equa- 
tions, one studies in such a formulation the properties of the gauge-invariant 
functionals 

1 
W(C) = -~ Tr(OlTP exp( ig~cdX~.4~( x ) )lO ) (1) 

(the Wilson loops) and functional equations for W(C) [1, 2]. This approach, how- 
ever, faces many problems. In particular, W(C) is a nonlocal divergent functional of 
the gauge potential: it cannot be renormalized by the ordinary R-operation [3] 
restricted to the local operators. The renormalization properties of W(C) for an 
arbitrary contour C were studied earlier e.g., in refs. [4-8] and the main conclusion 
contained therein is the following: W(C) is multiplicatively renormalizable to all 
orders of perturbation theory (PT). More specifically, if the loop is smooth and 
simple (i.e. without self-intersections) the divergent quantity W(C) can be made 
finite by expressing it in terms of the renormalized QCD coupling constant (in some 
renormalization schemes [4] it is necessary to multiply the result also by the 
exp(-KL(C))  factor to remove linear divergence K related to a "testing particle" 
mass renormalization, L(C) being the length of the contour C). Furthermore, it was 
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proved [4-7] that a Wilson loop is multiplicatively renormalizable in the case of it 
having a finite number of self-intersection points and cusps corresponding to angles 
(3'i } (the relevant infinities are referred to as cusp singularities). 

In the present paper we restrict our analysis to a simple loop (without self-inter- 
sections) and study the structure of the cusp singularities in higher orders of PT. In 
sect. 2 we define the regularization procedure for singularities that appear in a 
perturbative expansion of eq. (1); we also construct there the subtraction procedure 
and study some properties of both. In sect. 3 we describe the calculation of the cusp 
anomalous dimension to order a s and formulate a general scheme for explicit 
higher-order calculations. We present further our results for the two-loop cusp 
anomalous dimension. In sect. 4 we study the general form of the cusp anomalous 
dimension in the limit 3' ~ oo (where 3' is the minkowskian cusp angle) for an 
arbitrary order of PT. In sect. 5 we analyze some properties of our results for the 
"time-like" cusp angles related to the Glauber singularities. In the conclusion we 
formulate our main results. 

2. Regularization and subtraction procedure 

2.1. PRELIMINARIES 

If one expands W(C) in the PT series 

oo 

1 ~ (ig),~¢dx~...~¢dx~,Oc(xl> ... >x,)TrD~..~,,(Xl ..... x,), w ( c )  = 1 + . - 2  

(2) 

there appear the ultraviolet (UV) singularities both from the ultraviolet integration 
regions for the Green function Dvl...~,(x 1 . . . . .  x , )  and from "contraction into a 
point" of some set of contour integrations. In what follows it is always implied that 
all integrals are dimensionally regularized. To analyze the UV divergences of eq. (2), 
we incorporate the approach [5] in which the one-dimensional fermions living on the 
contour C are introduced. In this approach eq. (2) can be rewritten as 

W(C) = (01T~(L)z(0)I 0) 

=  z(o) ~ c  .@(~exp [ iSvM ( A, C, C) + iSeff ( A, z, z~)], 

where the modified action Sef f is 

Seff = fold°[ i~(°) Oz(°)ao gzT(o).2~,(o) .4~(x(o))z(o)] (3) 
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and furthermore the boundary conditions x~(L)=x~(O), z(L)= -z(0)  are im- 
posed. 

To study the renormalization properties of the local lagrangian (3), one can apply 
the ordinary R-operation since the counterterms resulting from its application have 
(for a smooth simple loop C) structure of the original lagrangian [5]. In other words, 
after the renormalization one has 

A t* ~ A~.  = Z ~ I / 2 A  ~ , C --~ C a = J ~ 3 1 / 2 C ,  g -o  g R  = Z11Z33/2~-e/2g, 

Z(O)-'CZR(O)=(zF)-I/2z(O), e=4--n,  (4) 

and incorporating in addition the Slavnov-Taylor identities 

= 21/2  = Z lZ( 

(where Z 1, Zl, ZF are the renorrnalization constants for the three-gluon, four-gluon 
and fermion-gluon vertices, respectively) one obtains the expression for the Wilson 
loop (defined on a smooth contour) which is finite in the limit e ~ 0, e being the 
dimensional regularization parameter*. Thus, for a simple smooth contour the 
renormalized contour average WR(C; gR,/~) is given by 

WR(C; gR, t~) = lim W(C; gR, ~, e), 
e-c0 

I,V(C; ga,/~, e) = RW(C; g, e), (5) 

where W(C; g, ~) is a regularized, but not renormalized r.h.s, of eq. (2) and # is a 
subtraction point. In what follows we use the MS subtraction scheme [9] for which 
the renormalization constants Z F, Z F are known in Feynman gauge at the two-loop 
level [8]. 

