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Abstract

In this paper we show how gauge symmetries in an effective theory can be used to simplify proofs

of factorization formulae in highly energetic hadronic processes. We use the soft-collinear effective

theory, generalized to deal with back-to-back jets of collinear particles. Our proofs do not depend

on the choice of a particular gauge, and the formalism is applicable to both exclusive and inclusive

factorization. As examples we treat the π-γ form factor (γγ∗ → π0), light meson form factors

(γ∗M → M), as well as deep inelastic scattering (e−p → e−X), Drell-Yan (pp̄ → Xℓ+ℓ−), and

deeply virtual Compton scattering (γ∗p→ γ(∗)p).
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I. INTRODUCTION

The principle of factorization underlies all theoretical predictions for hadronic processes.
Simply put, factorization is the statement that short and long distances contributions to
physical processes can be separated, up to corrections suppressed by powers of the relevant
large scale in the process. The predictive power gained from this result stems from the fact
that the incalculable long distance effects are universal, defined in an unambiguous way in
terms of matrix elements. As a consequence, the non-perturbative long distance effects can
be extracted in one process and then used in another. In general, proving factorization is a
difficult task [1]. The proof of factorization in Drell Yan processes, for instance, took several
years to sort out [2] (for reviews on factorization see [3, 4, 5]). Indeed, there are still some
processes such as B → ππ where a proof of factorization only exists at one-loop [6].

Given that we would like to retain our predictive power over the largest possible range of
energies, we are compelled to understand power corrections to the factorized rates. These
corrections are not necessarily universal, and as such, the relevant size of the power cor-
rections are process dependent. In processes for which there exists an operator product
expansion (OPE), there is a systematic way in which to include power corrections. How-
ever, for a majority of observables we do not have an OPE at our disposal, and the nature
of the power correction is not always known. For instance, in the case of shape variables
there is still some on going discussion about the form of subleading corrections [7, 8].

The purpose of this paper is to show that an effective theory framework can be used
to simplify proofs of factorization and describe processes with an operator formalism. To
do this we extend the soft-collinear effective theory (SCET) developed in Refs. [9, 10, 11,
12, 13], to high energy processes. It should be emphasized that there are several other
useful advantages in using an effective field theory (EFT). For instance, the EFT makes any
symmetries which emerge in the Q → ∞ limit manifest in the Lagrangian and operators,
and allow statements to be made to all orders in perturbation theory. The calculation
of hard coefficients reduces to simple matching calculations, where subtracting the EFT
graphs automatically removes all infrared divergences from the QCD calculation. Perhaps
most importantly, it provides a framework for systematically investigating power corrections.
Finally, the EFT framework allows standard renormalization group techniques to be used
for the resummation of logarithms that are often necessary in calculating rates for certain
high energy scattering events [9, 10, 14, 15]. The factorization formulae that we prove in
this paper are not new, but serve to illustrate our approach in familiar settings. The results
are valid to all orders in αs and leading order in the power expansion. The simplicity of our
approach lies in the fact that factorization occurs at the level of the SCET Lagrangian and
operators, and is facilitated by gauge symmetry in the EFT. This provides the advantage
that our proofs do not rely on making use of Ward identities and induction, or on specifying
a particular gauge.1 Furthermore, it becomes rather simple to derive factorization formulae
for a myriad of processes, since many results are universal. The examples given here serve
to illustrate these simplifications. Developments on the issues of power corrections and
resummations are left to future publications.2

In section II we review the construction of the SCET. The formalism developed in Refs. [9,

1 In fact our factorization proofs rely heavily on the gauge symmetry structure of SCET. When a gauge

fixing term is required for explicit calculations we use general covariant gauges.
2 For recent work on subleading corrections in SCET for heavy-to-light transitions see Ref. [16].
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10, 11, 12] is extended to include two types of collinear particles moving in opposite directions
in section IIB, and factorization for γ∗ to two collinear states is discussed as an example. In
section IIC we define the non-perturbative matrix elements such as the parton distribution
functions that will be needed for the processes presented in the paper, and in section IID we
discuss some of the symmetries in SCET that may be used to place restrictions on matrix
elements. In the remaining sections we give various examples on how factorization theorems
emerge in the effective theory language. In section III we prove factorization theorems for
two exclusive processes, namely the π-γ form factor, and meson form factors (γ∗M → M)
for arbitrary spin and isospin structure. In section IV two inclusive processes are treated,
namely DIS (e−p→ e−X) and Drell-Yan (pp̄→ Xℓ+ℓ−), and we also give results for deeply
virtual Compton scattering (γ∗p → γ(∗)p). In these processes we include all leading power
contributions in the factorization proofs (even if the operators are only matched onto at
higher orders in perturbation theory such as for the gluon distribution functions). Our
conclusions are given in section V. In appendix A we show how auxiliary fields can be used
to prove the simultaneous factorization of soft fields from collinear fields for particles in
back-to-back directions.

II. FORMALISM

Effective field theories provide a simple and elegant way of organizing physics in processes
containing widely disparate energy scales. In constructing an EFT, some degrees of freedom
are eliminated, and the remaining degrees of freedom must reproduce all the infrared physics
of the full theory in the domain where the EFT is valid. The EFT is organized by an
expansion in λ, defined as the ratio of small to large energy scales. As a useful guideline
the following steps are used to identify the infrared degrees of freedom: 1) Determine the
relevant scales in a problem from the size of the momenta and masses of all particles that
can make up the initial and final states, 2) Construct all momenta from these scales whose
components correspond to propagating degrees of freedom, and which have offshellness less
than the large scale, i.e. p2 −m2 <∼ Q2. Effective theory fields are then constructed for each
unique set of these momenta.

We will be interested in an EFT with particles of energy Q much greater than their mass.
The dynamics of these particles can be described by constructing a soft-collinear effective
theory (SCET). This theory is organized as an expansion in powers of λ ∼ p⊥/Q, and offshell
fluctuations with p2 ≫ (Qλ)2 are integrated out. In section IIA we begin by describing this
procedure and comparing the construction to other EFT’s. We then give a brief review of
the soft-collinear effective theory developed in Refs. [9, 10, 11, 12, 13]. We do not attempt
to give a comprehensive treatment, but instead emphasize the main results and refer the
reader to the literature for details. In section IIB we extend the formulation of SCET to
describe processes with collinear particles moving in back to back directions, and prove the
factorization formula for γ∗ to two collinear states as an example. In section IIC we define
the non-perturbative matrix elements that are needed for our examples, then in section IID
we discuss some of the symmetry properties of collinear fields and currents.
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A. Soft-Collinear Effective Theory

In the standard construction of an EFT one removes the short distance scales and massive
fields by integrating them out one at a time. A classical example is integrating out the W
boson to obtain the effective electroweak Hamiltonian with 4-fermion operators. However,
in some situations we are interested in integrating out large momentum fluctuations without
fully removing the corresponding field. The simplest example of this is Heavy Quark Effective
Theory (HQET) [17], which is constructed to describe the low energy properties of mesons
with a heavy quark. Here the heavy anti-quarks are integrated out and only heavy quarks
with fluctuations close to their mass-shell are retained. This is accomplished by removing
fluctuations of order the heavy quark mass mQ with a field redefinition[18]

ψ(x) =
∑

v

e−imQv·xhv(x) , (1)

where v is the heavy quark velocity and hv is the field in the EFT. While ∂µψ(x) ∼ mQ ψ(x),
the effective field has ∂µhv(x) ∼ ΛQCD hv(x), indicating that it no longer describes short-
distance fluctuations about the perturbative scale mQ. Instead these effects are encoded in
calculable Wilson coefficients. The HQET degrees of freedom with offshellness p2 ∼ Λ2

QCD

are the heavy quarks, soft gluons, and soft quarks.
Similarly, for collinear particles with energy Q ≫ m, one needs to remove momentum

fluctuations ∼Q while retaining effective theory fields to describe smaller momenta. How-
ever, unlike heavy quarks the collinear particles have two low energy scales. Consider the
light-cone momenta, p+ = n · p and p− = n̄ · p where n2 = n̄2 = 0 and n · n̄ = 2. Here n
parameterizes a light-cone direction close to that of the collinear particle and n̄ the opposite
direction (eg. for motion in the z direction nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1)). For a
particle of mass m <∼ p⊥ ≪ Q, we have p− ∼ Q, and a small parameter λ ∼ p⊥/Q. The
scaling of the p+ component is then fixed by the equations of motion p+p− + p2⊥ = m2, so
that (p+, p−, p⊥) ∼ Q(λ2, 1, λ).

The appearance of two small scales, Qλ2 ≪ Qλ ≪ Q, is similar to the situation in
non-relativistic QCD (NRQCD), which is an EFT for systems of two heavy quarks with
an expansion in their relative velocity β. In a non-relativistic bound state the momentum
of a heavy quark is p ∼ mQβ, but the equations of motion E = p2/(2mQ) make the
energy E ∼ mQβ

2, giving scales mQβ
2 ≪ mQβ ≪ mQ. The two low energy scales can be

distinguished by following Eq. (1) with a further field redefinition [19] hv(x) =
∑

p
eip·xψp(x),

so that derivatives on ψp only pick out the mβ2 scale. The on-shell degrees of freedom are
then the heavy quarks, soft quarks and gluons with p2 ∼ (mQv)

2, and ultrasoft quarks and
gluons with p2 ∼ (mQv

2)2.
SCET fields:

For collinear particles the analogous field redefinitions are [10, 11]

φ(x) =
∑

n

∑

p

e−ip·xφn,p(x) , (2)

where the collinear fields φn,p are labelled by light-cone vectors n and label momentum p.
Here p contains the n̄ · p ∼ Q and p⊥ ∼ Qλ momenta so that ∂µφn,p ∼ (Qλ2)φn,p. The
field φp can either be a quark or gluon field. Similar to ψp, the missing ∼ Q fluctuations
are described by Wilson coefficients and the ∼ Qλ labels simplify the power counting by
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distinguishing the Qλ and Qλ2 scales. Now

φn,p ≡ φ+
n,p + φ−

n,−p , (3)

so collinear particles and antiparticles are contained in the same effective theory field, but
have momentum labels with the opposite sign. In the large energy limit the four component
fermion spinors contain two large and two small components. One therefore defines collinear
quark fields ξn,p which only retain the large components for motion in the n direction and
satisfies n/ξn,p = 0. For these fields ξ+n,p/ξ

−
n,p destroy/create the particles/antiparticles with

large momentum n̄ · p > 0 [11]. For collinear gluons Aµ †
n,q = Aµ

n,−q, and (Aµ
n,q)

+/(Aµ
n,q)

−

destroy/create gluons with n̄·q > 0.
For simplicity we will ignore quark masses and only consider massless u and d quarks.

