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Abstract

We present general prescriptions for the asymptotic expansion of massive multi-
loop Feynman integrals near threshold. As in the case of previously known pre-
scriptions for various limits of momenta and masses, the terms of the threshold
expansion are associated with subgraphs of a given graph and are explicitly written
through Taylor expansions of the corresponding integrands in certain sets of pa-
rameters. They are manifestly homogeneous in the threshold expansion parameter,
so that the calculation of the given Feynman integral near the threshold reduces
to the calculation of integrals of a much simpler type. The general method is
illustrated by two-loop two-point and three-point diagrams. We discuss the use
of the threshold expansion for problems of physical interest, such as the next-to-
next-to-leading order heavy quark production cross sections close to threshold and
matching calculations and power counting in non-relativistic effective theories.
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1. Introduction

Many interesting processes in particle physics, in particular those in which heavy quarks
participate, involve more than one mass scale. Such processes are notoriously difficult
to calculate in perturbation theory beyond the one-loop level. To proceed one has to
resort to approximations, either numerical or analytical. Among the latter, asymptotic
expansions in certain ratios of mass scales appear most promising, because the analytic
complexity is substituted by the algebraic complexity associated with obtaining a large
number of terms in the expansion, which, however, can be delegated to a computer.
To achieve this goal, the integrals that appear in the calculation of any given term in
the expansion should (of course) be simpler than the original Feynman diagram. In
particular, this means that the expansion should be manifestly homogeneous, that is,
every integral that appears in the construction should contribute only to a single power
in the expansion parameter.

Let us consider, for the purpose of discussion, a quantity that depends on a single
kinematic invariant q2 and a particle mass m, such as the two-point functions of heavy
quark currents, or the production cross section for a pair of heavy quarks. There exist
general explicit prescriptions [1,2,3] (see [4] for brief reviews) to obtain the asymptotic
expansion of these (and other) quantities as q2 → ∞ or m → ∞. In this paper we propose
a prescription to obtain the asymptotic expansion close to threshold, that is, as q2 →
4m2. This limit has not been explored systematically yet, although it is of considerable
interest for a field theoretical description of non-relativistic systems. We illustrate our
method through examples in Sects. 2 and 4. In these examples we consider only scalar
propagators. The extension to fermion and gauge field propagators complicates the
numerators of the integrals, but is straightforward methodically. The general structure
of the expansion, which we formalize in Sect. 3, follows the same strategy used to obtain
the the expansions in limits of large/small momenta and masses, although the threshold
expansion is quite different, in particular because we have to deal with three different
scales near threshold. The method obviously generalizes to the threshold production of
two unequal-mass particles and in fact to any particle threshold, when some massive
particles are slow, although we do not treat these cases in this paper. Physically, the
mathematical problem of constructing an asymptotic expansion is closely related to the
notion of effective field theories. For example, the homogeneity property mentioned above
translates into the property of manifest power counting for the effective Lagrangian.
The threshold expansion provides some insight into how to construct a non-relativistic
effective field theory within dimensional regularization, an issue that has received some
attention recently. We discuss this point, together with other conclusions, in Sect. 5.

Recently Tkachov has also discussed the possibility of performing expansions near
threshold [5]. However, his prescription has been applied in [5] only to the discontinu-
ity of the 1-loop 2-point diagram with two masses. The non-trivial interplay of several
small scales that characterize the threshold region is seen only in more complicated loop
integrals.
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q p� kp1p2
Figure 1: One-loop vertex integral. Solid (wavy) lines denote massive (massless) propagators.

2. Heuristic motivation and examples

A typical explicit formula for the asymptotic expansion of a given Feynman integral FΓ

(corresponding to a graph Γ) in a given limit looks like

FΓ ∼
∑

γ

MγFΓ, (1)

where the sum extends over a certain subset of subgraphs of the graph, and the operators
Mγ perform Taylor expansions in the variables that are small in γ. To arrive at this
result, one can use the following heuristic procedure: 1. Determine the large and small
scales in the problem. 2. Introduce factorization scales µi and divide the loop integration
domain into regions in which each loop momentum is considered to be of the order of
one of the scales in the problem. 3. Perform, in every given region, a Taylor expansion
in the parameters, which are small in the given region. 4. After expansion, ignore all
factorization scales and integrate over the entire loop integration domain in every region.

One can easily reproduce the general formulae and combinatorical structure of the
large-mass and large-momentum expansion in this way. The non-trivial point to justify
is 4., which also guarantees the homogeneity of the expansion formula. In order for 4.
to be valid it is essential to use dimensional (or analytic) regularization for the Feyn-
man integral FΓ, even if FΓ is finite in four dimensions. Loosely speaking, 4. follows
in dimensional regularization from the property that all integrals without scale vanish.
For off-shell limits of Feynman diagrams, the above procedure can indeed be justified [2]
in terms of the R∗ [6] and R−1-operations. In this section we use these heuristic rules
to treat two one-loop and one two-loop example and demonstrate that in each case the
result agrees with the expansion of the exact result.

Example 1. As our first example we consider a one-loop vertex integral with two equal
and one zero mass, which appears for example in the form factor for γ∗ → Q̄(p1)Q(p2)
with quarks Q of mass m, see Fig. 1. In the following we will also refer to massive
lines as quarks and massless lines as gluons in general. We take p2

1 = p2
2 = m2 and

define q = p1 + p2 and the relative momentum p = (p1 − p2)/2. The threshold region is
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characterized by

y ≡ m2 − q2

4
= p2 ≪ q2. (2)

We also define ŷ = y/q2 as the dimensionless parameter of the threshold expansion.
The parameter ŷ is related to a more standard parameter β = (1 − 4m2/q2)1/2 through
β =

√
−4ŷ. Above threshold ŷ < 0. It is useful to choose a frame in which q = (q0,~0),

p1 = (p0, ~p), p2 = (p0,−~p) and p = (0, ~p). In this frame, the two massive particles move
slowly and can be considered as non-relativistic. The following three scales are relevant
to the threshold kinematics: q ≡

√
q2 ∼ 2m, the centre-of-mass energy,

√−y = |~p |, the
relative momentum of the quarks and y/q ∼ (p1,2)0 −m, the (non-relativistic) energy of
the quarks. Accordingly, the loop momentum can be either

hard (h): k0 ∼ q, ~k ∼ q,

or small (sm): k0 ∼<
√

y, ~k∼<
√

y. (3)

Because there are two small scales, when the loop momentum is small, it can be either

potential (p): k0 ∼ y/q, ~k ∼ √
y,

soft (s): k0 ∼
√

y, ~k ∼ √
y, (4)

or ultrasoft (us): k0 ∼ y/q, ~k ∼ y/q.