2.2. SUBTRACTION OF CUSP SINGULARITIES 

However, if the loop C has a cusp characterized by angle ? then Wa, even after 
applying to it the R-operation defined by eqs. (4), (5) possesses the cusp singularities 
resulting from integration in vicinity of the cusp. The relevant divergent subgraphs 
are those containing the singular point (the cusp) and which are furthermore the 
two-particle (rainbow) irreducible ones with respect to the one-dimensional ferm- 
ions lines. The general structure of these subgraphs is illustrated in fig. 1. To 
construct the renormalized Wilson loop, we incorporate in this case the subtraction 
procedure Kv proposed in refs. [2,7]. The action of Kv on the functional 
I~(C; gR,/X, e) defined in eq. (5) produces the renormalized contour average with 

* The regularization used in ref. [4] in contradistinction to the dimensional regularization violates the 
chiral invariance of the z(o)-field lagrangian and requires an additional renormalization of the mass 
in eq. (4). 
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\ \ ~ - -  I 

Fig. 1. General structure of the rainbow-irreducible subgraphs. The dashed line denotes the contour 
integration in a vicinity of the cusp O. The blob denotes an arbitrary gluon subprocess. 

the cusp singularities subtracted for each divergent subgraph of fig. 1: 

Wa(Cv; gR,/~,C-v) = fimKvl, V(C~,;gR,~,e)= limKvRW(C~,; g, e), (6) 
e~O e---, 0 

m 

where Cv denotes a generalized subtraction point of the Kv procedure. The cusp 
divergences are multiplicatively renormalizable, and the action of Kv on a loop 
functional containing a single cusp singularity is defined by 

KvlTV(Cv;ga, tt, e )=Z~p(g i t ,  Y;Iz,G,e)l,V(Cv;ga, tt, e ) . (7) 

The r.h.s, of eq. (6) would be finite if the nth term of the PT expansion 
Zcusp(git, 3'; I~, Cy, e) = 1 + E,~I g2nZn equals (up to finite terms and taken with an 
opposite sign) the cusp divergence of the whole n th-order graph contributing to 1~ 
with all subdivergences subtracted before. Fixing the finite part of Z, one fixes a 
particular Kr subtraction scheme. We shall use the two schemes described below. 

K y  s scheme. The cusp singularities of an arbitrary subgraph are given in the 
dimensional regularization by a sum of pole terms. If one defines Z, to be given just 
by the sum of the poles 

= E (8) 
k = l  

one arrives at an MS-like scheme to be referred to from now on as K Ms with the 
generalized subtraction point Cv coinciding with the R-operation parameter/z of eq. 
(5). Note that the coefficients of expansion (8) as well as Z n themselves depend in 
the K Ms scheme only on the cusp angle ~/, since the UV singularities of eq. (2) for 
an arbitrary loop C depend only on the first derivative ~ ( o )  [6], i.e. on the cusp 
angle in our case. 

K ~  °M scheme. Owing to this important property of the contour averages we can 
define ( - Z n )  corresponding to some arbitrary graph 1~ ordered along Cy to be 
equal to the contribution of the same graph (with the subdivergences subtracted 
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beforehand) but ordered along another fixed contour Cv also possessing a single 
cusp point with angle 3' and having the length 1/#. It is easy to realize that in the 
subtraction scheme K ~  °M defined in this way (and being an analog of the standard 
MOM-scheme) the following boundary condition 

WR(Cv; gR,/~,Cv) = 1 (9) 

is fulfilled. Furthermore 

Zcusp(gR, y;/.t,Cv,e ) (l'~(~;gR, l.l,,e))-l=(I'TV(1, y,(rl},gR, e)) -1 , (10) 

where an arbitrary loop is characterized by its length, cusp angle 3', and by a set of 
some dimensionless parameters (~/). 

The subtraction procedures described above possess all the necessary properties 
of the R-operation. As a result, the renormalized loop average (6) satisfies the 
renormalization group equation [2]: 

) + B(gR) + Gsp(3', gR) 3", ( n } ,  = O, (11) 

where the anomalous dimension is given by 

d 
Fc~p(3', gR) = -- lim - - l n  I,V(Cv; gR,/~, e). 

~-*0 dln~t 
(12) 

As emphasized above, /~cu~p depends only on a single contour parameter: the cusp 
angle 3'. 

2.3. RENORMALIZED EXPONENTIATION THEOREM 

Some general properties of the anomalous dimension/'cusp in higher orders of PT 
can be established on the basis of the exponentiation theorem [6,10] for the 
non-abelian path-ordered exponentials (2). The theorem amounts to the statement 
that the dimensionally regularized (but nonrenormalized) contour average W(C) can 
be represented in the form 

W(C;g,t)=exp( ~ a~ ~ C.(W)F~(W)), (13) 
n = l  W~W(n) 

where summation in the exponential is over all diagrams W of the set W(n) of the 
two-particle (rainbow) irreducible (2PI) contour averages of n th PT order. (It is 
straightforward to observe that the criterion of the two-particle irreducibility 
coincides with the definition of "webs" given in ref. [10].) Furthermore, Fn(W ) 
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denotes the contour integral present in the expression for W and C,(W) the 
"maximally non-abelian" [10] or the "colour-connected" [11] parts of the colour 
factor corresponding to the contribution yielded by a diagram W to the total 
expression (13) for the contour average. For lowest orders in a s there exists an 
estimate 

C.(W) - CFN: -1 (14) 

(the exact definition of C, is given in ref. [11]). The diagrams whose colour factor 
does not possess a term of eq. (14) type do not contribute to the sum over W in 
eq. (13). 

Of course, eq. (13) is only a formal relation unless the renormalization prescrip- 
tion and the renormalized analogue of eq. (13) are defined. We are interested in 
loops possessing the cusp singularities. To this end we apply to both sides of eq. (12) 
the operation KrR introduced above. Note now that the exponential factor in eq. 
(13) is given by a sum of contour integrals. Hence, the transformation given by eq. 
(4) is sufficient for a consistent renormalization, i.e. 