For the processes considered here SCET then requires three types of degrees of freedom:
collinear, soft, and ultrasoft (usoft) fields. These are distinguished by the scaling of the
light cone components (p+,p−,p⊥) of their momenta: (λ2, 1, λ) for collinear modes in the
n direction (An,q, ξn,p), (λ, λ, λ) for the soft modes (As

q, q
s
p), and (λ2, λ2, λ2) for the usoft

modes (Aus, qus). The soft modes are labelled by their order Qλ momenta, so As
q and qsp

are essentially just momentum space fields. The usoft fields have no labels and depend only
on the coordinate x. The fields are assigned a scaling with λ to make the action for their
kinetic terms order λ0 [9, 10, 12]. For instance ξn,p ∼ λ, Aµ

n,q ∼ (λ2, 1, λ), As
q ∼ λ, and

Aµ
us ∼ λ2. At leading order only order λ0 vertices are necessary to correctly account for all

order λ0 Feynman diagrams.
In HQET only external currents with momenta of order mb can change the label v. Thus

the Lagrangian has a superselection rule forbidding changes in the four-velocity of the heavy
quark [17, 18]. In NRQCD the v labels are also conserved, but the smaller momentum labels
p are changed by operators in the effective theory such as the Coulomb potential. A novel
feature of SCET is that interactions in the leading action can change both the large and
small parts of the momentum labels pµ. However, only external currents can change the
direction n of a collinear particle, so this label is conserved. Thus, for each distinct direction
n a separate set of collinear fields are needed. In the remainder of this section we will
restrict ourselves to collinear particles with a single n. We will generalize the discussion to
the case of two back-to-back directions and discuss the factorization of collinear particles
with different n’s in section IIB.

Since in SCET interactions can change the order Q label momenta it turns out to be
very useful to introduce a label operator, Pµ [11], for which the collinear fields satisfy
Pµξn,p = pµξn,p. More generally, Pµ acts on a product of labelled fields as

f(Pµ)
(

φ†
q1
· · ·φ†

qmφp1 · · ·φpn

)

= f(pµ1+. . .+p
µ
n−qµ1−. . .−qµm)

(

φ†
q1
· · ·φ†

qmφp1 · · ·φpn

)

. (4)

so conjugate field labels come with a minus sign. The operator Pµ acts to the right, while
the conjugate operator P†

µ acts to the left. As explained in Ref. [11] the label operator allows
all large phases to be moved to the front of operators with a factor exp(−ix·P). This phase
and the label sums can then be suppressed if we impose that interactions conserve label
momenta and that the momentum indices on fields are implicitly summed over. Basically,
for labels p and p′ and residual momenta k and k′

∫

d4x ei(p
′−p+k′−k)·x = δ(p− p′)

∫

d4x ei(k
′−k)·x , (5)
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so that the label and residual momenta are individually conserved. (Although technically
the label momenta are discrete we abuse notation and use δ(p−p′) rather than δp,p′ because
it makes the subscripts easier to read.) For convenience we define the operator P̄ to pick
out only the order λ0 labels on collinear fields, and the operator Pµ to pick out only the
order λ labels. For the matrix element of any collinear operator O, momentum conservation
constrains the sum of field labels [11], giving

〈

Mn,p1

∣

∣

[

f(P̄)O
]
∣

∣Mn,p2

〉

= f(n̄·(p2−p1))
〈

Mn,p1

∣

∣O
∣

∣Mn,p2

〉

, (6)

for any function f .
For a single n the Lagrangian can be broken up into three sectors: collinear, usoft, and

soft. We therefore write

L = Lc,n[ξn,p, A
µ
n,q, A

µ
us] + Lus[qus, A

µ
us] + Ls[qs,p , A

µ
s,q] , (7)

where we have made the field content of each sector explicit. We will discuss each of these
terms separately.
Collinear sector:

As explained in detail in Ref. [12], gauge invariance in SCET restricts the Lagrangian
and allowed form of operators. Only local gauge transformations whose action is closed on
the effective theory fields need to be considered. These include collinear, soft, and usoft
transformations. Each of these vary over different distance scales, with collinear gauge
transformations satisfying ∂µUn(x) ∼ Q(λ2, 1, λ) Un(x), soft satisfying ∂

µVs(x) ∼ Qλ Vs(x),
and usoft transformations with ∂µVus(x) ∼ Qλ2 Vus(x). All particles transform under Vus(x)
and usoft gluons act like background fields for collinear particles. Invariance under Un(x)
requires a collinear Wilson line built out of the order λ0 gluon fields [10, 11]

Wn(x) =

[

∑

perms
exp

(

−g 1

P̄ n̄·An,q(x)
)

]

. (8)

Here the operator P̄ acts only inside the square brackets, the n on Wn refers to the direction
of the collinear quanta, and Wn is local with respect to x (corresponding to the residual
momenta). Taking the Fourier transform of δ(ω − P̄)Wn(0) with respect to ω gives the
more familiar path-ordered Wilson line Wn(y,−∞) = P exp

[

ig
∫ y

−∞
ds n̄·An(sn̄)

]

. Under a
collinear gauge transformation Wn transforms asWn → UnWn. An invariant under collinear
gauge transformations can therefore be formed by combining a collinear fermion ξn,p and
the Wilson line Wn in the form

W †
n(x) ξn,p(x) . (9)

This combination still transforms under an usoft gauge transformation, W †
n ξn,p →

Vus(x)W
†
n ξn,p. We will often suppress the x dependence of the combination W †

n ξn,p.
Integrating out hard fluctuations gives Wilson coefficients in the effective theory that are

functions of the large n̄·pi collinear momenta, C(n̄·pi). However, collinear gauge invariance
restricts these coefficients to only depend on the linear combination of momenta picked
out by the order λ0 operator P̄ [11]. In general the Wilson coefficients are then functions
C(P̄, P̄†) which must be inserted between gauge invariant products of collinear fields. In
general the Wilson coefficients also depend on the large momentum scales in a process such
as Q and the renormalization scale µ.
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To construct the collinear Lagrangian one can match full QCD onto operators with
collinear fields that are invariant under usoft and collinear gauge transformations. The
collinear Lagrangian at order λ0 is [10, 11, 12]

Lc,n = ξ̄n,p′

{

i n·D+gn·An,q +
(

P/⊥+ gA/⊥n,q

)

W
1

P̄ W †
(

P/⊥+ gA/⊥n,q′
)

}

n̄/

2
ξn,p

+
1

2g2
tr

{

[

iDµ + gAµ
n,q , iDν + gAν

n,q′

] 2
}

+ Lg.f.
c , (10)

where Lg.f.
c are gauge fixing terms, iDµ = i∂µ + gAµ

us, and

iDµ =
nµ

2
P̄ + Pµ

⊥ +
n̄µ

2
i n·D . (11)

Since usoft gluons act as background fields in the collinear gauge transformation the cou-
plings, g(µ), for both types of gluons must be identical.
Usoft and Soft sectors:

The usoft and soft Lagrangians for gluons and massless quarks are the same as those
in QCD. From Eq. (7) we see that collinear quarks and gluons interact with usoft gluons,
however at order λ0 only the n ·Aus component appears in Eq. (10). In order to prove
factorization formulae it is essential to disentangle the collinear and usoft modes. This can
be done by introducing an usoft Wilson line

Yn(x) = P exp

(

ig

∫ x

−∞

ds n·Aus(sn)

)

, (12)

where the subscript n on Yn labels the direction of the Wilson line (we emphasize that this is
different from the meaning of the subscript onWn in Eq. (8)). An usoft gauge transformation
takes Yn → VusYn. In Ref. [12] it was shown that the field redefinitions

ξn,p = Yn ξ
(0)
n,p , Aµ

n,p = YnA
(0)µ
n,p Y †

n , (13)

imply Wn = YnW
(0)
n Y †

n and decouple the usoft gluons from the collinear particles in the
leading order Lagrangian

Lc,n[ξn,p, A
µ
n,q, n·Aus] = Lc,n[ξ

(0)
n,p, A

(0)µ
n,q , 0] . (14)

Thus, the new collinear fields with superscript (0) no longer interact with usoft gluons or
transform under an usoft gauge transformation. Since the field redefinitions do not change
physical S matrix elements, the new fields give an equally valid parameterization of the
collinear modes. The leading SCET Lagrangian therefore factors into separate collinear
and usoft sectors. This alone does not guarantee factorization in operators and currents,
since after the field redefinition these operators may still contain both usoft and collinear
fields. However, the field redefinition makes factorization transparent since identities such as
Y †
nYn = 1 may be applied directly to the operators. This will become clear in the examples

in sections III and IV.
The coupling of soft gluons to collinear particles differs from the usoft-collinear inter-

actions. Interactions of a soft gluon with a collinear particle results in a particle with
momentum p ∼ Q(λ, 1, λ), so soft gluons can not appear in the collinear Lagrangian. These
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offshell particles have p2 ∼ Q2λ and since Q2λ ≫ (Qλ)2 these offshell quarks and gluons
can be integrated out. At leading order in λ it was shown in Ref. [12] that in operators with
collinear fields this simply builds up factors of a soft Wilson line Sn involving the n · As

component of the soft gluon field,

Sn =

[

∑

perms
exp

(

−g 1

n·P n·As,q

)]

. (15)

The factors of Sn appear outside gauge invariant products of collinear fields, and their
location is restricted by soft gauge invariance.