The terminology implies a ‘canonical’ routing of the large external momentum q through
the massive lines of the graph only. For example, in Fig. 1, one should assign the mo-
mentum k±q/2 to the massive lines. Other routings are possible, but scaling arguments
become less transparent then. The distinction between potential, soft and ultrasoft loop
momentum is made only after, in the small momentum region, the integration over the
zero-component of the loop momentum has been carried out by picking up the residues
of the poles in k0. The potential region is then associated with quark propagator poles
and k0 ≪ |~k|, because the massive particles are non-relativistic. The soft and ultrasoft
regions arise from the gluon propagator poles. We shall see that in general (but not in
this example) the characteristic momentum of on-shell massless particles in the small
momentum region can be either

√
y ∼ mv or y/q ∼ mv2, where v is the relative ve-

locity of the two external quarks. (When the momentum of a massless line is in the
potential region, the massless particle is off-shell by an amount of order y.) With these
preliminaries the scalar integral of Fig. 1 is given by

I1 ≡
∫

[dk]

(k2 + q · k − y)(k2 − q · k − y)(k − p)2
, (5)

using the kinematic variables introduced above. The standard +i0-prescriptions are
implicitly understood in the propagators and the integration measure is defined by [dk] ≡
eǫγE ddk/(iπd/2) with d = 4 − 2ǫ and γE = 0.577216 . . .. The renormalization scale of
dimensional regularization is set to 1.

3



When the loop momentum k is hard, the integrand is expanded in y and p. (Because
p · q = 0, terms odd in p vanish and the expansion produces only powers of ŷ.) The
leading term is

Ih
1 =

∫

[dk]

k2(k2 + q · k)(k2 − q · k)
= eǫγE

(

4

q2

)1+ǫ(

−1

2

)

Γ(ǫ)

1 + 2ǫ
. (6)

Higher-order terms in y are calculated easily. The integral is evaluated most directly by
reducing the number of propagators to two through partial fractioning. If one does not
use partial fractions, the calculation of the integral with Feynman parameters leads to
singularities inside the Feynman parameter integration domain when d = 4, which indi-
cate the presence of the Coulomb singularity in I1 as y → 0. This singularity is regulated
by dimensional regularization as conventional ultraviolet and infrared singularities are,
and Ih

1 is well-defined.
The contribution from the hard region corresponds to the ‘naive’ Taylor expansion of

the integrand in y and p. However, the integral receives an important (in fact dominant)
contribution from the small loop-momentum region, where (as we will verify shortly) the
spatial loop momentum is of order

√
y. Inspecting the quark propagator, we see that it

can now be expanded in k2
0:

1

k2
0 − ~k2 + q0k0 − y

=
∞
∑

n=0

(−k2
0)

n

(−~k2 + q0k0 − y)n+1
. (7)

The leading contribution to I1 from the small momentum region is then

Ism
1 =

∫

[dk]

(−~k2 + q0k0 − y)(−~k2 − q0k0 − y)(k2
0 − (~k − ~p )2)

. (8)

We now perform the integration over k0 by closing the contour in the upper complex
k0-plane.

Let us consider first the contribution from the pole of the massive (‘quark’) propagator

at k0 = −(~k2 + y)/q0 + i0. Since |~k| ≪ q by assumption, we have k0 ≪ |~k|. As a
consequence we might have expanded the massless propagator in (8) in k2

0 before picking
up the residue from this pole. After k0-integration one obtains a two-point function with
one mass y in d − 1 dimensions with the result

Ip
1 =

(−1)

q
eǫγE

∫

dd−1~k

πd/2−1

1

(~k2 + y)(~k − ~p )2
= eǫγE

y−ǫ

√
q2y

√
π Γ(ǫ + 1/2)

2ǫ
. (9)

Because the integrand contains only one scale, the loop momentum is dominated by
~k ∼ √

y. This justifies the scaling given in (3) for potential loop momenta. Note
that higher-order terms in the expansion in k2

0 yield zero, because after integration over
k0 positive powers of k0 result in massless tadpole integrals. Note also that we could
have obtained (9) by expanding all terms that are small in the potential region before
integration over k0. The contribution to the threshold expansion from the potential
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region can then easily be estimated, because by construction all terms in the denominator
have the same scaling in y. Taking into account that [dk] ∼ y5/2/q for potential k, we
obtain Ip

1 ∼ 1/
√

q2y as expected for the Coulomb singularity and born out by (9).
Now consider the contribution from the pole of the massless propagator in (8) located

at k0 = −|~k| + i0. (We have shifted k → k + p. If one does not perform this shift, the
combination k + p should be considered ultrasoft, which implies a cancellation between
k and p, so that the scaling rules can not be applied to k in a straightforward way.) The
result is

I
s/us
1 = eǫγE

∫

dd−1k

πd/1−2

1

|~k|[q0|~k| + (~k2 + 2~p · ~k)][q0|~k| − (~k2 + 2~p · ~k)]
. (10)

Expanding in the small terms ~k2 + 2~p · ~k, the integral becomes a tadpole and is zero to
all orders in the expansion. Hence, there is no contribution from the gluon pole. At first
sight this looks incorrect, because the integral (10) is clearly non-zero. However, the non-

zero contribution can come only from the region where ~k2 +2~p ·~k is comparable to q0|~k|,
which requires k ∼ q. This contribution is already included in the hard contribution
above and (10) must be expanded to avoid double-counting. Because the integral I

s/us
1

vanishes, we can not decide whether the gluon was soft or ultrasoft.
There is a useful short-cut to arrive at this result. We can perform the approximations

appropriate to the soft or ultrasoft region before integrating over k0 to obtain, to leading
order in this region,

I
s/us
1 =

∫

[dk]

[q0k0 + i0][−q0k0 + i0] k2
. (11)

This integral is ill-defined, because the poles at k0 = 0 pinch the integration contour.
However, since the quark propagator poles have already been taken into account through
the potential region, the previous integral should be understood as the contribution from
the gluon pole only. Then one immediately arrives at a vanishing tadpole integral. Since
by expanding all small quantities in the denominator, all remaining terms have the same
scaling in

√
y, we have homogeneity (manifest power counting) also for the soft and

ultrasoft regions.
One can now verify that the threshold expansion reproduces the expansion of the

exact one-loop result:

I1 = eǫγE y−1−ǫ
2F1

(

1

2
, 1 + ǫ,

3

2
;− 1

4ŷ

)

= eǫγE

(

4

q2

)1+ǫ{
(4ŷ)−ǫ

√
ŷ

√
πΓ(ǫ + 1/2)

8ǫ
(12)

− Γ(ǫ)

2(1 + 2ǫ)

∞
∑

n=0

Γ(1 + ǫ + n)

Γ(1 + ǫ)

1 + 2ǫ

1 + 2ǫ + 2n

(−4ŷ)n

n!

}

.

Note that in this example, contrary to those we discuss later, the Taylor expansions of
the integrands do not generate additional poles in ǫ. The poles in ǫ in both the hard and
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I2
1
2

3
45 = + +� �Ih�h+ 2 +� ?Ih�p+ Ip�p + Ip�us

Figure 2: Diagrammatic representation of the threshold expansion for I2. Solid lines on the
left-hand side denote massive propagators, wavy lines denote massless propagators. On the
right-hand side a solid line with ‘±′ denotes (hard) ‘on-shell’ propagators of form 1/(k2 ± q.k)
for line momentum k±q/2, a wavy line stands for a hard massless line. The dashed line denotes
a potential massive line and the dotted line a potential massless line. The zigzagged line is an
ultrasoft massless line.

the potential contribution come from the infrared pole which is present in the original
integral I1.