RW(C;g,e)=exp( ~ a~ ~ C~(W)RF.(W)). 
n=l W~W(n) 

Denoting 

ocnFn(W) = w : P I ( w ,  cv; g , e ) ,  R W :  PI~- w2PI(w,  cy; gR, /.t, e),  

we find that 

I'V(Cy; gR,/z, e) = exp( E E Cn(W)J~:PI(w,c . r ;gR,  I -t,e . (15) 
n=l W~W(n) 

Just as in the above discussion, the r.h.s, of eq. (15) possesses the uncompensated 
UV poles related to the cusp singularities removed by the K~ operation. Consider 
first the action of the K M°M procedure on eq. (15). By virtue of eq. (10) we have 

(~/(Cv; gR,/Z, ~)) - 1 ~lT(Cv ; e) = gR,/x, 

=exp{ ~ • Cn(W ) 
n=l W~W(n) 

×[l~2r'I(W,C.r;gR, it, e)- l, VffPI(w,c_.v;gp.,I.t,e)]), (16) 
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where it is taken into account that all the topologically equivalent loops possessing 
the cusp singularity have the same colour factor Cn(W). Note now that the 2PI 
contour averages present in the exponential factor of eq. (16) have no divergent 
subgraphs, and the action of the subtraction procedure K ~  °M in this case amounts 
to the subtraction of the contribution of the same graph containing a single pole 1/e 
but ordered along C-v, i.e. 

n2pI/Wt. , C'r, gR,/l, e) - I~r2PI(w, C),; gR, IX, e) = K yM°M~IV.2PI (W, C),," gR,/1, I~) 

and, hence 

WR(Cv;gR,/~,Cv)= limexp ]~ E C,(W)K~°MRW2PI(w, Cr;g, e) 
~'-'-~ 0 [ n = l  W ~W(n) 

2vi . . (17) = exp E C, (W) W~,, (W, Cv, gp., g, 
I W~W(n)  

The validity of this important relation in the K~ s scheme is not obvious a priori 
because of the absence of the analogue of eq. (10) for this scheme. However, it can 
be demonstrated that there exists in this case a relation between the renormalization 
constants for the cusp singularities and the pole part of the 2PI contour averages: 

Zcu~p(MS gR, Y , g , e ) = e x p  -- ]~ • C,,(W)I, V2v'(W, Cv;gR, IX, e) . (18) 
n = l  WEW(n) poles 

To prove it we note that the factor Zcusp in the K ~  s scheme (given by a sum of 
poles of eq. (8)) can always be represented in the form 

2n 

Zeusp (~ ' , e )=exp -  ~ -~Kf.,(3') 
I ,n=l  

l<~n 

where f,,t(Y) are some yet unknown functions of the cusp angle 3'. Substituting this 
expression and the one for the regularized contour average determined by the 
contribution of the 2PI graphs 

l~(Cv;gR'l~'e)=exp(I~2vI(Cv;gR'l~'e))=exp( n=l ~ --~-¢Pn ( y , g 2 "  (*/}' gL,  e)) 

(where ~0n(3,, { 7/}, #L, e) is some regular function of e) into eq. (7) we find that 

ttmexp E /.,(v) 
e--,O n = l  i~ I ,n=l  

l<~n 



G.P. Korchemsky, A.V. Radyushkin / Wilson loops 349 

The requirement that e-poles be absent in both sides of this equation unambigu- 
ously fixes the f.t  coefficients; 

f.t(V) = 0, / > 1 ;  f.a(V) = %(~,, ( ~ ), ~tL,0). 

Hence, the final expression for the cusp singularity renormalization constant is 
given by an exponential of the pole part of the 2PI contour averages depending only 
on the cusp angle 7 [6]. As a result, 

[; ] MS 2PI e)  KMSRW(Cv;g,e)=exp • C.(W)K v RWn (W, Cv;g, . 
W~W(n)  

Thus, the exponentiation theorem (13) is valid for the renormalized contour aver- 
ages, at least within the framework of the two subtraction procedures used in the 
present paper: 

WR(Cv; gR, bt,Cr)=exp(W2PI(f.r; g R ,  fi,C_~./)) , (19) 

where 

oo 
WgzPI(cv; gR,/x,Cv) = lim E E Cn(W)KvRW2PI(w, Cv;g,e) • 

e 0 n = l  w w~/**'~'*"n" 

2.4. CUSP ANOMALOUS DIMENSION 

Incorporating now the RG equation for the nonrenormalized contour averages 
one obtains from eq. (19) the equation for w2Pt: 

~ ' ~  q - / ~ ( g R ) ~ g  R w 2 P I ( c y ;  gR, ]~ , (7_ .~)=  --Fcusp(~t ,  g R ) ,  (20) 

which has the following important consequences: 
(i) Using the explicit form of WR zPI we obtain the relation between the cusp 

anomalous dimension and the contribution of the 2PI contour integrals 

oo 

rcu (V, gR) = - E E 
n = l  W~W(n)  

d 
W 2PI . )d- n 

oo d 
= - l i m  Y'. E Cn(W),-T-;---I'v2PI(w,cv;gR, I L, e). (21) 

e-~O n ~ l  W~W(n)  o l n / ~  - - 

This means that /'c~p(V, gR), just as expected, does not depend on the generalized 
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subtraction point C v. The second observation is that in an nth order of the PT series 
expansion F~p(y ,  gR) contains only the "maximally non-abelian" [10] or "colour- 
connected" [11] colour factors. In particular, in the QED case eq. (21) contains only 
the first term of the series. 

(ii) The general form of the solution of eq. (20) is 

WR2PI(cv; gR, ~,C./) = w2PI(cy;  gR, ~ , C 7 ) -  fg"°')dg 
"gR(g) 

rousp(V, g) 
fl(g) (22) 

The expression for WR TM contains the #-dependence in gR and in a single logarithm 
of cusp singularity. Hence, there exists some poin t / i  where 

w2pI(Cv; g g , ~ , f y ) = 0 .  (23) 

Consequently the general solution of eq. (11) can be written as 

_ fgR(~)d Fc~P(Y' g) ) 
WR(Cv; gR'/~' Cv) = exp "grt(g) g f l ( g )  ' (24) 

where / i  is the solution of eq. (23) depending on the contribution to W R only from 
2PI contour averages of eq. (19). 