B. SCET for n and n̄ collinear fields

In this section we extend SCET to include the possibility of collinear fields moving in
different light-cone directions: n1, n2, n3, . . . . These directions can be considered to be
distinct provided that ni ·nj ≫ λ2 for i 6= j. This follows from the fact that if n1 · n2 ∼ λ2

then the directions n1 and n2 are too close to be distinguished. For example, a momentum
p2 = Qn2 can be considered to be collinear in the n1 direction if n1 ·p2 = Qn1 ·n2 ∼ Qλ2, since
this is the correct scaling for the small momentum component of an n1-collinear particle.

For simplicity we will only consider the case of back-to-back jets corresponding to collinear
particles moving in the n and n̄ directions. These are clearly distinct since n·n̄ = 2. Collinear
particles in the n̄ direction have (+,−,⊥) momenta ∼ Q(1, λ2, λ), and the n · p ∼ 1 and
p⊥ ∼ λ momenta appear as labels on the corresponding fields: ξn̄,p and Aµ

n̄,p. Emission of
a collinear particle moving in the n direction from a collinear particle in the n̄ direction
results in a particle with momentum k ∼ Q(1, 1, λ) and offshellness k2 ∼ Q2. These offshell
modes are integrated out to construct the SCET, so collinear modes in the n direction
do not directly couple to collinear modes in the n̄ direction. A distinct set of collinear
gauge transformations is associated with each of n and n̄, and fields in one direction do not
transform under the gauge symmetry associated with the opposite direction. Two Wilson
lines Wn(x) and Wn̄(x) are necessary (defined as in Eq. (8)), and they appear in a way that
makes collinear operators gauge invariant. For instance the combinations

W †
nξn,p , W †

n̄ξn̄,p (16)

are invariant under collinear gauge transformations in the n and n̄ directions, respectively.
We also require two types of label operators, P̄ as before, and an operator P to pick out n·p
labels that are order λ0. Thus, P̄ and P act only on the n and n̄ collinear fields respectively.
(The label operator Pµ still picks out order λ momentum components and therefore acts
on both n and n̄ fields.) With two collinear directions, decoupling usoft gluons requires
introducing both Yn and Yn̄ Wilson lines, defined as in Eq. (12), but along the n or n̄ paths
respectively. Finally, integrating out ∼ Q2λ fluctuations at leading order induces both Sn

and Sn̄ soft Wilson lines defined analogous to Eq. (15). This is discussed in greater detail
in Appendix A where we show explicitly to all orders in g that integrating out the Q2λ
fluctuations causes

W †
nξn,p → SnW

†
nξn,p , ξ̄n,pWn → ξ̄n,pWnS

†
n ,

W †
n̄ξn̄,p → Sn̄W

†
n̄ξn̄,p , ξ̄n̄,pWn̄ → ξ̄n̄,pWn̄S

†
n̄ . (17)
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Relations for operators with collinear gluon fields are also derived in Appendix A.
Note that we have not included ”Glauber gluons” with momenta pµ ∼ (λ2, λ2, λ), which

are kinematically allowed in t-channel Coulomb exchange between n and n̄ collinear quarks.
In determining the relevant degrees of freedom we have assumed that Glauber gluons are
not necessary to describe the infrared for the processes considered in this paper. Intuitively,
this can be seen from the fact these gluons are instantaneous in both time and longitudinal
separation, and only could contribute when the n and n̄ jets overlap for a duration of order
1/(Qλ2) in a space-time diagram. In processes with a hard interaction the overlap scale
is always much shorter than this (however this need not be the case in processes such as
forward scattering). For the Drell-Yan process more quantitative arguments can be found
in Refs. [2, 20].

At order λ0 it is not possible to construct a gauge invariant kinetic Lagrangian with
terms that involve both n and n̄ fields. Thus, the n and n̄ collinear modes are described
by independent Lagrangians (however n and n̄ modes may still both appear in an external
operator). The collinear sector of the SCET Lagrangian is therefore

Lc,n[ξn,p, A
µ
n,q, n·Aus] + Lc,n̄[ξn̄,p, A

µ
n̄,q, n̄·Aus] . (18)

Making the field redefinitions

ξn,p = Yn ξ
(0)
n,p , Aµ

n,p = YnA
(0)µ
n,p Y

†
n ,

ξn̄,p = Yn̄ ξ
(0)
n̄,p , Aµ

n̄,p = Yn̄A
(0)µ
n̄,p Y

†
n̄ , (19)

gives Wn = YnW
(0)
n Y †

n , Wn̄ = Yn̄W
(0)
n̄ Y †

n̄ , and usoft degrees of freedom once again decouple
from the collinear modes since

Lc,n[ξn,p, A
µ
n,q, n·Aus]+Lc,n̄[ξn̄,p, A

µ
n̄,q, n̄·Aus]=Lc,n[ξ

(0)
n,p, A

(0)µ
n,q , 0]+Lc,n̄[ξ

(0)
n̄,p, A

(0)µ
n̄,q , 0]. (20)

Thus, usoft gluons are removed from the collinear Lagrangian at the expense of inducing Yn
and Yn̄ factors in operators with collinear fields. In certain cases the identities Y †

nYn = 1 and

Y †
n̄Yn̄ = 1 can be used in these operators to cancel usoft gluon interactions. Perturbatively

these cancellations would occur by adding an infinite set of Feynman diagrams.
To see in more detail how this works consider the simple example of the γ∗-production

of back-to-back collinear states Xn and Xn̄. The full theory current ψ̄(x)Γψ(x) matches
onto an effective theory operator Onn̄. Naively one might guess that the SCET operator
mediating this process is

Onn̄ = ξ̄n,p1Γξn̄,p2 . (21)

However, this operator is not invariant under the collinear gauge transformations Un and
Un̄, so the process is instead mediated by the invariant operator

Onn̄ = ξ̄n,p1Wn ΓW
†
n̄ ξn̄,p2 . (22)

A hard matching coefficient C(P̄ , P̄†,P,P†) can be inserted in any location in the operator
that does not break apart the gauge invariant combinations of fields in Eq. (16). The
operators P̄ and P in the coefficient only pick out momenta that are order λ0 in the power
counting. Thus, P does not act on fields in the n direction and P̄ does not act on fields in
the n̄ direction, and the most general result is

Onn̄ = ξ̄n,p1Wn ΓC(P̄†,P)W †
n̄ ξn̄,p2 . (23)
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Next, we integrate out the offshell Q2λ fluctuations which induces additional soft Wilson
lines in the operator. This is discussed in detail in Appendix A and from Eq. (17) gives

Onn̄ = ξ̄n,p1WnS
†
n ΓC(P̄†,P)Sn̄W

†
n̄ ξn̄,p2 . (24)

Note that P̄ and P do not act on the fields in the soft Wilson lines since soft gluons carry
only order λ momenta. Finally, we can make the usoft gluon couplings explicit by switching
to the (0) fields using Eq. (19):

Onn̄ = ξ̄(0)n,p1W
(0)
n Y †

nS
†
n ΓC(P̄†,P)Sn̄Yn̄W

(0)†
n̄ ξ

(0)
n̄,p2 . (25)

This operator is manifestly invariant under collinear gauge transformation in the n and n̄
direction, as well as under soft and usoft gauge transformations.

To separate the short distance Wilson coefficient from the long-distance operator one
introduces convolution variables ω and ω′ to give

Onn̄ =

∫

dω dω′C(ω, ω′)Onn̄(ω, ω
′) , (26)

Onn̄(ω, ω
′) =

[

ξ̄(0)n,p1W
(0)
n δ(P̄†−ω)Y †

nS
†
n ΓSn̄Yn̄δ(P−ω′)W

†(0)
n̄ ξ

(0)
n̄,p2

]

.

The function C(ω, ω′) contains all the short distance physics and is determined by matching
the full theory onto this effective theory operator. Onn̄(ω, ω

′) contains all the infrared long-
distance QCD contributions at leading order in λ.

Now consider the matrix element of the production current between 〈XnXn̄| and the
vacuum. Taking the γ∗ to have large time-like momentum qµ = (Q, 0, 0, 0) (and zero residual
momentum) we have

∫

d4x e−iq·x
〈

XnXn̄

∣

∣ψ̄(x)Γψ(x)
∣

∣0
〉

=

∫

d4x
〈

XnXn̄

∣

∣Onn̄(x)
∣

∣0
〉

=

∫

d4x eik·x
〈

(XnXn̄)(k)
∣

∣Onn̄(x = 0)
∣

∣0
〉

=
〈

(XnXn̄)(0)
∣

∣Onn̄(0)
∣

∣0
〉

. (27)

In the first step the conservation of the large label momentum q was made implicit in
the matrix element (c.f. Eq. (5)). Since we are in the center-of-mass frame the Xn has
large momentum n̄ · p = Q, and the Xn̄ has momentum n · p′ = Q. Now using translation
invariance, we see that the remaining x integral forces the |XnXn̄〉 state to have zero residual
momentum. Using Eq. (26) this matrix element is equal to

∫

dω dω′C(ω, ω′)
〈

XnX̄n̄

∣

∣Onn̄(ω, ω
′)
∣

∣0
〉

=

∫

dω dω′C(ω, ω′) Jn(ω) ΓSnn̄ Jn̄(ω
′) , (28)

where the functions C, Jn, Jn̄, and S also depend on the renormalization point µ. Here we
have used the fact that both Xn and Xn̄ can be described entirely by collinear particles in
the n and n̄ directions respectively. Since the Lagrangians for the collinear, soft, and usoft
fields are factorized the remaining matrix element splits into distinct matrix elements for
each class of modes. These matrix elements are

Jn(ω) =
〈

Xn(Q/2)
∣

∣ξ̄(0)n,p1W
(0)
n δ(P̄†−ω)