Example 2. We now consider the two-loop 2-point master integral. This is the
first case, relevant to the two-loop corrections to heavy-quark currents, where the hard,
potential and ultrasoft regions contribute in a non-trivial way to the threshold expansion.
The exact result for arbitrary ŷ serves as a check of the expansion method. The diagram,
shown in Fig. 2, is given by

I2 ≡
∫ [dk][dl]

(k2 + q · k − y)(k2 − q · k − y)(l2 + q · l − y)(l2 − q · l − y)(k − l)2
(13)

and the lines in Fig. 2 are enumerated according to the order in which they appear in
the denominator in (13). Expansions of this diagram in various limits of momenta and
masses have been considered in [7]. The ‘canonical’ routing of the external momentum
for this diagram assigns ±q/2 to each massive line. With this assignment, the loop
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momenta satisfy the scaling rules (3) and (4) above. For the threshold expansion of any
two-loop diagram, one considers the following nine loop momentum regions: h-h: both
loop momenta are hard; h-p (s, us): one loop momentum hard, the other potential
(soft, ultrasoft); p-p: both loop momenta potential; p-s (us): one loop momentum
potential, the other soft (ultrasoft); s-s: both loop momenta soft; s-us: one loop momenta
soft, the other ultrasoft; us-us: both loop momenta ultrasoft. In general, to obtain the
contributions from all possible subgraphs it is necessary to consider different assignments
of loop momenta than the one chosen in (13). As we discuss shortly, some of these regions
do not contribute to the case at hand. The structure of the non-vanishing terms in the
expansion is shown in Fig. 2. Note that I2 is finite in four dimensions.

When both loop momenta are of order q, we can expand the integrand in y. After
partial fractioning, the resulting integrals are of type

J±(a1, . . . , a5) ≡
∫

[dk][dl]

[−k2]a1 [−l2]a2 [−(k − l)2]a3 [−(k2 + q · k)]a4 [−(l2 ± q · l)]a5
. (14)

The integrals of type J+ can be reduced to Gamma-functions [8] through recurrence
relations derived from integration by parts [9]. The integrals of type J− can be expressed
in Gamma-functions and the integrals J−(0, 0, a3, a4, a5). These integrals can be reduced
to J−(0, 0, 1, 1, 1), using a simplified version of the results of [10]. Then J−(0, 0, 1, 1, 1)
(or a more convenient input integral) is calculated explicitly by Feynman parameters in
an expansion in ǫ. We obtain

q2Ih−h
2 = π2

(

1

ǫ
− 2 ln q2 + 6 ln 2

)

+ 21ζ(3) − 4(8 + 3π2) ŷ + O(ŷ2). (15)

The h-h region is already the most difficult one. When one loop momentum is
hard, and the other small, one of the three subgraphs γ1 = {1, 2, 5}, γ2 = {3, 4, 5} and
γ3 = {1, 2, 3, 4} can be hard. (The numbers refer to those in Fig. 2.) The lines in the
hard subgraph γi are expanded in y and l (if k is hard) and the quark propagators not
in γi are expanded in the zero-components squared of momenta as in (7). The resulting
contribution has the factorized form

FΓ/γi
◦ TyFγi

, (16)

i.e. the one-loop integral TyFγi
, obtained by Taylor expansion of Fγi

in y and l, generates
a local vertex, which is inserted into the reduced diagram Γ/γi obtained from Γ by
shrinking all lines of γi to a point and expansion of the remaining massive propagators
in the zero-components squared of the momenta.

For our example, one obtains a vanishing integral for Γ/γ3 and equal contributions
from γ1 and γ2. In the latter case, the non-vanishing contribution arises if the loop
momentum of Γ/γ1,2 is potential, but one obtains zero if it is soft or ultrasoft. The
leading contribution from the h-p region is then (see Fig. 2)

Ih−p
2 = 2

∫

[dl]

(−~l2 + q0l0 − y)(−~l2 − q0l0 − y)

∫

[dk]

k2(k2 + q · k)(k2 − q · k)
, (17)

7



where we expanded all terms that are small in the h-p region. It follows from power-
counting that this integral contributes at order

√
ŷ. Keeping also the next term in the

h-p region, we obtain

q2Ih−p
2 = 8π

(

1

ǫ
− ln q2 − ln y

)

√

ŷ − 32π

3

(

1

ǫ
− ln q2 − ln y +

7

3

)

ŷ3/2 + O(ŷ5/2). (18)

When l is soft or ultrasoft, the integrand is almost the same as for (17), except that ~l2

is expanded for ultrasoft l and ~l2 + y is expanded for soft l. In both cases, the resulting
integrals vanish as already mentioned.

When both loop momenta are small, we can use (7) on all massive propagators
and then take the poles in k0 and l0. The resulting three-dimensional integrals are
then divided into regions according to (4). As illustrated in example 1, one can also
perform the appropriate approximations before integration over the zero components of
loop momenta provided certain pinching quark poles in the soft or ultrasoft region are
ignored as above.

When both loop momenta are potential, all propagators are expanded in their zero-
components squared. After picking up the residues from the remaining quark poles in
k0 and l0, the resulting d − 1-dimensional 2-loop integral is

Ip−p
2 = − 1

q2
e2ǫγE

∫ dd−1~k

πd/2−1

dd−1~l

πd/2−1

1

(~k2 + y)(~l2 + y)(~k −~l )2

=
y−2ǫ

q2
e2ǫγE

πΓ(ǫ + 1/2)Γ(ǫ− 1/2)

2ǫ
(19)

as shown in Fig. 2. The next term and all higher order terms in the expansion in the
p-p region vanish for the same reason as in example 1, hence

q2Ip−p
2 = π2

(

−1

ǫ
− 2 + 4 ln 2 + 2 ln y

)

. (20)

We next consider the potential-ultrasoft region. Again we should consider all three
cases, where one of the subgraphs γi is potential and the remaining lines are ultrasoft.
The only case that does not lead to vanishing scaleless integrals is potential γ3, in which
case the gluon line is ultrasoft. With k potential and l ultrasoft, the leading term is

Ip−us
2 =

∫

[dk][dl]

(−~k2 + q0(k0 − l0/2) − y)(−~k2 − q0(k0 − l0/2) − y)

· 1

(−~k2 + q0(k0 + l0/2) − y)(−~k2 − q0(k0 + l0/2) − y)(l20 −~l2)
(21)

where the last (massless) propagator is now not expanded in l0. (We have chosen a more
symmetric loop momentum routing than in (13).) Since [dk] ∼ y5/2/q and [dl] ∼ y4/q4,
power-counting tells us that this contribution scales as

√
y. The integral is calculated by
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examining the poles in k0 and l0 and closing the integration contours in k0, l0 such that
the number of terms is minimized. One then arrives at

Ip−us
2 =

2

q2
e2ǫγE

∫

dd−1~k

πd/2−1

dd−1~l

πd/2−1

1

(~k2 + y) ~l2 (2(~k2 + y) + q0|~l|)
. (22)

Note that although |~k| ≫ |~l| in the region under consideration, the integral does not

factorize in a manner comparable to (16), because of the presence of q0 ≫ |~k| in the
integrand. This can be phrased as the statement that integrating out the soft momenta
does not yield a local interaction vertex with respect to the ultrasoft scale. This is in
contrast to integrating out the hard momentum, which does result in a local interaction
with respect to the small scales, see (16), where TyFγi

is polynomial in its (small) external
momenta. Despite this fact, the above integral is effectively a succession of one-loop
integrals. The result, keeping again the next term in the expansion in this region, reads

q2Ip−us
2 = 8π

(

−1

ǫ
− 8 + 10 ln 2 − ln q2 + 3 ln y

)

(

√

ŷ − 4ŷ3/2

3

)

+ O(ŷ5/2). (23)

A technical comment on the calculation of higher-order terms in ŷ in the potential-
ultrasoft region is in order. Expansion in the zero-components of the line momenta
squared results in many terms, for each of which separately the integral over the semi-
circle at infinity does not vanish upon closing the contours in the complex plane. As a
consequence one has to take care of closing the contour in the same half plane for all
terms, since the contribution from the semi-circle at infinity adds to zero only in the
sum.