3. Calculation of the cusp anomalous dimension 

As we established in the preceding section the cusp anomalous dimension 
depends only on a single characteristic of the loop, the cusp angle. Hence, to 
calculate it, one can use the simplest loop shown in fig. 2 formed by two lines and 
closed at infinity. Furthermore, we restrict our analysis to the 2PI graphs yielding a 
non-zero contribution to the expansion (21). 

To begin with, we recall the Feynman rules for the modified action (3) in the case 
of the contour of fig. 2 both in momentum and configuration representations. Note, 
that the latter has the dimension n = 4 - e for gluonic lines and is one-dimensional 
for the z-fermions, the transformation from the configuration space into the 

\ 

..'p q ".. 

Fig. 2. Self-energy and vertex corrections to the contour average. 
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momentum one for the one-dimensional fermions being 

z ( l )  = fo °° doei°~t+i°)z(o). 

351 

In addition to ordinary QCD gluon vertices the action (3) brings in two other 
elements, viz., the propagator of the one-dimensional fermions and the vertex 
describing the interaction between gluons and these fermions: 

/ i 
°1 -- - °2 0 ( o 2 - o l )  

l +  i0 ' 

, ~k ~, i g n ~ ( n o )  
0 

ign~A~( k ) 8( l '  + ( kn ) - l ) , 

(25) 

where n,  = (p ,  or q,) is one of the vectors characterizing the directions of the two 
lines shown in fig. 2. 

It is worth noting here that fig. 2 may be treated as an amplitude of the elastic 
scattering of an on-mass-shell (l = 0) one-dimensional fermion on a colour singlet 
potential. The contributions to this amplitude are due to both the self-energy 
corrections ~(1) = ~(0) + lON(O)/Ol + . . .  to the fermion lines and vertex correc- 
tions T(I, l ' ;  3,). The latter satisfy the equality 

r ( 0 , 0 ; 0 ) =  0f(t)01 ,=0 

following from the gauge properties of eq. (3). Hence, the total result for the cusp 
singularity of the diagram shown in fig. 2 is given by 

r ( 0 , 0 ;  7) + ~ = V(0,0; y) - V(0,0; 0) (26) 
l=O 

and to calculate it one can consider only the vertex corrections which in the lowest 
nontrivial order in the strong coupling constant a s are determined by the diagrams 
shown in fig. 3. In the following the K~SRMs subtraction procedure is used. 

\ 

Fig. 3. Diagram contributing to the one-loop cusp anomalous dimension. 
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3.1. ONE-LOOP CALCULATION 

The regularized expression for the contribution of the diagram in fig. 
Feynman gauge is 

2 I'(ln-1)lx'-"fo°°dsfo°°dt[ ~ =  (ig) (pq)Cv qt)2- iO] 1-"/2. 

3 in 

Using the scaling transformation s + t = A,  s = Ax one can rewrite it as 

F(½n- 1) . too dA 1"1 
"#¢=(ig)2(pq)CF 4~r "/2 #~-"Jo A"------~JO dx[(px+qx)2-io]Z-"/2' (27) 

where a convenient notation £ =  1 - x  is introduced. Generally speaking the 
integral over X appearing in eq. (27) does not exist because it converges on the 
lower (ultraviolet) limit only if n < 4 whereas on the upper (infrared) limit it 
converges only for n > 4. The appearance of the IR divergences is a penalty for the 
(relative) simplicity of the contour chosen since the infinite length of this contour 
just determines the essential scale for wavelengths of the gluons exchanged by the 
one-dimensional fermions. To define the A-integral of eq. (27) in the IR region, one 
can use another regularization scheme different from the dimensional one, e.g., 
ascribe a fictitious mass A to the gluons which corresponds to the following 
modification of the gluon propagator 

1 1 
(28) 

k 2 + i0 k 2 - A 2 + i0 

Calculation in this scheme suggests defining the A-integral of eq. (27) as 

oodA 1 (A)4-n 
~ 4 - n f  

An -- 3 ~0 4 - n 
(29) 

where A has just the meaning of the IR cut-off parameter (i.e. the scale inverse to 
the contour length L: A - 1/L). The x-integral remaining in eq. (27) can be easily 
calculated by using the following angular variables 

x ~  + ~q-£e Y 1 dx(pq) cothYfoVd~" ( 3 0 )  
x ~  + ~v~e-" = e2~' fo (px + q£)2 = 

The angle V between p~ and q~ (fig. 2) in the Minkowski space is defined by 

(Pq) 
c o s h y -  p ~ 2  " (31) 
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The corresponding euclidean results can be obtained by a mere redefinition of the 
ang les  

~'M = i'/E- (32) 

The final result for the renormalized contribution of fig. 3 (up to the irrelevant 
finite part) is 

= K SR s = - "s  ~-~ CrY coth Y ln~-~, (33) 

where a s = gi~/4~r. Taking into account also eq. (26) we find the exponential factor 
in eq. (19) 

WR PI " -~2 
Ol s 

,on¢-,oop,"~,[c' gR,/~) = - ~-~ CF(YC°th't - 1)In (34) 

and the one-loop cusp anomalous dimension 

FcOneqoo p ( a s . usp xY, g s )  = -~" CF(YCOthy - 1) (35) 

3.2. TWO-LOOP CALCULATION 

In the a 2 order the colour factor entering into eq. (19) is proportional to 

C2(W ) - CFN (36) 

and the set of the 2PI vertex diagrams containing the term displayed by eq. (36) in 
their colour factors is shown in fig. 4a-d.  Below we present the results of their 
calculation in Feynman gauge. 