∣

∣0〉 ,
Jn̄(ω

′) =
〈

Xn̄(Q/2)
∣

∣δ(P−ω′)W
†(0)
n̄ ξ

(0)
n̄,p2

∣

∣0〉 ,
Snn̄ =

〈

0
∣

∣Y †
nS

†
nSn̄Yn̄

∣

∣0
〉

, (29)
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(and are matrices whose color, spin, and flavor indices are suppressed). Note that Jn, Jn̄, and
Snn̄ are explicitly invariant under the collinear, soft, and usoft gauge transformations [12]
of SCET, but still transform globally under a color rotation. Now using the momentum
conservation identity in Eq. (6), the large momentum of the Xn and Xn̄ states set P → Q
and P̄† → Q. Label conservation also implies that the total perpendicular momentum of
each of Jn, Jn̄, and Snn̄ is zero. The sum over ω and ω′ can then be performed to give the
final factorized form

C(Q,Q) Jn(Q) ΓSnn̄ Jn̄(Q) . (30)

Although rather idealized, the above example illustrates the main steps needed to derive a
factorization formula. Taking Xn and Xn̄ to be single quark states the result in Eq. (30) also
agrees with the factorization formula for the onshell production form factor for qq̄ [21, 22].3

In the above example the factors of S and Y in the operator in Eq. (25) do not cancel. In
the examples we will consider in sections III and IV there are several operators at leading
order, however the factors of S and Y cancel in observable matrix elements. The collinear
matrix elements of long-distance operators, such as those in Eq. (29), are the ones that have
interpretations as structure functions or wave functions. In the next section we give the
operator definitions for these functions that will be needed in the remainder of the paper.

C. Non-perturbative Matrix Elements

Predictions for hadronic processes depend on universal matrix elements that are not
computable in perturbation theory. For exclusive processes these include light-cone wave-
functions and form factors, while for inclusive processes they include parton distribution
functions and fragmentation functions. In this section we define matrix elements in SCET
that are needed for our examples. All the collinear operators considered here decouple from
usoft gluons since they are local in the residual coordinate x and because Y †(x)Y (x) = 1.
Thus

ξ̄n,p′WΓW †ξn,p = ξ̄
(0)
n,p′W

(0)ΓW (0)†ξ(0)n,p , (31)

and expressions with and without the (0) superscript are equal. For convenience we will
write the collinear fields without the superscript in the remainder of this section.

Consider first the light-cone wavefunctions. For the pion isotriplet πa, the wavefunction
φπ(x) is conventionally defined by [25]

〈

πa(p)
∣

∣ ψ̄(y)γµγ5
τ b√
2
Y (y, x)ψ(x)

∣

∣0
〉

= −ifπδabpµ
∫ 1

0

dz ei[zp·y+(1−z)p·x] φπ(µ, z), (32)

3 In this case depending on the choice of infrared regulator(s), it may not be possible to distinguish the Yn

and Sn Wilson lines in Snn̄(µ). For instance if one chooses ΛIR ∼ Qλ then the usoft gluons give scaleless

loop integrals and can be dropped, so that Y †
n
S†
n
Sn̄Yn̄ → S†

n
Sn̄. If instead one chooses ΛIR ∼ Qλ2 then

the soft gluons give scaleless loop integrals (they simply act to pull-up the ultraviolet divergences in the

usoft integrals to the hard scale [23, 24]), so the soft Wilson lines can be suppressed. This is why one only

finds S†
n
Sn̄ for this operator in the literature. For typical regulator choices the other gluons are simply

not required to reproduce the infrared structure of the full theory result.
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Here fπ ≃ 131MeV and the QCD field ψ denotes the isospin doublet {ψ(u), ψ(d)}. The
coordinates satisfy (y − x)2 = 0, which ensures that the path from yµ to xµ is along the
light-cone, and Y (y, x) is a Wilson line along this path. In SCET we require the matrix
elements of highly energetic pions, which therefore have collinear constituents. Boosting the
matrix element in Eq. (32) and letting yµ = yn̄µ, xµ = xn̄µ we have

〈

πa
n,p

∣

∣ ξ̄n,y Γ
b
πW (y, x) ξn,x

∣

∣0
〉

= −ifπ n̄·p δab
∫ 1

0

dz ein̄·p[zy+(1−z)x] φπ(µ, z), (33)

where Γb
π = n̄/γ5τ

b/
√
2, and ξn,z is a collinear field with position space label zn̄µ. For our

purposes it is more useful to use the operator with momentum space labels [13]

〈

πa
n,p

∣

∣ξ̄n,p1WΓb
πδ(ω−P̄+)W

†ξn,p2
∣

∣0
〉

=

∫

dy

2π
e−iωy

〈

πa
n,p

∣

∣ξ̄n,yΓ
b
πW (y,−y)ξn,−y

∣

∣0
〉

(34)

=−ifπ n̄·p δab
∫ 1

0

dz δ[ω−(2z−1)n̄·p]φπ(µ, z) ,

where P̄± = P̄† ± P̄ . In Eq. (34) the delta function fixes ω to the sum of labels picked out
by the P̄+ operator. The combination picked out by P̄− is equivalent to (−P̄) acting on the
entire operator, and using Eq. (6) is fixed to the n̄·p momentum of the pion state.

In some situations it is convenient to have delta functions which fix the labels of both
W †ξn,p and ξ̄n,pW . In this case a useful field is

χ (i)
n,ω ≡

[

δ(ω − P̄)W †
nξ

(i)
n,p

]

. (35)

Here i is the flavor index and will be omitted if the flavor doublet field is implied. Note
that unlike the p in ξn,p the label ω on χn,ω is not summed over. A matrix element with χn,ω

fields is related to a matrix element like the one in Eq. (34) through

〈

Mn,p

∣

∣χn,ωΓχn,ω′

∣

∣Mn,p′
〉

= 2 δ(ω−−n̄·p−)
〈

Mn,p

∣

∣ξ̄n,p1WΓδ(ω+−P̄+)W
†ξn,p2

∣

∣Mn,p′
〉

,

(36)

where ω± = ω ± ω′ and p− = p − p′. Thus, with the χ notation the momentum conserv-
ing delta functions become explicit. The factor of two appears from treating the ω’s as
continuous variables, and in the final results cancels with a factor of 1/2 from a Jacobian.

For inclusive processes such as DIS it is the proton parton distribution functions for
quarks of flavor i, fi/p(z), antiquarks f̄i/p(z), and gluons, fg/p(z) which are needed. The
standard coordinate space definitions [26] are (yµ = yn̄µ)

fi/p(z) =

∫

dy

2π
e−i 2zn̄·p y

〈

p
∣

∣ ψ̄(i)(y)Y (y,−y) n̄/ ψ(i)(−y)
∣

∣p
〉

∣

∣

∣

spin avg.
, (37)

fg/p(z) =
2

z n̄·p

∫

dy

2π
e−i 2zn̄·p y n̄µn̄

ν
〈

p
∣

∣Gµλ
a (y)Y ab(y,−y)Gb

λν(−y)
∣

∣p
〉

∣

∣

∣

spin avg.
,

and f̄i/p(z) = −fi/p(−z). Here Ga
µλ(y) is the gluon field strength, Y (y,−y) and Y ab(y,−y)

are path-ordered Wilson lines in the fundamental and adjoint representations, and |p〉 is the
proton state with momentum p. In SCET these distribution functions can be defined by the
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matrix elements of collinear fields with collinear proton states

1

2

∑

spin

〈

pn
∣

∣χ (i)
n,ω n̄/ χ

(i)
n,ω′

∣

∣pn
〉

= 4n̄·p
∫ 1

0

dz δ(ω−)δ(ω+−2z n̄·p) fi/p(z) (38)

− 4n̄·p
∫ 1

0

dz δ(ω−)δ(ω++2z n̄·p) f̄i/p(z) ,

1

2

∑

spin

〈

pn
∣

∣Tr
[

Bµ
n,ωB

n,ω′

µ

]
∣

∣pn
〉

= −ω+ n̄·p
2

∫ 1

0

dz δ(ω−)δ(ω+−2z n̄·p)fg/p(z),

where ω± = ω ± ω′, and Bµ
n,ω ≡ n̄ν(Gn,ω)

νµ with the collinear gauge invariant field strength

(Gn,ω)
µν = − i

g

[

δ(ω − P̄)W †[iDµ
n + gAµ

n,q, iDν
n + gAν

n,q′]W
]

. (39)

Both operators in Eq. (38) are order λ2 since ξn,ω ∼ B⊥
n,ω ∼ λ. Note that the matrix element

of a single operator (χ (i)
n,ω n̄/ χ

(i)
n,ω′) contains both the quark and antiquark distributions. This

is due to Eq. (3), from which we see that for ω = ω′ > 0 (ω = ω′ < 0) this operator reduces
to the number operator for collinear quarks (antiquarks) with momentum ω.