Finally, when one momentum is potential and the other soft, we find scaleless in-
tegrals. Likewise when both momenta are either soft or ultrasoft, one obtains only
vanishing integrals. This concludes the list of all relevant momentum regions.

In general, the h-h and p-p region contribute only to even powers of
√

ŷ and the
h-p and p-us region contribute only to odd powers. The contribution from each region
separately contains poles as ǫ → 0. The poles cancel between the h-h and p-p region and
the h-p and p-us region, leaving logarithms of ŷ. The terms computed above combine to
the finite threshold expansion

q2I2 = 2π2 ln(32ŷ) + 21ζ(3) + 16π
(

ln(32ŷ) − 4
)

√

ŷ − 4 (8 + 3π2) ŷ

−64π

3

(

ln(32ŷ) − 17

6

)

ŷ3/2 + . . . . (24)

The integral I2 is known exactly for any ŷ. Using the result of [11], we have

q2I2 = F (1) + F (z2) − 2F (z), (25)

where

F (z) = 6 Li3(z) − 4 ln z Li2(z) − ln2(z) ln(1 − z), (26)

z = −1 − i
√

4ŷ

1 + i
√

4ŷ
. (27)

9



p1p2
p3p4k k + p1 � p3

Figure 3: The box graph. Solid lines massive propagators, wavy lines massless.

Taking care of correctly continuing the logarithms in F (z2) to the second sheet when
ŷ < 1/4, the expansion of the exact result reproduces (24). We have verified that this
agreement persists to higher orders in ŷ.

Example 3. In the previous two examples, soft (on-shell) massless lines (gluons) did
not contribute to the expansion. To obtain a non-vanishing result from this region, at
least two gluons have to be exchanged between the massive lines (quarks). Consider
a one-loop contribution to 2 → 2 scattering at small relative momentum, Fig. 3, and
define p1/2 = q/2 ± p, p3/4 = q/2 ± p′, where q + p1 + p2 = p3 + p4, p = (p1 − p2)/2 and
p′ = (p3 − p4)/2. All external lines are on-shell, p2

i = m2, and with y = m2 − q2/4 as
before, we have p2 = p′2 = y. We also introduce t = (p′ − p)2 and choose a frame where
q = (q0,~0), p = (0, ~p ) and p′ = (0, ~p ′). Then the threshold region is characterized by

t ∼ y ≪ q2. (28)

The integral represented by Fig. 3 is

I3 ≡
∫

[dk]

((k + p)2 + q · k − y)((k + p)2 − q · k − y)k2(k + p − p′)2
. (29)

The threshold expansion is obtained by letting the loop momentum be hard, potential,
soft or ultrasoft and by expanding the integrand in all quantities that are small in the
given region. In the following, we collect all terms up to order y0/q4. (Recall that the
tree diagram for 2 → 2 scattering is 1/t ∼ 1/y.)

When the loop momentum is hard, the integrand is expanded in y, p and p′ and one
obtains

(q2)2+ǫIh
3 = (q2)2+ǫ

∫

[dk]

(k2)2(k2 + q · k)(k2 − q · k)
= −8

3
. (30)

When the loop momentum is potential, all four propagators are expanded in k2
0. This

corresponds to picking up the quark propagator pole in the integration over k0. Since
the leading contribution scales as y−3/2, subleading terms have to be included to achieve
O(y0) accuracy in the threshold expansion. Defining t̂ = t/q2, the result is

(q2)2+ǫIp
3 =

π

t̂
√

ŷ

(

1

ǫ
− ln(−t̂)

)

+ O(ŷ1/2, t̂1/2). (31)
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The subleading term actually vanishes in four dimensions.
Let the loop momentum be ultrasoft. It is not possible to route the external momen-

tum p or p′ such that both gluon lines are ultrasoft simultaneously. Thus we get

Ius
3 =

1

t

∫

[dk]

[q0k0 + i0][−q0k0 + i0]k2
= 0, (32)

where the pinch at k0 = 0 must be ignored, because it is taken into account by the
potential region.

However, there arises a non-zero contribution from the gluon poles, when the loop
momentum is soft. In this case, to leading order in the soft approximation, the integral
simplifies to

Is
3 =

1

q2

∫ [dk]

k2
0k

2(k + p − p′)2
. (33)

Closing the k0-contour, we obtain

Is
3 =

1

q2

∫ dd−1~k

πd/2−1

1

~k2 − (~k + ~p − ~p ′)2

(

1

|~k|3
− 1

|~k + ~p − ~p ′|3

)

. (34)

The singularity at ~k2 = (~k + ~p − ~p ′)2 in the first factor is cancelled only in the sum
of the two terms. Thus we cannot shift the momentum in the second term alone to
make it equal to the first. We can calculate both terms separately, if we introduce a
+i0-prescription in the first factor. After this we can shift the loop momentum and
obtain

Is
3 =

1

q2

∫

dd−1~k

πd/2−1

1

(~k2)3/2

(

1

−2~k · (~p − ~p ′) + t + i0
+

1

−2~k · (~p − ~p ′) + t − i0

)

, (35)

Now the integrals can be calculated by standard methods, taking care of the different i0-
prescriptions in the two terms. Again keeping the first subleading term to the threshold
expansion from this region, we find

(q2)2+ǫIs
3 =

4

t̂

(

−1

ǫ
+ ln(−t̂)

)

+
16ŷ

3t̂

(

1

ǫ
− ln(−t̂)

)

+
8

3
+ O(ŷ, t̂). (36)

The contribution from the soft region is rather peculiar from the conceptual point of
view. Both gluons in the box subgraph have energies of order

√
y, parametrically larger

than the characteristic energy scale y/q for the non-relativistic quarks. Hence one can
imagine the exchange of the two gluons as taking place on a much shorter time scale than
the one that is characteristic for a non-relativistic system. The intermediate quark pair
becomes off-shell by an amount

√
q2y through the interaction with soft gluons, while the

off-shellness of the quarks remains of order y in the potential and ultrasoft regions. The
soft region thus can be considered intermediate between the hard region (off-shellness of
order q2) and the two other small momentum regions. However, while a hard subgraph
can be interpreted as a local interaction vertex, the soft box subgraph, when it appears
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as a subgraph in a 2-loop diagram gives rise to a vertex which is non-local in its external
three-momenta but local in the zero-components of the external momenta as we discuss
in more detail in Sects. 3 and 4. We also understand why the soft region did not appear
in the previous two examples. Since an external quark pair or a quark pair that couples
to the external current is off-shell by an amount of order y, after a quark interacts with
a soft gluon which puts it off-shell by an amount of order

√
q2y, it has to interact with

at least a second soft gluon to reduce its off-shellness to y again.
The threshold expansion can be compared with the very simple exact (up to terms

that vanish as ǫ → 0) result for the box diagram [12]:

(q2)2+ǫI3 =
2

t̂
√

ŷ

[

π

2
− arctan

√

4ŷ
] (

1

ǫ
− ln(−t̂)

)

=

[

π

t̂
√

ŷ
− 4

t̂
+

16ŷ

3t̂
+ . . .