(a) Crossed ladder graph. For the graph 4a we have the expression 

F 2 [ l n  1) i N  ~ ~,5 _- _ oo oo ~, 
Jda=(ig)'(pq)2CF(CF--2 I ~-~n /X2(4 ")f0 dslfoSlds2fo dsaf0 ds3 

× [ ( ( p s  i +qs3)2-iO)((ps2+qs4)2-iO)] l-n~2 

AA A • • . . .  " .  : • " .  • . : " .  

(a) (b) (c) (d) 

Fig. 4. Diagrams contributing to the two-loop cusp anomalous dimension. 
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After the scaling transformations s 2 = xs 1, s 3 =YS4, s 1 + s 4 = A, s I = ~z  it contains 
an integral over A that can be defined in a way similar to eq. (29) 

~ dA = 1 (A)2(4-n) 
~2(4- n) j O[ ~2n-------~ 2(4 - n------~ 

Calculating now the integrals over x and y gives 

g4 F2( ln  - 1) # )2,4-,) 

~ a =  64~r------~CF(CF-½N) 2 - ~ - n )  (-A 

l dz  z eY + Y z + f e ~ 1 "  

× cothEYJ0 - -  In - -  In - -  (37) 
z~ z e - r + f  z + f e  -~ 

Changing further the angular variables according to eq. (30) and applying the 
subtraction procedure we get the regularized version of eq. (37) 

2CF(C F ½N ~ ( y  • "¢t'a,R(g, gR, t* /A)  = - )cothEYf0 d~p - ~p)coth ~p ln~-g. 

(38) 

(b) Self-energy inserted graph. The calculation of the diagram 4b can be most 
conveniently performed in the momentum representation 

2 , "  d"k H~,p(k) i 2 
J i b =  - ( i g ) C F p ~ ' q P J  ( ~ ) .  ( k p +  iO) (kq+ i O ) ( -  ~-5) , (39) 

where 

n~,,(k)=(gj~2_kj%) g2N i~ "/2 r(2-½n)r2(~n-1)  3n-2 
2(2~r)" ( - k 2 )  2-n/2 F(n  - 2) n - 1 

is the regularized gluon polarization operator possessing a UV pole removed by the 
renormalization procedure eq. (4) in the MS scheme with 

g2 1 

Z 3 = 1 + ~N 87r2 4 I n 

After the application of the R-operation to eq. (39) it is necessary to redefine the 
resulting IR divergent expression according to eq. (28). This gives 

(-;, 31,n  J l b R ( Y ,  gR,#/A)=KvMSRMsJgb = -~ ~CFN g A-E+ 9" A 2 7cothy.  

(40) 
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(C) QED-type quark-gluon vertex correction graph. The regularized contribution 
of fig. 4c 

~ ~ ~ V : ( ~ n -  1)  
~c=(ig)a(pq)CF(CF--½N)fo ds3f dSEf dSlfo ds4 16--'--n 

S3 $2 

X [((ps 2 + qs4) 2 -  i0)( p2(s 1 --$3) 2 -  iO)] l-n~2 

after integration over sl, s 3 contains a UV pole corresponding to the fermion-gluon 
vertex correction 

g2 
.A¢¢= 16~r----g(pq)(p2)(a-')/2CF( C F - IN )yE(ln - 1) 

Xtt2(a-n)fo°°dsxfo°°ds4 [(ps2+qs4)2--ioll--n/2S 4-n (41) 

and removed by the renormalization of eq. (4) with 

g2 1 
Z ~ : I + ( C F - ½ N  )4~r2 4 - n  

Redefining the integral (41) we obtain the result of the action of the R-operation on 
Me: 

-/coth3' 1 - R~e----(~)2CF(CF-1N) -~Z-~2(A)4-nq- 2(4- H)2(A)2(4 n' 

1 1 dx(pq)(p2x2) E-n/: ] 
× n--3 fo [(px + q~)2- iO] 3-'/2 

Now, subtracting the cusp singularities and performing the change of angular 
variables (30) we find the renormalized expression for the graph 4c: 

2 /~2 
.'¢4¢,R(3",gR,~/A)=(~):CF(CF--½N) ±8"/coth'f ln2-~: + ½3' coth y In ~4- ~ 

-½cothy fVd~k~kcoth~kln ~ . (42) 
¢o It- 



356 G.P. Korchemsky, A. IL. Radyushkin / Wilson loops 

(d) Three-gluon vertex correction graph. The most complicated is the calculation 
of the diagram 4d containing the three-gluon vertex. We represent the correspond- 
ing factor V~,p(k, l, - k  - l) in the form 

v~.p( ~.  t. - ~ -  I) = ~ . 0 ( ~ .  l )  + z)~ .o(k,  t)  

(cf. refs. [12,13]), where 

~,p(k, l) = (2l+ k)~,g,p + 2kog~, , - 2k,g~,p, 

satisfies the simplest Ward identity 

k % o ( k ,  11 = [(k + 1)2- lq  g,~. 

The "D "-vertex produces the following contribution 

~j'g4CFN r dnk dnl 1 ,[ 2(pq) 
.A¢ d , ~ -  (2~r), (2~r) ~ k212(k+l)2[(qk)(pk) + 

D . . . ( ~ ,  1) = - l .g~ .  - (t  + ~ ) p g , .  