Processes other than DIS sometimes depend on more complicated distribution functions.
In deeply virtual Compton scattering (DVCS) we will need to parameterize the matrix
element of an operator between proton states with different momenta. In terms of QCD
fields ψ the nonforward parton distribution function (NFPDF) defined by Radyushkin in
Eq.(4.1) of Ref. [27] are (up to a trivial translation)

〈

p′, σ′
∣

∣ψ̄(i)(y)Y (y,−y) n̄/ ψ(i)(−y)
∣

∣p, σ
〉

(40)

= e(σ′, σ)

∫ 1

0

dz
[

ein̄·p(2z−ζ)y F (i)
ζ (z; t)− e−in̄·p(2z−ζ)y F (i)

ζ (z; t)
]

+ h(σ′, σ)

∫ 1

0

dz
[

ein̄·p(2z−ζ)y K(i)
ζ (z; t)− e−in̄·p(2z−ζ)y K(i)

ζ (z; t)
]

,

where t = (p − p′)2, and ζ = 1 − n̄·p′/n̄·p. Here e(σ, σ′) and h(σ, σ′) are matrix elements
which respectively preserve or flip the proton spin. They are defined in terms of the proton
spinors

e(σ′, σ) = ū(p′, σ′) n̄/ u(p, σ) , h(σ′, σ) =
1

2mp
ū(p′, σ′) [n̄/, p/−p/′] u(p, σ) , (41)

where mp is the proton mass. The NFPDF for gluons is similarly given by [27]

n̄µn̄
ν
〈

p′, σ′
∣

∣Gµλ
a (y)Y ab(y,−y)Gb

λν(−y)
∣

∣p, σ
〉

(42)

=
n̄·p
2

e(σ′, σ)

∫ 1

0

dz
[

ein̄·p(2z−ζ)y + e−in̄·p(2z−ζ)y
]

F g
ζ (z; t)

+
n̄·p
2

h(σ′, σ)

∫ 1

0

dz
[

ein̄·p(2z−ζ)y + e−in̄·p(2z−ζ)y
]

Kg
ζ(z; t) .
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In SCET the definition of the NFPDFs in terms of collinear fields are

〈

p′n, σ
′
∣

∣χ (i)
n,ω n̄/ χ

(i)
n,ω′

∣

∣pn, σ
〉

= 2δ(ω− + n̄·p ζ)
∫ 1

0

dz (43)

×
{

e(σ′, σ)
[

δ(ω+−(2z−ζ) n̄·p)F (i)
ζ (z; t)− δ(ω++(2z−ζ) n̄·p)F (i)

ζ (z; t)
]

+h(σ′, σ)
[

δ(ω+−(2z−ζ) n̄·p)K(i)
ζ (z; t)− δ(ω++(2z−ζ) n̄·p)K(i)

ζ (z; t)
]

}

,

〈

p′n, σ
′
∣

∣Tr
[

Bµ
n,ωB

n,ω′

µ

]
∣

∣pn, σ
〉

= − n̄·p
2

δ(ω− + n̄·p ζ)
∫ 1

0

dz

×
{

e(σ′, σ) δ(ω+−(2z−ζ) n̄·p)F g
ζ (z; t) + h(σ′, σ)δ(ω+−(2z−ζ) n̄·p)Kg

ζ(z, t)
}

,

where the spinors in e(σ′, σ) and h(σ′, σ) are two component effective theory spinors, so that
u → un where n/un = 0. Note that for p′ → p both ζ → 0 and t → 0. In this limit the
NFPDFs reduce to the standard PDFs:

lim
p→p′

F (i)
ζ = fi/p(z) , lim

p→p′
F (i)

ζ = f̄i/p(z) , lim
p→p′

F (g)
ζ = z fg/p(z) . (44)

D. Symmetries for collinear fields

In this section we discuss spin and discrete symmetry constraints on operators involving
collinear fields.

The possible spin structures of currents with ξn,p fields is restricted by the fact that they
have only two components, n/ξn,p = 0. The four most general spin structures for currents
with two collinear particles moving in the same or opposite directions are

ξ̄n,p′ Γ1 ξn,p Γ1 =
{

n̄/ , n̄/γ5 , n̄/γ
µ
⊥

}

,

ξ̄n̄,p′ Γ2 ξn,p Γ2 =
{

1 , γ5 , γ
µ
⊥

}

. (45)

Other choices for Γ1 and Γ2 either vanish between the fields or are related to those in Eq. (45).
This result can be expressed in a compact way by the trace formulae

ξ̄n,p′ Γ ξn,p , Γ =
n̄/

8
Tr[n/Γ]− n̄/γ5

8
Tr[n/γ5Γ]−

n̄/γµ⊥
8

Tr[n/γ⊥µ Γ] ,

ξ̄n̄,p′ Γ ξn,p , Γ =
1

8
Tr[n/n̄/Γ] +

γ5
8
Tr[γ5n/n̄/Γ] +

γµ⊥
8
Tr[γ⊥µ n/n̄/Γ] , (46)

which reduce a general Γ to a linear combination of the terms in Eq. (45). For instance,
it implies that 2iξ̄nσ

µνξn = nν ξ̄nn̄/γ
µ
⊥ξn − nµξ̄nn̄/γ

ν
⊥ξn, and ξ̄n̄γ

µ
⊥γ5ξn = iǫµν⊥ ξ̄n̄γ

⊥
ν ξn where

ǫµν⊥ = ǫµναβ n̄αnβ/2. Furthermore, each of the two components of ξn and also ξn̄ can be

chosen to be eigenstates of their helicity operators, h = p̂ · ~S with eigenvalues ±1/2. For
these fields h is equivalent to the chiral rotation, h = γ5/2. The structures in Eq. (45) split
into two classes depending on whether they conserve or flip the helicity

chiral even: ξ̄n,p′{n̄/, n̄/γ5}ξn,p , ξ̄n̄,p′γ
µ
⊥ξn,p , (47)

chiral odd: ξ̄n,p′n̄/γ
µ
⊥ξn,p , ξ̄n̄,p′{1, γ5}ξn,p .
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Since gluon interactions in QCD preserve helicity, integrating out hard QCD fluctuations
results in effective theory operators with the same helicity structure as the original operators
at leading order in λ.

The presence of labels on the effective theory fields makes their transformation properties
under the discrete symmetries C, P , and T slightly different than in QCD. For example under
P or T we have n↔ n̄ so these transformations relate collinear fields for different directions.
Under charge conjugation, parity, and time-reversal the collinear fields transform as

C−1ξn,p(x)C = −
[

ξ̄n,−p(x) C
]T
, C−1Aµ

n,p(x)C = −[Aµ
n,p(x)]

T ,

P−1ξn,p(x)P = γ0 ξn̄,p̃(xP ) , P−1Aµ
n,p(x)P = gµνA

ν
n̄,p̃(xP ) ,

T−1ξn,p(x)T = T ξn̄,p̃(xT ) , T−1Aµ
n,p(x)T = gµνA

ν
n̄,p̃(xT ) ,

(48)

where C−1γµC = −γTµ and T = γ5C, while if xµ = (x+, x−, x⊥) and pµ = (p+, p−, p⊥) then

p̃µ ≡ (p−, p+,−p⊥), xµP ≡ (x−, x+,−~x⊥), and xµT ≡ (−x−,−x+, ~x⊥). The transformation
properties of Wn can be worked out using Eq. (48), for instance C−1WnC = [W †

n]
T .

The collinear effective Lagrangian (10) is invariant under the transformations in Eq. (48)
(adding the n̄ ↔ n terms). These symmetries also constrain the form of non-perturbative
matrix elements. As an example, for a meson which is an eigenstate of C one finds

〈

Mn

∣

∣ξ̄n,pWnn̄/γ5δ(ω − P̄+)W
†
nξn,p′

∣

∣0
〉

= (−1)C
〈

Mn

∣

∣(CW †
nξn,p)

T n̄/γ5δ(ω − P̄+)(ξ̄n,p′WnC)T
∣

∣0
〉

= (−1)C
〈

Mn

∣

∣ξ̄n,p′Wnn̄/γ5δ(ω + P̄+)W
†
nξn,p

∣

∣0
〉

. (49)

For the isotriplet pion state (−1)C = +1 so combining Eq. (49) with Eq. (34) gives
〈

πa
n,p

∣

∣ξ̄n,p1WΓb
πδ(ω − P̄+)W

†ξn,p2
∣

∣0
〉

= −ifπδab n̄·p
∫ 1

0

dx δ[−ω−(2x−1)n̄·p]φπ(x)

= −ifπδab n̄·p
∫ 1

0

dx δ[ω−(2x−1)n̄·p]φπ(1−x) . (50)

Together with Eq. (34), charge conjugation therefore implies that φπ(1− x) = φπ(x).

III. EXCLUSIVE PROCESSES

A. π-γ Form Factor

The pion-photon form factor Fπγ(Q
2) is perhaps the simplest setting for factorization

since there is only one hadron in the external state. The form factor is measurable in single-
tagged two photon e−e− → e−e−π0 reactions. This process involves the scattering of a highly
virtual photon and a quark-anti-quark constituent pair off an on-shell photon. The photon
scatters the quark pair away from the incoming photon into a pion, so that γ∗γ → π0. The
matrix element for this transition defines the π-γ form factor

〈

π0(pπ)
∣

∣Jµ(0)
∣

∣γ(pγ , ǫ)
〉

= ie ǫν
∫

d4z e−ipγ ·z
〈

π0(pπ)
∣

∣TJµ(0)Jν(z)
∣

∣0
〉

= −ie Fπγ(Q
2)ǫµνρσp

ν
πǫ

ρ qσ . (51)
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FIG. 1: Tree level matching onto Oj in the Breit Frame. The graphs on the left include u and d

quarks.

Here Jµ = ψ̄Q̂γµψ is the full theory electromagnetic current with isodoublet field ψ and

charge matrix Q̂ = τ3/2+1/6, and−q2 = Q2 ≫ Λ2
QCD where q = pπ−pγ is the virtual photon

momentum. It has been shown that the form factor can be written as a one-dimensional
convolution of a hard coefficient with the light-cone pion wavefunction [28]. Here we show
how this factorization takes place in the SCET.