]

(

1

ǫ
− ln(−t̂)

)

. (37)

The expansion in ŷ and t̂ agrees with the sum of the terms computed above. Note
the cancellation between the hard region and the constant from the soft region, which
has to repeat itself in higher orders due to the factorized t-dependence of the exact result.

3. General structure of the threshold expansion

In the previous section we have been rather explicit and worked out the threshold
expansion on simple examples. In this section we abstract from these examples general
prescriptions for the threshold expansion (y = m2 − q2/4 and other small parameters
such as t̂ in example 3 tend to zero at fixed m2) of an arbitrary diagram which contains
two paths of lines with ‘slow’ particles with mass m (‘quarks’) and some massless par-
ticles (‘gluons’). (Internal loops of massive particles can be included straightforwardly:
If all momenta that connect to the internal heavy quark loop are small, the integrand
is expanded in external momenta over the mass and reduces to a series of local opera-
tors analogous to the Euler-Heisenberg effective Lagrangian. If large momentum flows
through part of the graph, the corresponding lines are not expanded. With this in mind,
the following discussion is adapted to diagrams without internal heavy quark loops.)
The two paths of massive lines are assigned q/2 and −q/2 of the large external momen-
tum q. The two paths can be either disconnected as in the box graph example or they
can be joined together by a hard external vertex that ejects large momentum q into the
graph, such as in the two-point and three-point functions discussed in Sect. 2. We also
assume a frame such that q = (q0,~0). The loss of explicit covariance is intrinsic to the
threshold problem and, while an explicitly covariant formulation is possible, it would be
exceedingly cumbersome.

We arrive at our general prescription in three steps, which correspond to dealing
with the hierarchy of scales sequentially. To arrive at the first form of the expansion,
we consider any loop momentum to be either large or small. However, at this step, we
do not identify small momenta as potential, soft or ultrasoft. In particular, when a loop
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momentum that flows through a quark line is small, the zero-component squared of the
loop momentum in the quark propagator is small, see (7). Thus, at the first step, we
arrive at the following expansion

FΓ =
∑

γ

Tk2
i0
FΓ/γ ◦ Tkγ ,yFγ, (38)

where the sum is in one-particle-irreducible (1PI) subgraphs of the given graph Γ. The
operator Tkγ ,y in the second factor performs the Taylor expansion of the Feynman integral
Fγ in y and the loop momenta kγ of Γ which are external with respect to γ. (These are
the loop momenta of the reduced graph Γ/γ, which is obtained by shrinking all lines
of γ to a point.) The operator Tk2

i0
in the first factor performs the Taylor expansion of

the Feynman integral FΓ/γ associated with the reduced graph in the squares of the zero-
components of the loop momenta that flow through the quark lines of the given paths.
The above equation has the combinatorical structure of a factorized expression. It is
easy to see that (38) is equivalent to constructing a non-relativistic effective Lagrangian
[13]. The factors Tkγ ,yFγ can be associated with the insertion of local operators into
the diagram and they account for all hard loop momenta. The factors Tk2

i0
FΓ/γ can be

associated with diagrams in the effective theory and the hard scale q is not present as a
scale for loop momenta in this part any more. Note that the asymptotic expansions for
certain limits of on-shell integrals considered in [14] can be recast into a form similar to
(38), with expansion in k2 rather than k2

0 in the small momentum part.
However, the expansion (38) is not homogeneous in the expansion parameter. The

non-homogeneity arises from the small momentum parts Tk2
i0
FΓ/γ , which are still non-

trivial series in the threshold expansion parameter(s). To obtain the expansion in a
manifestly homogeneous form we have to specify further the scale of the loop momenta
of the reduced graphs Γ/γ in (38). At this point we consider potential, soft and ultrasoft
loop momenta with the scaling rules given in (4). Let Γ̂ be a reduced graph that appears
in (38). Since we have already disposed of all hard momentum regions, the ‘next hardest’
region is the region of soft loop momenta. Consider a soft subgraph γs of Γ̂, i.e. a
1PI subgraph of Γ̂ in which all loop momenta lγs scale as lγs

0 ∼ ~lγs ∼ √
y and the

external momenta kγs of γs are either potential or ultrasoft. Then γs is expanded in all
external momenta, which are ultrasoft, and reduces to a local interaction with respect
to the ultrasoft scale. For a potential external momentum, we expand only in its zero
component, because the spatial component of a potential momenta is of the same order
as the spatial component of a soft momentum. As a consequence, the soft subgraph is a
temporally local vertex with respect to the potential scale, but it is spatially non-local,
because the dependence on the three-momenta of the potential external momenta is not
polynomial. Therefore, defining F̂Γ̂ = Tk2

i0
FΓ̂ as it appears in (38), we arrive at

F̂Γ̂ =
∑

γs

F̂Γ̂/γs
◦ Tkγs

us,kγs
p,0

F̂γs
, (39)

where the sum is again in all 1PI subgraphs. In addition to the Taylor expansions
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indicated explicitly, the massive propagators in γs should be expanded according to

1

−(
∑

i
~lγs +

∑

j
~kγs)2 ± q0(

∑

i
~lγs

0 +
∑

j
~kγs

0 ) − y
=

1

±q0
∑

i
~l γs

0

+ . . . (40)

and pinched poles are simply to be ignored, see the discussion in Sect. 2. Notice that
these are static propagators rather than non-relativistic propagators. After inserting
(39) in (38) we have achieved factorization of both hard and soft momenta. The factors
Tkγs

us ,kγs
p,0

F̂γs
can be interpreted as an instantaneous interaction vertex, and thus as con-

tribution to the heavy quark potential. On the other hand, since Tkγs
us ,kγs

p,0
F̂γs

is spatially

non-local, the graph Γ̂/γs is interpreted as deleting all lines of γs in Γ̂ and replacing them
by Tkγs

us,kγs
p,0

F̂γs
. Let us give an example. The soft part of the box graph of Sect. 2 has

four potential external quark lines and we have

Tkγs
us ,kγs

p,0
F̂box → c

q2
0

1

[−(~p − ~p ′)2]1+ǫ
(41)

with a numerical constant c. In coordinate space, this gives rise to a non-local four-
fermion operator. Due to the structure of (39), the factorization of soft regions can
also be implemented as an effective Lagrangian, although it is non-local in space. In the
planar two-loop three-point integral which we treat in Sect. 4, we will see how such a non-
local operator inserted into a reduced diagram contributes to the threshold expansion
of two-loop diagrams. In Sect. 4 we will also meet another non-local vertex for the
interaction of two potential quark lines with one potential gluon line. One can use power
counting for the soft region to determine all non-local operators which contribute to a
given order in the threshold expansion.