(43) 

(Pq) ] 
(qk)(pl) " (44) 

The first integral has the structure of that corresponding to fig. 4b and is easily 
calculated. The result of applying the R-operation to eq. (44) (after necessary 
redefinition) can be written in the form 

R~'~d,D= ( ~)2CF N 
y coth ~, - V coth 3' ) 4- 

4 (4_n )2 (n_3 ) (A )  2(4 n)+ 2(4_n)2 (A  

1 /z / 2(4- n)fl 
+ 16(4-n ) ( -A]  .1o dYjofl dx 

1 (px + q~y)2 + q2£2yy ] 
× (px + qffy) 21n q2~2yy ] " 

After the change of angular variables, integration by parts and subtraction of 
cusp divergences we get 

KyR"C/'d, z} = ' ~ d ,  D,R ('Y, gR, ~t/A) 

= (~)2CFN [-- ~'/coth~' ln2~2 - l"/cothy ln~2 

/L 2 
+ ~rZycothy ln~T + ~sinh2y 

coth ~p sinh-/ #2 ] 
× f0v d~b sinh~ ~ si-nh2~b In s i - -~ln~T ]" (45) 
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For the contribution of the IF-term we first rewrite the vertex factor in the form 

~'"(k ' l)p'P"=P2(21+k)~ &'~ (pk) + ( p k ) ] "  

Now, using eq. (43), it is easy to see that the second term in this equation 
(longitudinal with respect to k,) is cancelled by the corresponding contribution 
from the vertex function of diagram 4c. As a result, the sum of the V-contribution 
from the diagram 4d and the total contribution of the diagram 4c after calculating 
the d"l integral does not contain the UV-poles related to the fermion-gluon vertex 

g4 
JCc +-¢t d, ~= iCFN1--6-~2 I~4-"F( 3 - ½n ) 

X J ( 2 r r ) "  k2(kp+iO)(kq+iO) q~k~ g~" pk 

× foldX X'-"f0 ldx(1-2x)[(px-kxx)2-k2x=x-i0l "/=-3, (46) 

where X = 1 - R. Performing the IR redefinition and subtracting the cusp singular- 
ity one can rewrite eq. (46) in the form 

- ! (  a~12CvN(~r2 + l ) l n -~ ,  "Alc'a(Y'gR'l't/A)+ Md'p'a(Y'ga' t t /a)= "~ rr ] 

(47) 

where the 7i .2 term corresponds to the g,,~ part of the projector present in eq. (46), 
while its second term yields 

sinh2~b [ 2 sinha~b ] -2 
I=c° thYfo tdXx(1-2X) fo  t d Y ) 7 £ d *  si--~7 t / + y y  si--~-~7 ) 

c°thyrVd~kJ0 sinh2%b sinh 
sinh2y _ sinh2~ k In sinh----~ 

Thus, subtracting eqs. (47) and (42) we find the final result for the renormalized 
amplitude of the IF-part of diagram 4d 

'-/t'd, ~,R (Y, gR, tt/A ) 

1 sinh7 1,2 
+ -~sinh27f0 d~k sirth27 _ sinh2~k In si--~ln~--~).  (48) 
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It is worth noting here that the cancellation of double logarithms of #2 in the sum 
of eqs. (48), (45) is a consequence of the fact that the vertex correction of diagram 
4d gives a zero contribution to the renormalization constant Z F of eq. (9). 

Substituting the total contribution of the 2PI vertex diagrams 4a-d  calculated 
above (with a proper account of combinatorial factors) we obtain the following 
result for the two-loop contribution to the exponential factor of eq. (19): 

--s 4u CFN(y coth 7 1)ln 2 T~Z 2 PI [ 
g R ,  # / A  ) = - vv R, two-loop [ "/, 

1 •two-loop ( ]'L2 
--  2" cusp '~Y' gR)ln~--5 • (49) 

For the gauge-invariant cusp anomalous dimension this gives 

/~ctwo-loop ," x 
usp ~,'~, gR)  = C F N  

X [1+  (3~ - 2~r2)(ycothy - 1) - coth3' ford# lk coth ~ 

2 3' 
+coth y /  d~b ~ ( y  - ~b)coth + - l s inh2y  

"0 

~p coth # - 1 sinh y ] 
r jo~' d ~ ~ 2 × ] l n - -  

sinh~y - sinh # sinh qJ " 
(50) 

Continuation of eqs. (49), (50) into the euclidean space can be performed by 
changing the angles as prescribed by eq. (32). 

4. Asymptotic behaviour of the cusp anomalous dimension 

4.1. O N E - L O O P  A N D  T W O - L O O P  T E R M S  

In this section we consider the behaviour of the cusp anomalous dimension in two 
limiting cases for the minkowskian angle y: 

(a) y ~ oo: in this case 

0 2 
y = ln~--~, Q2 >> m 2 ' (51) 

where Q2 = _ ( p  _ q)2, p2 = q2 __ m 2 and 

(b) "g ~ 0: in this case 

{ 0 2 11//2 
= \ / ~-~ , Q2 << m 2" (52) Y 

I 
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In the limit (52) one can represent F¢~p(y, gR) as 

~s ~ 1_ 2 . 67 1,)/2 ] r c u ~ p ( V , g . )  = - - , ~ F ~ r  ~-2 C r N [ 1 y 2 ( 2 - 4 ~ r 2 ) + ~ 3  , 
y--~O 7/" 