In the Breit frame qµ = Q(nµ−n̄µ)/2, the real photon’s momentum is pµγ = En̄µ ≃ Qn̄µ/2,
and the pion is made up of collinear particles with momenta n̄ ·pi ≃ Q. The particles
exchanged between the two currents in Eq. (51) have hard momenta and can be integrated
out. At leading order in λ the time ordered product of the two currents in Eq. (51) matches
onto a single operator in the effective theory. For simplicity we restrict ourselves to the
tensor and spin structures that are relevant when the meson is a pion 4

O =
i

Q
ǫ⊥µν [ξ̄n,pW ] ΓC(P̄, P̄†

, µ) [W †ξn,p′] , (52)

where ξn,p is an isodoublet collinear quark field, and 2ǫ⊥µν = ǫµνρβn̄
ρnβ. O1 is of dimension

two, just like the time-ordered product in Eq. (51), and a power of 1/Q is included to

make C(µ, P̄, P̄†
) dimensionless. The time-ordered product in Eq. (51) is even under charge

conjugation, so the operators in Eq. (52) must also be even. This implies Cπγ(µ, P̄, P̄†
) =

Cπγ(µ,−P̄†
,−P̄). The location of the W ’s in Eq. (52) is fixed by gauge invariance, and Γ

contains the spin and flavor structure

Γ =
(

n̄/γ5
)(

3
√
2 Q̂2

)

. (53)

Since the offshellness of the collinear particles in the pion is p2 ∼ Λ2
QCD we can also

integrate out offshell modes with p2 ∼ QΛQCD which come from soft-collinear interactions.
For the collinear operators Oj, Eq. (17) implies that factors of the soft Wilson line Sn are
induced. However, the location is such that S†

nSn = 1, so no coupling to soft gluons occur
at leading order. The coupling of the collinear fields to usoft gluons can be simplified with
the field redefinitions in Eq. (13). As discussed in section IIA this moves all couplings into
Oj, and using Y †

nYn = 1 gives

O =
i

Q
ǫ⊥µν [ξ̄(0)n,pW

(0)] ΓC(P̄, P̄†
, µ) [W (0)†ξ

(0)
n,p′] . (54)

Thus, usoft gluons also decouple.

4 Note that a pure glue operator would not have the same isospin as the pion state.

16



In the Breit frame the pion momentum satisfies pµπ = Eπn
µ + O(λ), and comparing

Eq. (51) with the SCET matrix element i〈π0
n,pπ |Oπγ|0〉, gives

Q2

2
Fπγ(Q

2) =
i

Q

〈

π0
n

∣

∣ξ̄(0)n,pW
(0) ΓC(P̄, P̄†

, µ)W (0)†ξ
(0)
n,p′

∣

∣0
〉

. (55)

Defining P̄± = P̄† ± P̄ , the operator P̄− is related to P̄ acting from the outside on the
fields. Using Eq. (6) it can therefore be set equal to the momentum label of the state,

P̄− = n̄ · pπ = Q. Suppressing this dependence we write C(P̄ , P̄†
, µ) = C1(P̄+, µ) leaving

Fπγ(Q
2) =

2i

Q3

〈

π0
n

∣

∣ ξ̄(0)n,pW
(0)ΓC1(P̄+, µ)W

(0)†ξ
(0)
n,p′

∣

∣0
〉

=
2i

Q3

∫

dω C1(ω, µ)
〈

π0
n

∣

∣ξ̄(0)n,pW
(0)Γδ(ω − P̄+)W

(0)†ξ
(0)
n,p′

∣

∣0
〉

. (56)

Using Eq. (34) the remaining matrix identity in Eq. (56) can be written in terms of the
light-cone pion wavefunction

Fπγ(Q
2) =

2fπ
Q2

∫

dω

∫ 1

0

dx δ(ω − (2x− 1)2Eπ) C1(ω, µ) φπ(x, µ)

=
2fπ
Q2

∫ 1

0

dx C1((2x− 1)Q, µ) φπ(x, µ) . (57)

This is the final result and is valid to leading order in λ and all orders in αs. From Eq. (50)
charge conjugation implies that φπ(x) = φπ(1 − x) and C1(ω) = C1(−ω). Eq. (57) agrees
with the Brodsky-Lepage [25] result that the form factor can be written as the convolution
of a short distance function with the light-cone pion wavefunction. The SCET formalism
gives a concise derivation of this result and defines the short distance function in terms of
the Wilson coefficient of an effective theory operator.

As an illustrative example consider the tree level matching onto C illustrated in Fig. 1.

Since the location of the W ’s in O are fixed by gauge invariance, C(µ, P̄, P̄†
) can be de-

termined by matching with W = 1. Expanding the full theory graphs to leading order
gives

i (Fig.1) =
ie

2
ǫµνρβǫ

ν n̄ρnβ
( n̄/

2
γ5

)

(

Q̂2
)

(

1

n̄ · p − 1

n̄ · p′
)

, (58)

where we have dropped isosinglet terms, contributions with opposite parity to the pion, as
well as those proportional to n/γ5 since n/ξn,p = 0. Comparing Eq. (58) to Eq. (52) gives

C(µ, P̄, P̄†
) =

Q

6
√
2

( 1

P̄†
− 1

P̄
)

+O
(

αs(Q)
)

, (59)

so that

C1(µ, ω = (2x− 1)Q) =
1

6
√
2

(1

x
+

1

1− x

)

+O
(

αs(Q)
)

. (60)

This result is again in agreement with Ref. [25], and the order αs(Q) corrections to this
Wilson coefficient can be read off from the results in Ref. [29, 30]. An identical analysis
applies for operators with different spin structures such as the ones contributing to γ∗γ → ρ0.
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p2 p1

p3 p4

+

p2 p1

p3 p4

=⇒

p2 p1

p3 p4

FIG. 2: Tree level matching onto C0,8. The QCD graphs on the left plus the analogous graphs

with the current on the bottom quark line are matched onto the collinear operator on the right.

B. The large Q2 meson form factor

Another example of an exclusive process which can be treated in the effective theory
is the classic case of the electromagnetic pion form factor at large space-like momentum
transfer. For generality we consider in this section the electromagnetic form factors for
arbitrary mesons (pseudoscalar P or vector V ), defined as

〈

P ′(p′)
∣

∣Jµ
∣

∣P (p)
〉

= FP (Q
2)(pµ + p′µ) , (61)

〈

V ′(p′, ε′)
∣

∣Jµ
∣

∣P (p)
〉

= G(Q2)iǫµναβ p
νp′αε′β ,

〈

V ′(p′, ε′)
∣

∣Jµ
∣

∣V (p, ε)
〉

= F1(Q
2)(ε′∗ · ε)(p+ p′)µ + F2(Q

2)[(ε′∗ · p)εµ + (ε · p′)ε′∗µ ] ,
where q2 = −Q2, q = p− p′. For simplicity we suppress the dependence of the form factors
on the isospin of the two mesons. We will restrict ourselves in the following to the case of
hadrons made up only of u, d quarks. The electromagnetic current is defined as usual by
Jµ = q̄ Q̂ γµ q, with charge matrix Q̂ = diag(2/3,−1/3), which can be written in terms of

the up and down quark charges as Q̂ = (Qu −Qd)τ3/2 + (Qu +Qd)1/2.
We will be interested in the asymptotic form of the form factors in the region with

Q2 ≫ m2
P , where it can be expanded in a power series in 1/Q2 [25]. It is convenient

to work in the Breit frame, where the momentum transfer has the light-cone components
q = (q+, q−, q⊥) = (Q,−Q, 0). In this frame the meson momenta are p = (Q,m2

P/Q, 0),
p′ = (m2

P/Q,Q, 0), so the partons in the incoming/outgoing meson are collinear along the
n̄µ/nµ direction.

The electromagnetic current in Eq. (61) is matched in the effective theory onto the most
general combination of operators constructed from collinear fields which are compatible with
collinear gauge invariance. Operators such as the dimension three current

[ξ̄n̄Wn̄]Γ C(µ,P†, P̄) [W †
nξn] , (62)

can contribute, but only overlap with the asymmetric meson states with one energetic
collinear quark and one usoft or soft quark. Often this overlap is referred to as the tail
of the wavefunction contribution or the Feynman mechanism of generating the form fac-
tor [31, 32]. There are other operators with significant overlap with more symmetric meson
states (where all the constituents are allowed to be energetic). The leading such operators
have the form 5

1

Q3

[

ξ̄n,p1WnΓW
†
n̄ξn̄,p2

]

C(µ, P̄, P̄†
,P,P†)

[

ξ̄n̄,p3Wn̄Γ
′W †

nξn,p4
]

, (63)

5 There are also gluon operators that can contribute when one or more of the mesons is a neutral isosinglet,

however for simplicity these are not discussed here.
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with C a dimensionless Wilson coefficient. As usual, collinear gauge invariance is enforced
by the location of the W ’s in Eqs. (62) and (63). There is some argument about the relative
size of Eqs. (62) and (63) in the literature [31, 32]. Often it is argued that the tail of the
wavefunction is suppressed by an extra Λ2

QCD/Q
2 [31], in which case the operator in Eq. (63)

dominates by two powers of Q. An analysis of the tail of wavefunction contributions has not
yet been performed in the effective theory framework. Therefore, we choose to ignore the
operator in Eq. (62), and below only analyze the operator in Eq. (63). We emphasize that
we do not claim to have shown that this is justified by the effective theory power counting.

There are two different structures possible for the operator in Eq. (63), and we write the
general matching for the electromagnetic current as

Jν → 1

Q3

∫

dωj

[

C0(µ, ωj) J ν
0 (ωj, µ) + C8(µ, ωj) J ν

8 (µ, ωj)
]

, (64)

where j = 1, 2, 3, 4. The SCET currents are dimension-6 operators

J ν
0 = χn,ω1

Γχn̄,ω2
χn̄,ω3

Γ′χn,ω4
− (Γ ↔ Γ′, ω1,2 ↔ −ω4,3) , (65)

J ν
8 = χn,ω1

Γ T aχn̄,ω2
χn̄,ω3

Γ′T aχn,ω4
− (Γ ↔ Γ′, ω1,2 ↔ −ω4,3) ,

where the χ fields are defined in Eq. (35). In terms of the charge matrix Q̂, the spin and
flavor structure is

Γ⊗ Γ′ = (nν + n̄ν)
(

γ⊥α Q̂ ⊗ γα⊥1
)

. (66)

The Wilson coefficients C0,8 can be computed in a power series in αs(Q). They are functions
of µ, Q, and the ωj which are the sum of momentum labels for gauge invariant products of
collinear fields in the SCET currents.