The expansion obtained from combining (38) and (39) is still not homogeneous in the
threshold expansion parameter. The inhomogeneity arises from F̂(Γ/γ)/γs

, where hard and
soft lines are deleted, but potential and ultrasoft loop momenta are still not separated.
First, we note that quark lines can never be ultrasoft. Technically, this is so, because,
since only k0 can combine with a large q0, spatial tadpoles always result, if one tries
to make quark lines ultrasoft. As a consequence, one should consider all contributions
in which all quark lines are potential and a (possibly empty) collection of (possibly
disconnected) gluon lines is ultrasoft. When an ultrasoft gluon line with momentum l
connects to a quark line with loop momentum k − l/2 for the incoming and k + l/2 for
the outgoing quark line, we can expand the quark-gluon vertex and quark propagator
in ~l/~k ∼ √

ŷ. This corresponds to a multipole expansion, as the wavelength of ultrasoft
gluons is large as compared to separation of the quark-antiquark system in a coordinate
space picture. After multipole expansion, all scales are separated and we arrive at a fully
homogeneous threshold expansion.

We have arrived at this prescription in a heuristic and descriptive way. We are
presently not able to give a mathematical proof of our prescriptions similar to what
is available for off-shell limits [3] and leave a mathematical treatment to future pub-
lications. To complete such a proof for the threshold expansion one needs to use the
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α-representation and a subsequent decomposition of the integration domain into appro-
priate sectors which should be introduced, in the language of the α-parameters, in a
way analogous to our decomposition into regions of large, potential, soft and ultrasoft
momenta. In fact, a proof of the asymptotic expansions for off-shell limits [3] reduces
to the analysis of the asymptotic behaviour of the remainder, which has the structure
of the R-operation, i.e. renormalization at the diagrammatic level. Therefore this proof
has much in common with standard proofs of the finiteness of the renormalized Feynman
integrals.

According to the definition of the asymptotic expansion, its remainder possesses a
given asymptotic behaviour (a sufficiently fast decrease) once one keeps a sufficiently
large number of the terms of the expansion. As in the case of the limits for which
explicit general formulae were known up to now [1,2,3,14], it is possible to characterize
the remainder of the threshold expansion in terms of the R-operation. Since the product
of any two (or more) subtraction operators that are present in the prescriptions for the
asymptotic expansions is zero, we can rewrite the sum that in the right-hand side of the
expansion (1) as

∑

γ

Mγ = 1 −R (42)

where the operation R has the structure of the usual (ultraviolet) R-operation and is
given by the forest formula

R =
∑

F

∏

γ∈F

(−Mγ) . (43)

For off-shell limits, the operator Mγ performs Taylor expansion of the Feynman integral
Fγ in its small masses and external momenta and inserts the resulting polynomial in the
reduced diagram FΓ/γ . In our case, the Taylor expansions appropriate to a given region
should be implied. In (43) the sum is in forests (i.e. subsets of non-overlapping sub-
graphs) composed of subgraphs that are involved in the prescriptions for the asymptotic
expansion in the given limit. Therefore, we can represent an initial Feynman integral as

FΓ =
∑

γ

MγFΓ + RFΓ . (44)

The remainder is constructed in such a way that it is finite (if the original diagram
is finite) and possesses a desired estimate in the given limit. The order of the expansion
is implicitly hidden in degrees of the subtractions operators involved. From the mathe-
matical point of view, the subtractions performed by the operators Mγ corresponding to
subgraphs γ 6= Γ remove divergences generated by the naive expansion (i.e. for γ = Γ)
of the integrand in the expansion parameter. This naive expansion in turn removes
divergences that could appear due to the subtractions in the subgraphs.

Let us illustrate the above points through our examples. In example 1, we have the
following expression for the remainder:

RI1 ≡
∫

[dk]
(

1 − T N
y

) (

1 − T N
k2
0

) 1

(k2 + q · k − y)(k2 − q · k − y)(k − p)2
. (45)
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Here the superscript N denotes the order of the Taylor expansion. It turns out that
the remainder possesses a necessary asymptotic behaviour, provided the degree of the
subtraction operators is chosen sufficiently large, and does not have divergences that
were not present from the very beginning. Consider first the region of small k. Then
the operator T N

y is dangerous, in the sense that it generates an infrared divergence that
appears when y → 0. However, the second factor (1−T N

k2
0

) kills this divergence because

it either provides additional factors of k, or explicit powers of y (which effectively reduce
the order of expansion in y in the first factor). Similarly, in the region of large k, the
operator T N

k2
0

is dangerous because it generates positive powers of k. This time, the first

factor (1 − T N
y ) improves the convergence of the whole integral.

Consider example 2. As a remainder we now have RFΓ where

R = (1 −MΓ)(1 −Mh−p −Mp−h)(1 −Mp−p −Mp−us) . (46)

The operators Mh−p, Mp−h, Mp−p and Mp−us have to remove infrared divergences
generated by the action of the operator MΓ = Mh−h = Ty. Consider, for example, the
region where k is small while l is non-zero. Then one can pick up the bracket (1−Mh−p)
which makes the term with MΓFΓ convergent. In the region where both k and l are
small, this is the operator Mp−p that provides convergence that could be spoiled by the
operator MΓ, and the operator Mp−us that kills the divergence at k, l → 0 caused by
Mh−p and Mp−h.

As in the case of known limits of momenta and masses, we have, in the right hand-
side of (45) and (46), and (38) and (39), an interplay between ultraviolet and infrared
divergences which manifest themselves as poles in ǫ. However, the naive expansion (in y)
does not always generate additional poles — see, e.g., example 1. Still the naive Taylor
expansion part taken alone does not provide a correct answer to the problem and should
be accompanied by extra contributions.

4. Two-loop vertex integrals

In this section we discuss and present results on the threshold expansion of two-loop
3-point functions, which, to our knowledge can not be obtained from expansion of an
exact result. The three-point functions are also the non-trivial building blocks for many
physical applications. Here we consider the abelian planar and non-abelian graphs in
Fig. 4a and b. The non-planar graphs (Fig. 4c) will be discussed together with first
applications in [15].

The abelian planar graph. Define the one-loop subgraphs γ1 = {1, 3, 5}, γ2 =
{2, 4, 5, 6} and γ3 = {1, 2, 3, 4, 6}. (The numbering of lines refers to Fig. 4a.) The
unexpanded integral is given by

IPL ≡
∫ [dk][dl]

(k2 + q · k − y)(k2 − q · k − y)(l2 + q · l − y)(l2 − q · l − y)(k − l)2(l − p)2
,

(47)
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1 23 45 6(a)
1 234 56(b) (c)

Figure 4: Examples of two-loop three-point graphs. Solid (wavy) lines denote massive (mass-
less) lines.

where the kinematic variables are defined as in example 1 above. Inspecting all regions
that contribute to the threshold expansion, we find only six of them non-vanishing.
Together with their leading contribution (up to logarithms of ŷ) to q4IPL, they are:

h-h: 1

h-p, with γ1 hard: 1/
√

ŷ

h-p, with γ2 hard:
√

ŷ (48)

p-p: 1/ŷ

p-s, with γ2 soft: 1/
√

ŷ

p-us, with γ3 potential: 1/
√

ŷ.