(53) 

and hence Fcusp vanishes as Q 2 /m 2 when y ~ 0. 
In the opposite limit (51) the two-loop term of the cusp anomalous dimension 

os Fcusp(Y, gR) + 2 67" 02 
), 2o0 ~ "  CF  In m--- 5- 2'~ m ~ (54) 

does not contain ln(Q2/m 2) in a power higher than 1, because in Feynman gauge 
the ln3(QE/m2) terms due to the D-parts of the diagrams of fig. 4d (see eq. (45)) are 
cancelled by those due to the diagram 4a (eq. (38)), and the double logarithms due 
to the 17-parts of the diagram 4d (eq. (48)) are cancelled by those due to the diagram 
4c (eq. (42)). The factor in the contribution proportional to the one-loop cusp 
anomalous dimension and 67 presented in eqs. (50), (53), (54) is an artifact of the 7/ 
scheme employed because it appears after one applies the RMS operation to remove 
the subdivergences from diagrams 4b, c. 

It should be noted that the path-ordered exponential corresponding to the path 
shown in fig. 2 absorbs all the IR singularities of the amplitude of quark scattering 
by an external colour-singlet potential, the initial quark momentum being p~ and 
the momentum transfer Q2 (see ref. [14]). In the limits y ~ 0, oo this amplitude was 
calculated in ref. [13]. Our results (eqs. (53), (54)) are in complete agreement with 
those obtained there. 

4.2. STRUCTURE OF Feusp FOR Y ~ ~ IN HIGHER ORDERS OF PT 

Let us prove now that the cusp anomalous dimension (eq. (21)) in the limit y >> 1 
is linear in ln(QE/m 2) for arbitrary order of PT. To this end we incorporate the 
Feynman rules (eq. (25)) in momentum representation and note that the UV pole 
related to the cusp singularity of the 2PI contour averages (eq. (19)-(21)) is due to 
the integration over the UV region of the fermion and gluon momenta while its 
dependence on y is determined by integration over small angles between the tangent 
vectors to the curve on which the fermions are "living" and momenta of the emitted 
gluons. A general structure of these angular integrals singular in the Q2 >> m E limit 
can be studied by using standard methods of the factorization technique [15,16]. 
Note that the lagrangian of the one-dimensional fermions (eq. (3)) has the 
following properties: the one-dimensional fermions interacting with gluons can- 
not change their "helicities", and, hence, the emission of the collinear gluons 
with physical polarizations by the fermions is suppressed. There exist the 
whole class of the so-called contour gauges [14] defined by the gauge condition 
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P exp(igfc dx  ~'.,l~(x)) = 31 for which the gauge potential A~ is a linear functional of 
the field strength F~ = O~A~ - a~A~ + ig[A,, A~] 

~Z p ^ 

A~(x)= fcdz~-~x~F~p(z ) (55) 

and, hence, the gauge field has only physical degrees of freedom. Some well-known 
physical gauges, namely, the axial gauge, Hamilton gauge and Fock-Schwinger [17] 
(or fixed point [18]) gauge are important particular examples of the contour gauge. 
Using the dimensional analysis of ref. [15] it is easy to find that in physical gauges 
the logarithms (ln(Q2/m2)) N arise from integrations inside the self-energy diagrams 
,~ of fig. 2*. The relevant power N is equal to the number of the one-particle 
irreducible (with respect to one-dimensional fermions) self-energy subgraphs ~lPi in 
X. For the 2PI subgraphs contributing to W 2aI this number is 1. 

Thus, the UV cusp singularity coefficient for the 2PI diagrams of eq. (21) in the 
limit Q 2 >> m 2 is a single logarithm ln(Q 2/m 2) and, hence, 

Fcu~p(3', gR) = ~- E a~C,(W)a,(W)ln + O In ° . (56) 
n = l  W ~W(n) 

The fact that in Feynman gauge the propagation of the longitudinally polarized 
gluons is also allowed leads to a more singular structure of angular integrals. 
However, higher powers appearing in separate diagrams cancel with each other in 
the gauge-invariant sum (eq. (38)). 

It is worth emphasizing here that the cusp anomalous dimension (eqs. (35), (50)) 
is regular in 3' everywhere except the point 3' = i~r (or 3' = ~r in the euclidean 
space-time) corresponding to the "collapse" of the contour shown in fig. 2. The 
contour average (renormalized as well as nonrenormalized) equals 1 in this case. 
This means that in the regularization scheme used in ref. [4] the cusp singularity for 
3' = i~r possesses a linear divergence: exp(kLapp) (see the introduction), where Lap p 
is the length of the "collapsed" part of the contour, i.e. in this limiting case the very 
definition of the cusp anomalous dimension is meaningless. 

5. Glauber regime of the anomalous dimension 

In the process of our calculations in sect. 4 it has been implied that all the 
intervals between any two points on the contour shown in fig. 2 have the same sign 
(this is equivalent to the statement that the three kinematic invariants p2, q2,(pq) 
have the same sign). This allows one to continue analytically the results into the 

* This situation is quite analogous to that in perturbative QCD when one calculates the asymptotic 
behaviour of the hard scattering amplitudes (see, e.g., ref. [15,16]). 
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euclidean space using eq. (32). Note also that if the two points of the contour shown 
in fig. 2 are separated by a time-like interval, then the path-ordering along the 
contour coincides with T- (or anti-T-) ordering of the gauge potentials in eq. (1). 
Consider now the class of contours for which these properties are not valid, 
e.g., fig. 2 but with the change 

q ~  - q ~ .  (57) 

In euclidean space such a transformation leads only to the evident redefinition of 
the cusp angle 

r E  ~ ~ - r E  (58) 

in the final results. In the Minkowski space-time eq. (30) is not fulfilled and 
moreover, the residues of gluon propagator poles produce nonzero contributions. In 
particular, the calculation of the diagram 3 contribution with account of eq. (57) 
gives 

W 2PI I f  " as ~2 R, one-loop~ v' gR,/x) = - ~-~CF[(" / - - i~r )co th ' / -  1]ln (59a) 

and, correspondingly, 

Fc One-lOOp ( "v gR) Ors usp , - ,  = - - C F  [(3, -- iTrlcothy - 1]. (59b) ~7 

Note, that formally these relations can be obtained from eqs. (34), (36) by using eqs. 
(58) and (32). Let us now find the region of the momentum space of the gluons 
responsible for the imaginary term in eq. (59). To this end we calculate it in two 
ways. 