The currents operators in Eq. (65) are the most general allowed operators which are
gauge invariant, transform the same way as Jµ under charge conjugation and satisfy current
and helicity conservation. To see how these properties constrain the form of the allowed
operators, we begin by noting that Eq. (45) implies that Γ,Γ′ = {1, γ5, γµ⊥} are the most
general allowed spin structures. For massless quarks the electromagnetic and QCD couplings
preserve helicity, whereas ξ̄n{1, γ5}ξn̄ cause the helicity to flip. Thus, only the structure
ξ̄nγ

µ
⊥ξn̄ is allowed. Current conservation qνJν = 0, together with qν = Q(n̄ν − nν)/2 implies

Jν ∝ (nν+n̄ν). Under charge conjugation J
µ → −Jµ so the same must be true for the SCET

currents. In the current operators, charge conjugation switches ω1 ↔ −ω4, ω2 ↔ −ω3, and
Γ ↔ Γ′, as can be seen from Eq. (48). Thus, the second term in J ν

0,8 is required to make these
operators odd under charge conjugation. The operators J ν

0,8 and the full electromagnetic
current are invariant under a combined PT transformation. This requires that the Wilson
coefficients are real.

The operators J0,8 are responsible for the Pn̄ → Pn transition, while the reverse tran-
sition Pn → Pn̄ is described by similar operators with n̄ ↔ n. Parity invariance re-
quires the Wilson coefficients of these operators to be identical to C0,8(ωi). Demanding
hermiticity of the electromagnetic current in the effective theory then gives the relation
C0,8(ω1, ω2, ω3, ω4) = C∗

0,8(ω2, ω1, ω4, ω3). Since the coefficients are real they must therefore
satisfy C0,8(ω1, ω2, ω3, ω4) = C0,8(ω2, ω1, ω4, ω3).

To compute the matrix elements in the effective theory, it is convenient to Fierz transform
the four-quark operators in Eq. (65). This gives

C0J0 + C8J8 = (nν + n̄ν)
4

∑

j=1

CjJj , (67)
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where

Jj =
[

χn,ω1
Γjχn,ω4

][

χn̄,ω3
Γ′
jχn̄,ω2

]

. (68)

The spin, flavor, and color structures are

Γ1 ⊗ Γ′
1 = −1

4
(Qu −Qd)iǫ

3bc(τ b ⊗ τ c)
[

n̄/⊗ n/+ n̄/γ5 ⊗ n/γ5
]

,

Γ2 ⊗ Γ′
2 =

1

4

[

(Qu +Qd)(1⊗ 1+ τa ⊗ τa) + (Qu −Qd)(1⊗ τ 3 + τ 3 ⊗ 1)
]

×
[

n̄/⊗ n/+ n̄/γ5 ⊗ n/γ5
]

, (69)

while Γ3,4 = T aΓ1,2 and Γ′
3,4 = T aΓ′

1,2. The new Wilson coefficients are

C1(µ, ωj) =

[

1

8

(

1− 1

N2
c

)

C8(µ, ωj) +
1

4Nc
C0(µ, ωj)

]

+ (ω1,2 ↔ −ω4,3) ,

C2(µ, ωj) =

[

1

8

(

1− 1

N2
c

)

C8(µ, ωj) +
1

4Nc
C0(µ, ωj)

]

− (ω1,2 ↔ −ω4,3) , (70)

with similar relations for C3,4 which are also in terms of C0,8.
A few general predictions follow from the form of the operators in Eq. (68).6 For mesons

with spin, only helicity conserving form factors appear, and furthermore no off-diagonal (e.g.,
P → V ) matrix elements are present at leading order in 1/Q2. These results agree with
Ref. [28]. We also see that the form factors between arbitrary meson states are determined
at leading power by only two hard coefficients, C0 and C8.

Now consider what factorization tells us about the matrix element of the operators in
Eq. (68). For the decoupling of usoft and soft gluons we will follow section IIA. Integrating
out offshell modes with p2 ∼ QΛQCD induces soft Wilson lines Sn and Sn̄, while the field
redefinitions in Eq. (13) make all couplings to usoft gluons explicit in the operators. Together
these give

J ν
j =

[

χ(0)
n,ω1

Y †
nS

†
nΓjSnYnχ

(0)
n,ω4

] [

χ
(0)
n̄,ω3

Y †
n̄S

†
n̄Γ

′
jSn̄Yn̄χ

(0)
n̄,ω2

]

. (71)

Consider first the color singlet currents j = 1, 2. Here the Y ’s and S’s all cancel using
unitarity of the Wilson lines. Since the Aµ

n,q and Aµ
n̄,q gluons only interact with fields in

the n and n̄ directions respectively, collinear gluons are not exchanged between the n and
n̄ quark bilinears. Thus, the matrix element between states with particles moving in the n
and n̄ directions factors

〈n|J1,2|n̄〉 = 〈n|χ(0)
n,ω1

Γ1,2χ
(0)
n,ω4

|0〉〈0|χ(0)
n̄,ω3

Γ′
1,2χ

(0)
n̄,ω2

|n̄〉 . (72)

Next consider the currents J3,4, which have color structure T a ⊗ T a in Γj ⊗ Γ′
j. In this

case the usoft and soft gluons do not cancel, but can all be moved into one quark bilinear
using the color identity Y †

nS
†
nT

aSnYn ⊗ Y †
n̄S

†
n̄T

aSn̄Yn̄ = T a ⊗ Y †
n̄S

†
n̄SnYnT

aY †
nS

†
nSn̄Yn̄. After

this rearrangement it is clear that the (u)soft gluons and Aµ
n,q and A

µ
n̄,q gluons only interact

with the fields in one of the quark bilinears. Thus, the matrix element 〈n|J3,4|n̄〉 factors,

6 These predictions depend on the dominance of the operators in Eq. (63) over those in Eq. (62).
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similar to Eq. (72). For color singlet states, however, the matrix element of an octet operator
vanishes identically since

〈n|χ(0)
n,ω1

T aχ(0)
n,ω4

|0〉 = 0 . (73)

Thus, the effective theory currents J3,4 do not contribute to the form factors at any order
in perturbation theory.

Eq. (72) shows that for arbitrary meson states factorization occurs. It remains to show
that the matrix elements in Eq. (72) are given by a two-dimensional convolution with the
light-cone meson wavefunctions. To do this we consider the simple example of the 0−+ → 0−+

form factor for the charged pion. It should be obvious that the same steps go through for
other meson states.

The symmetry of the pion wavefunction φπ(x) under charge conjugation (x → 1 − x)
implies that only the J1 current contributes. Thus,

Fπ±(Q2) =
2

Q4

∫

dωj C1(µ, ωj)
〈

π±
n (p

′)
∣

∣χ(0)
n,ω1

Γ1χ
(0)
n,ω4

∣

∣0
〉〈

0
∣

∣χ
(0)
n̄,ω3

Γ′
1χ

(0)
n̄,ω2

∣

∣π±
n̄ (p)

〉

. (74)

The required matrix elements can be obtained from Eqs. (34) and (36) with |π±〉 = ∓(π1 ±
iπ2)/

√
2. The momentum conserving delta functions fix ω1 −ω4 = n̄ · p′ = Q and ω2 − ω3 =

n̄ · p = Q, while the ω = ω1 + ω4 and ω′ = ω3 + ω2 integrations can be done with the delta
functions. This leaves

Fπ± = ±(Qu−Qd)
f 2
π

Q2

∫ 1

0

dx

∫ 1

0

dy T1(x, y, µ)φπ(x, µ)φπ(y, µ) , (75)

where T1(x, y) is defined in terms of C1(ω1, ω2, ω3, ω4) as

T1(x, y) = C1

(

xQ, yQ, (y − 1)Q, (x− 1)Q) . (76)

The coefficients Cj(µ, ωj), and therefore also Tj(x, y), can be obtained at the scale µ = Q
by a matching calculation, as illustrated in Fig. 2. For this purpose, it is sufficient to compute
the matrix element of the currents with free collinear quarks. To lowest order in αs(Q), only
C8(ωj, µ = Q) is nonvanishing

C0(ωj, µ = Q) = 0 , C8(ωj, µ = Q) = 4παs(Q)
Q2

ω3 ω4
. (77)

This implies

T1(x, y, µ = Q) =
4παs(Q)

9

[ 1

xy
+

1

(1− x)(1 − y)

]

, (78)

Using the asymptotic light-cone pion wavefunction φπ(x) = 6x(1 − x) we find agreement
with Ref. [25],

Fπ±(Q2) = ±8πf 2
παs(Q)

9Q2

[
∫ 1

0

dx
φπ(x)

x

]2

→ ±8πf 2
παs(Q)

Q2
. (79)

The order α2
s(Q) corrections to Eq. (77) can be found in Refs. [33, 34, 35].
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IV. INCLUSIVE PROCESSES

A. Deep inelastic scattering

DIS is a process which is both simple and rich in physics. As such it provides an ideal
introduction to inclusive factorization in QCD, which we study from an effective field theory
point of view in this section. The aim is to prove that to all orders in αs and leading order in
λ the DIS forward scattering amplitude can be written as an integral over hard coefficients
times the parton distribution functions. This is done by matching onto local operators in
SCET. The properties of SCET are used to show that matrix elements of the leading local
operator can be written as a convolution of a hard coefficient with the parton distribution
functions for the proton.

The first step is to understand the kinematics of the process. The hard scale Q2 = −q2
is set by the invariant mass of the photon, and x = Q2/(2p · q) is the Bjorken variable.
In the Breit frame the momentum of the virtual photon is qµ = Q(n̄µ − nµ)/2, and the
incoming proton momentum is pµ = nµn̄ ·p/2 + n̄µm2

p/(2n̄ ·p) ≃ nµQ/(2x) + n̄µxm2
p/(2Q)

up to terms ∼ m2
p/Q

2, where mp is the proton mass. By momentum conservation the final

state momentum is P µ
X = qµ + pµ, which gives an invariant mass P 2

X = (Q2/x)(1− x) +m2
p.