Let us emphasize that the scalings given here follow from power counting alone, because
in each region the integrand is homogeneous in the expansion parameter.

The calculation of the various contributions is straightforward in the sense that all
non-trivial aspects of the calculation have been met in the examples discussed in detail
in Sect. 2. For instance, after partial fractioning, the integrals needed to evaluate the h-h
region reduce to J± of (14) (with additional scalar products in the numerator) and the
complexity of integrals is essentially the same as for the 2-point function of example 2.
The leading contribution close to threshold comes from the p-p region and corresponds
to the double Coulomb exchange. Let us consider in more detail the fifth contribution,
when the box subgraph is soft and loop momentum k that flows through lines 1, 3 and 5
is potential. First, when we take the integral over the other loop momentum l first, the
result is identical to the soft contribution to the box subgraph in example 3 of Sect. 2,
except that the difference of external relative momenta p−p′ is replaced by the difference
of the external momenta of the box subgraph p+k−p = k. The momentum dependence
of the box subgraph is 1/(~k2)1+ǫ, which can be interpreted as a non-local vertex. Second,
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using p · q = 0, it is easy to see that in every region the expansion parameter is ŷ, except
when one momentum is soft, in which case the expansion parameter is

√
ŷ. However, for

the box subgraph the symmetry between the upper and lower quark line eliminates all
odd terms in

√
ŷ and subleading contributions are suppressed by integer powers of ŷ.

The integral IPL is infrared divergent. Collecting all terms up to order ŷ0 close to
threshold, we obtain

(

q2

4

)2+2ǫ

IPL =
1

ǫ2

[

π2

128ŷ
− π

16
√

ŷ
+

1

8

]

+
1

ǫ

[

− π2

64ŷ
ln(16ŷ) +

π

8
√

ŷ
(2 − ln 2) − 1

4

]

+
π2

64ŷ

(

ln2(16ŷ) +
7π2

12

)

+
π

8
√

ŷ

(

ln2(16ŷ) + (3 ln 2 − 4) ln(16ŷ) + ln2 2 − 2 ln 2 +
π2

4

)

− 29π2

48
− 3

2
+ O(ŷ1/2). (49)

The calculation of higher-order terms can be automated on a computer. As a check of
this result, we have calculated the exact double pole part of the integral,

(

q2

4

)2+2ǫ

IPL | 1

ǫ2
=

1

32ǫ2ŷ

(

π

2
− arctan

√

4ŷ
)2

, (50)

and the first three terms in the expansion agree with the double pole part of (49).

The non-abelian graph. For the diagram of Fig. 4b, we define the one-loop subgraphs
γ1 = {2, 4, 5}, γ2 = {1, 3, 4, 6} and γ3 = {1, 2, 3, 5, 6}. The unexpanded integral is given
by

INA ≡
∫ [dk][dl]

(k2 + q · k − y)(k2 − q · k − y)(l2 + q · l − y)(k − l)2(k − p)2(l − p)2
. (51)

Inspecting all regions that contribute to the threshold expansion, we find only four of
them non-vanishing. Together with their leading contribution (up to logarithms of ŷ) to
q4INA, they are:

h-h: 1

h-p, with γ1 hard: 1/
√

ŷ (52)

p-s, with γ1 soft: 1/ŷ

p-us, with γ3 potential: 1/
√

ŷ.

The p-p region that scales as 1/ŷ does not contribute here, because the poles in l0 lie on
one side of the real axis only. Hence, the l0-integral vanishes. The potential-soft region
is algebraically most complicated. Since the soft vertex subgraph γ1 is less symmetric
than the box subgraph of the abelian planar diagram, the expansion in this region runs
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in
√

ŷ and it is necessary to compute the first two subleading terms in the expansion
in this region to obtain an accuracy O(ŷ0) at threshold. The integral INA is infrared
divergent. Collecting all terms up to order ŷ0 close to threshold, we obtain

(

q2

4

)2+2ǫ

INA =
1

ǫ2

[

− π

32
√

ŷ
+

1

8

]

+
1

ǫ

[

π2

64ŷ
− π2

16
− 1

4

]

− π2

32ŷ
(ln(16ŷ) + 2) (53)

+
π

32
√

ŷ

(

ln2(16ŷ) + 8 ln(32ŷ) +
5π2

6

)

+
π2

8
ln(16ŷ) − 23π2

48
− 3

2
+ O(ŷ1/2).

As a check of this result, we have calculated the exact double pole part of the integral,

(

q2

4

)2+2ǫ

INA | 1

ǫ2
= − 1

16ǫ2
√

ŷ

1

1 + 4ŷ

(

π

2
− arctan

√

4ŷ
)

, (54)

and the first two terms in the expansion agree with the double pole part of (53).

We close this section with some observations on the non-planar diagram, Fig. 4c,
postponing a detailed discussion to [15]. The non-vanishing regions are the same as for
the non-abelian diagram, with the difference that the hard-potential contribution scales
as

√
ŷ in leading order and the potential-soft region as 1/

√
ŷ as for the planar abelian

diagram. (The p-p region vanishes again, because all poles in one of the zero-component
integrations lie on one side of the real axis.) Any integral that contributes to the h-h
region can be reduced to either J± or

L±(a1, . . . , a5) ≡
∫

[dk][dl]

[−k2]a1 [−l2]a2 [−((k + l)2 + q · (k + l))]a3 [−(k2 + q · k)]a4 [−(l2 ± q · l)]a5
. (55)

With integration by parts we can reduce these integrals first to L+(0, 0, a3, a4, a5) =
L−(0, 0, a3, a4, a5) and then to a single integral such as L+(0, 0, 2, 2, 1). (The algorithm
for L+ has been used before in [8,16], although no details have been given there.) Fur-
thermore, the hard parts of all possible 2-loop 3-point graphs relevant to QCD can be
reduced to J± or L± and, consequently, can be solved in the threshold expansion.

5. Discussion

The threshold expansion, which we proposed and illustrated in this paper, could be
applied to two sets of problems. The first set consists of problems where it is desirable to
have as many terms in the expansion as can possibly be calculated. The second consists
of problems where the nature of the problem specifies that only a limited number of
terms are needed.

The cross section for the production of heavy quarks in e+e− annihilation σe+e−(q2, m)
at intermediate energies

√
q2 is an important example of the first kind. Presently avail-

able techniques do not permit an analytic calculation of σe+e−(q2, m) at order α2
s. In [17]
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the large-momentum and large-mass expansion together with convergence accelerating
methods have been used to approximate σe+e−(q2, m) to high accuracy from expansions
around q2 = 0 and q2 = ∞. It is exactly the threshold point q2 = 4m2 that is most crit-
ical in this approach. The threshold expansion, when computed to high order, provides
us with an intermediate point, the expansion around which can probably be smoothly
joined with the large-momentum and large-mass expansion in order to obtain an accurate
result for σe+e−(q2, m) for any q2 except very close to threshold, where a resummation
of all corrections of form α0,1,2

s (αs/
√

ŷ)n is necessary. (This resummation belongs to the
second set of problems.) The analysis of the 2-loop 2-point function in Sect. 2 suggests
that the threshold expansion for σe+e−(q2, m) converges when q2 ∈ [0, 8m2]. Therefore
we expect that a reasonably accurate approximation to σe+e−(q2, m) could be obtained
for q2 < 6m2 starting from the threshold expansion.