Consider the frame where p T = qT = 0, p + > p -, q-  > q ÷ (with k +- =v~'fi-- (k 0 + k  3) 
being the light one variables). Then the integral contributing to eq. (59) is 

dk  + d k -  dk-~ -2 
~= -ig2cF f (2~r) n 

(Pq) 
× (2k+k__k2_AZ) (k+p_+k_p+_iO) (k+q_+k_q++iO) .  (60) 

The position of the poles in the complex k -  plane is shown in fig. 5 with the 
numbers representing the denominator factors of eq. (60). Taking the residue of the 
pole (3) for k + ~ 0 and of (2) for k + > 0 and using the identity 1/(x  + iO) = P(1/x)  
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1 2 L~ 
K%o~ I K*> 0 

Fig. 5. Position of poles related to the gluon propagators of eq. (60) in the complex K- plane in the 
Glauber regime. 

( p q )  oo d"-2kT 
,AC= l i C F a s p + q _ _ p _ q +  fo k~ + A 2 

-T- i~r3(x) to calculate the integral over k + it is easy to find that 

oo d"-2kT f 
- -  + . . . .  ~iCFasCoth y l 

Z" JO k~  + A 2 
- - - - [ -  . , ,  

(61) 

where the dots stand for the real part of the integral. Thus, the imaginary part of 
eq. (59) is formed by the region where the gluon momentum is most transverse 

k T >> k + - k -  ~ 0, 

i.e. by the Glauber regime for the gluons [19] in which their emission does not 
change the virtuality of one-dimensional fermions. As k~ ~ 0, the poles of eq. (60) 
in this regime move as indicated by arrows in fig. 5 and the integration contour is 
eventually pinched in the origin. As a result, there appears the singular imaginary 
part of eq. (61). 

It is also instructive to calculate eq. (60) in the a-representation (see, e.g., ref. [3]) 
in which 

~=iascFfFloda° [ i ] a~/---------T- exp [ -  --(at p a  2 - qa3) 2 - e(a I + a 2 + a3) (62) 

and the main contribution to the integral originates from the region in the 
a-parameter space where the exponential form  2)(q2) 

A ( a , p , q ) = - -  1 a 2 - - T a  3 a2 --  ~--2"a 3 

vanishes [16]. The requirement A = 0 defines planes 

Q2 q2 
sl: a2 = 7 a 3 ,  S2:a2 = ~-~a3 
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°~3 I / ;., (t 2 . 

. ~ °~3= Q~'22 ,~2 

Fig. 6. Pinch hyperplanes S1,S 2 in the a-parameter space containing the ultraviolet (UV) and the 
Glauber (GR) regimes of the gluon momenta. 

illustrated in fig. 6. According to ref. [20] in the regions S 1 and S 2 the "pinch 
regime" is realized producing a regular contribution of each separate hyperplane of 
eq. (62). However, in our case there exists also the line a z = a 3 = 0 common both for 
S 1 and S 2 where the "intensity" of the pinch singularity is higher and the corre- 
sponding integration gives eqs. (61), (59) possessing the divergences both in UV 

(Oil, a2, a 3 --~ 0 on  S1,52) and in IR-regions (a  1 --, oo on $1,$2). Thus, the Glauber 
regime of the gluon momenta corresponds to a pinch regime in the a-parameter 
space. 

Note  now that in the allowed region a~ >/0 the pinch hyperplanes S 1 and S 2 of fig. 
6 (as well as the imaginary contributions to eq. (59)) disappear if p2, q 2 <  0, 
( p q )  > 0 if any two points on the contour shown in fig. 2 are in the space-like region 
and the T-ordering in eq. (1) can be omitted. This means, in particular, that eq. (59) 
as a function of the vectors p, q has a singularity on the light cone. 

6. Conclusions 

In the present paper we studied the renormalization properties of the cusp 
singularities of the contour averages. Incorporating some properties of the K~ R- 
procedure subtracting the divergences due to the cusp singularities we established 
the general form of the PT series for the cusp anomalous dimension in the limit of 
large minkowskian cusp angles. The two-loop contribution to the cusp anomalous 
dimension was explicitly calculated and its connection to the nonleading IR 
behaviour of the quark form factor was demonstrated. We observed also that there 
exist two sources of nonanalyticity of the results obtained with respect to the cusp 
angle 7: first, for YM = i~r (ye = ~r) there appears a linear divergence and second, 
the Glauber gluons in the Minkowski space give a nonzero contribution to the cusp 
singularity. 

We are grateful to A.V. Efremov, S.V. Mikhailov, D.V. Shirkov for stimulating 
discussions and for their interest in this investigation. 
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Note added in proof 

After this paper was submitted for publication we were informed by Dr. H. Dorn 
of an earlier attempt to calculate the two-loop contribution to Fc~ o by Knauss and 
Scharnhorst [21]. 
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