In this paper we have treated only the threshold expansion of loop integrals, but not
of phase space integrals for real radiation. However, as in [17] it seems advantageous to
consider the three-loop vacuum polarisation of heavy quarks in the threshold expansion
in order to avoid the separate calculation of virtual corrections and real radiation. Since
σe+e−(q2, m) requires only the imaginary part of the two-point function, one can take
advantage of this fact from the beginning. For example, the region where all three
loop momenta are hard, which would be very difficult to calculate, is analytic in ŷ and
therefore does not contribute to the imaginary part. Other contributions reduce to two-
loop diagrams (such as those of Sect. 4) or simple three-loop diagrams.

The second set of problems involves ‘matching calculations’. In this case the quark
mass m is a large scale and the observable in question should be factorized into a short-
distance contribution from the scale m and a long-distance contribution which can be
either perturbative or non-perturbative. Examples of this kind include bound state cal-
culations in QED, quarkonium systems in QCD, but also the above-mentioned resum-
mation of ‘Coulomb-enhanced’ corrections in heavy quark production close to threshold.
In order to obtain the matching coefficient for a given operator, a suitable (typically
on-shell) Green function has to be expanded close to threshold to a certain order, which
is determined by the structure and dimension of the operator. As already mentioned in
Sect. 3, the combinatorical structure of the separation of large (hard) and small momenta
in the threshold expansion, which is manifest in (38) for a given diagram Γ, translates
into the statement of factorization

G(m, pi) =
∑

i

Ci(m) GOi
(pi/m) (56)

for the Green function G to which Γ contributes. Here Oi is a local operator, inserted into
G, and Ci is its short-distance coefficient. This construction is completely equivalent to
the construction of a non-relativistic effective theory [13] in dimensional regularization.
In particular (38) leads to the factorization prescription that for any diagram Γ its
contribution to the short-distance coefficient(s) (‘hard part’) is given by selecting only
γ = Γ in the sum over all subgraphs:

F
Γ |hard = TyFΓ. (57)
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That is, the hard part is given by the ‘naive’ Taylor expansion of Γ. Note that this
is not identical to dropping all singular terms at threshold. For example, the abelian
planar 3-point integral in Sect. 4 contains terms proportional to ŷ0 both from the h-h
and the p-p region. The contribution from the second region should not be considered
as part of the short-distance coefficient. The non-relativistic approximation to the quark
propagator in (7) does not coincide exactly with the standard convention. Let the
gluon line in the triangle graph of Fig. 1 have momentum k and the upper quark line
have momentum k + p1. In the standard convention one would introduce an external
momentum p̃ = (p̃0, ~p) with the non-relativistic on-shell condition p̃0 = ~p 2/(2m). The
non-relativistic propagator is then

1

2m

1

p̃0 + k0 − (~p+~k)2

2m

=
1

−(~k + ~p)2 + q0k0 − y + δ
, (58)

where the difference to the approximation used in this paper is δ = (q0/2 − m) k0 =
(
√

m2 − y −m) k0, which is smaller than all other terms in the denominator and can be
expanded. Thus our small-momentum approximation is equivalent to a reparametriza-
tion of NRQED/NRQCD, where the large part of the massive line momentum is taken
to be q/2 rather than m.

Once the hard momenta are factorized (‘integrated out’), an interesting aspect of
non-relativistic effective theory is that it does not lead to manifest power counting. This
means that the matrix elements of operators are series in the small parameters, rather
than being homogeneous, and their scaling can not be determined by counting a suitable
dimensionful parameter. In the threshold expansion this is reflected by the fact that we
had to divide the small momentum region further into potential, soft and ultrasoft (see
(4)) in order to arrive at a homogeneous expansion with manifest power counting.

Recently the possibility to factorize the small-momentum scales mv and mv2 (
√

y
and y/q in our notation) has been investigated in a series of papers [18,19,20,21,22].
Different rescalings were proposed in [19,20] that succeed in making power counting
manifest in one region, but fail in others. Thus while the rescaling of [19] is adequate

for potential gluons (k0 ∼ mv2, ~k ∼ mv), the rescaling of [20] is tuned for ultrasoft

gluons (k0 ∼ ~k ∼ mv2) and the multipole expansion. Both rescalings are unified in the
treatment of [21], where different fields for (non-propagating, off-shell) potential gluons
and (propagating) ultrasoft gluons are introduced. At least for diagrams, in which only
one gluon (massless) line is present, this approach appears to be equivalent to ours, as
can be seen by comparing the treatment of the small momentum contributions to the
triangle graph in Sect. 2 with the discussion in [21]. Furthermore, in the third line of
Fig. 2 the first graph corresponds to the exchange of a potential gluon and the second
to the exchange of a propagating gluon in the language of [21]. On the other hand, the
existence of soft gluons, i.e. propagating gluons with energy and momentum of order mv,
has not been considered in [19,20,21] and does not seem to fit into the rescaling schemes
proposed there. Yet another approach has been taken in [22], where a non-local effective
Lagrangian is proposed that follows after integrating out soft gluons. (In practice, this
has been done only for single gluon exchange, which gives rise to the standard Coulomb
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potential with relativistic corrections. The discussion of the soft box subgraph in Sects. 2
and 4 suggests that the non-local Lagrangian can be extended to include the box graph
contribution.) However, it has not yet been shown how to treat potential gluons in the
approach of [22].

Labelle has first discussed the separation of soft/potential and ultrasoft photons and
the multipole expansion in the context of NRQED [18]. It seems to us that Labelle’s
treatment of NRQED graphs is most closely related to our treatment of the small mo-
mentum regions in the threshold expansion. Technical differences arise in as much as he
implies a cut-off regularization, while the simplicity of the threshold expansion discussed
here is specific to dimensional regularization. In addition, [18] starts with time-ordered
perturbation theory and Coulomb gauge, while we emphasize that the power counting
and approximations in a given region can be carried out before performing the inte-
gration over the zero-components of the loop momenta and the method works in any
gauge. (Since we have considered scalar propagators only, the question of gauge does not
arise. In a gauge theory Coulomb gauge is very convenient for the threshold expansion,
because propagating gluons which cause most complications couple to quarks through
vertices that are suppressed by at least a factor of

√
y.) In this paper, as in [18] and

in contrast to [19,20,21,22], no attempt is made to write down an effective Lagrangian
after integrating out soft or soft together with potential gluons. This may be considered
as a drawback. On the other hand, as this Lagrangian would inevitably be non-local, its
utility is not obvious to us, once manifest power counting can be achieved otherwise.

After this conceptual postludium we should emphasize that the main focus of this
paper is on the ability to perform calculations. The threshold expansion method de-
scribed here allows us to treat 2-loop 3-point functions and opens the door to threshold
problems at next-to-next-to-leading order. A first realistic application will be treated in
a companion paper [15].
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