Values 1 − x ≃ ΛQCD/Q correspond to the endpoint region where the particles in X are
collimated into a jet, while values 1 − x ≃ Λ2

QCD/Q
2 correspond to the resonance region.

We will consider the standard OPE region where 1 − x ≫ ΛQCD/Q so that the final state
has virtuality of order Q2 and can be integrated out. In contrast, although the incoming
proton has a large momentum component in the nµ direction it has a small invariant mass
p2 = m2

p ∼ Λ2
QCD, and therefore is described by collinear fields in the effective theory.

Consider the spin-averaged cross section for DIS which can be written as

dσ =
d3k′

2|k′|(2π)3
πe4

sQ4
Lµν(k, k′)Wµν(p, q) , (80)

where k and k′ are the incoming and outgoing lepton momenta with q = k′ − k, Lµν is the
lepton tensor, and s = (p + k)2. The hadronic tensor W µν can be related to the imaginary
part of the DIS forward scattering amplitude:

Wµν(p, q) =
1

π
ImTµν(p, q) , (81)

Tµν(p, q) =
1

2

∑

spin

〈

p
∣

∣T̂µν(q)
∣

∣p
〉

, T̂µν(q) = i

∫

d4z eiq·z T[Jµ(z)Jν(0)] ,

where for an electromagnetic current Jµ we can write

Tµν(p, q) =
(

− gµν +
qµqν
q2

)

T1(x,Q
2) +

(

pµ +
qµ
2x

)(

pν +
qν
2x

)

T2(x,Q
2) . (82)

As explained above, the intermediate hadronic state has invariant mass P 2
X ∼ Q2. There-

fore, one can perform an OPE and match T̂ µν(q) onto operators in SCET. All fields in the
resulting operators are evaluated at the same residual space time point, however, the pres-
ence of Wilson lines and label momenta make the operators nonlocal along a particular light
cone direction. These nonlocal operators sum the infinite set of purely local operators of a
given twist, however this is built into the formalism automatically. To match we write down
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FIG. 3: Tree level matching onto the operator O
(i)
j in DIS.

the most general leading operator in SCET which contains collinear fields moving in the nµ

direction, and enforce the condition from current conservation qµT̂µν = 0. This leads to

T̂ µν → gµν⊥
Q

(

∑

i

O
(i)
1 +

Og
1

Q

)

+
(nµ+n̄µ)(nν+n̄ν)

Q

(

∑

i

O
(i)
2 +

Og
2

Q

)

, (83)

where

O
(i)
j = ξ̄

(i)
n,p′W

n̄/

2
C

(i)
j (P̄+, P̄−)W

†ξ(i)n,p ,

Og
j = n̄µn̄νtr

[

W †(Gn)
µλW Cg

j (P̄+, P̄−)W
†(Gn)

ν
λ W

]

, (84)

where i labels the flavor of the fermions and ig Gµλ
n = [iDµ

n+gA
µ
n,q, iDλ

n+gA
λ
n,q′]. The Wilson

coefficients are dimensionless functions of P̄+, P̄−, Q, and µ. As in previous sections we
can separate the hard coefficients from the long distance operators by introducing trivial
convolutions. This gives

O
(i)
j =

∫

dω1 dω2C
(i)
j (ω+, ω−)

[

χ(i)
n,ω1

n̄/

2
χ(i)
n,ω2

]

,

Og
j = −

∫

dω1 dω2C
g
j (ω+, ω−) tr

[

Bµ
n,ω1

Bn,ω2

µ

]

, (85)

where ω± = ω1 ± ω2, and Bµ
n,ω ≡ n̄ν(Gn,ω)

νµ with (Gn,ω)
µλ defined in Eq. (39). Next we

factor the coupling of usoft gluons from the collinear fields using the field redefinitions in

Eq. (13). The operator O
(i)
j has the structure in Eq. (31) so the Y ’s cancel trivially, while

for Og
j we find

Bµ
n = YnB

µ(0)
n Y †

n , (86)

and the factors of Y cancel in the trace. It is easy to see that soft gluons also decouple
using Eq. (17) or by noting that there is no non-trivial soft gauge invariant way of adding

soft Wilson lines Sn to O
(i)
j or Og

j . Under charge conjugation the full theory electromagnetic

current Jµ → −Jµ and therefore the operator T̂µν → T̂µν . This implies relations for the

effective theory Wilson coefficients since the operators O
(i)
j must also respect this symmetry.

Thus charge conjugation gives
∫

dω1 dω2C
(i)
j (ω+, ω−) χ

(i)
n,ω1

n̄/χ(i)
n,ω2

C

= −
∫

dω1 dω2C
(i)
j (ω+, ω−) χ

(i)
n,−ω2

n̄/χ
(i)
n,−ω1

=

∫

dω1 dω2

[

− C
(i)
j (−ω+, ω−)

]

χ(i)
n,ω1

n̄/χ(i)
n,ω2

. (87)
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In the second line we changed variable ω1 → −ω2 and ω2 → −ω1 which takes ω+ → −ω+

and ω− → ω−. Thus, to all orders in perturbation theory C
(i)
j (−ω+, ω−) = −C(i)

j (ω+, ω−).
This relates the Wilson coefficients for quarks and anti-quarks. Note that the above results
are all independent of the collinear hadron on which DIS is performed.

Next we take the matrix element between proton states. Using the definitions of the
nonperturbative matrix elements given in Section IIC, and picking out the coefficients of
the tensor structures we find that the delta functions in Eq. (38) set ω+ = ±2Qξ/x and
ω− = 0. Since charge conjugation relates negative and positive values of ω+ only coefficients,
Cj(ω+, 0), with positive ω+ are needed in the formulae for DIS. Therefore we define

Hj(z) ≡ Cj(2Qz, 0, Q, µ) , (88)

where here we have made the dependence onQ and µ explicit. Combining this with Eqs. (82),
(83), (85), and (38), gives the final result

T1(x,Q
2) = −1

x

∫ 1

0

dξ

{

H
(i)
1

( ξ

x

)

[

fi/p(ξ) + f̄i/p(ξ)
]

+
ξ

2x
Hg

1

( ξ

x

)

fg/p(ξ)

}

,

T2(x,Q
2) =

4x

Q2

∫ 1

0

dξ

{

[

4H
(i)
2

( ξ

x

)

−H(i)
1

( ξ

x

)]

[

fi/p(ξ) + f̄i/p(ξ)
]

+
ξ

2x

[

4Hg
2

( ξ

x

)

−Hg
1

( ξ

x

)]

fg/p(ξ)

}

, (89)

where a sum over i is implicit. The hadronic tensor components W1,2(x,Q
2) =

Im T1,2(x,Q
2)/π and therefore are determined by the imaginary part of the Wilson coeffi-

cients. The Wilson coefficients are dimensionless and therefore can only have αs(Q) ln(µ/Q)
dependence on Q. This reproduces the Bjorken scaling of the structure functions.

Finally, consider the tree level matching onto the Wilson coefficients shown in Fig. 3.

From these graphs only the quark coefficient functions C
(i)
j can be non-zero and we find

ImH
(i)
1 (z) = −Q2

i π δ(z − 1) , ImH
(i)
2 = 0 , (90)

where Qi is the charge of parton i. The vanishing of ImH
(i)
2 at tree level reproduces the

Callan-Gross relation W1/W2 = Q2/(4x2).

B. Drell-Yan, pp̄→ ℓ+ℓ−X

Next we will extend the DIS analysis to the Drell-Yan (DY) process: pp̄ → ℓ+ℓ−X .
Specifically we consider the Q2 distribution, where Q2 is the invariant mass of the lepton
pair. Drell-Yan is more complicated than DIS because one has two hadrons in the initial
state. In the center-of-mass frame the incoming proton and anti-proton move in opposite
lightlike directions, and to prove factorization we use the fact that collinear modes in different
lightlike directions can only couple to each other in external operators in SCET. We take
the incoming proton to move in the nµ direction and the incoming antiproton to move in
the n̄µ direction. The hard scales in DY are Q2 and the invariant mass of the colliding pp̄
pair s = (p + p̄)2. The lepton pair has an invariant mass Q2, and the invariant mass of the
final hadronic state is

p2X = Q2

(

1 +
1

τ
− 1

x1
− 1

x2

)

, (91)
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where

τ =
Q2

s
, x1 =

Q2

2p · q , x2 =
Q2

2p̄ · q . (92)

We are interested in the kinematic region where p2X ∼ Q2, which implies that both x1 and
x2 are far away from one. As τ approaches one the invariant mass becomes too small for
the treatment given here to apply. However, the effective theory can be used to deal with
this region as well. It is also possible to study the q⊥ distribution, but this again requires a
generalization of the discussion given below.

The spin averaged cross section for Drell-Yan is

dσ =
32π2α2

Q4 s
Lµν W

µν d3k1
(2π)3(2k01)

d3k2
(2π)3(2k02)

, (93)

where

W µν =
1

4

∑

spins

∑

X

(2π)4δ(4)(p+ p̄− q − pX)〈pp̄|Jµ(0)|X〉〈X|Jν(0)|pp̄〉

=
1

4

∑

spins

∫

d4x e−iq·x〈pp̄|Jµ(x) Jν(0)|pp̄〉 . (94)

The sum over spins refers to the initial hadron spins (the sum over final hadron spins is
included in the sum over X). Integrating Eq. (93) over the emission angles of the final
leptons one obtains

dσ

dQ2
=

2α2

3Q2 s

1

4

∑

spins

〈pp̄| Ŵ |pp̄〉 , (95)

where we have neglected the lepton masses and defined the operator

Ŵ (τ, Q2) = −
∫

d4q

(2π)3
θ(q0)δ(q2−Q2)

∫

d4x e−iq·x Jµ(x) Jµ(0) . (96)

As we discussed above in the region of phase space under consideration p2X ∼ Q2, so these

hard fluctuations can be integrated out. Operationally this means we match Ŵ onto local
operators in the effective theory. We would like to show that the minimal set of order λ4

operators that contribute to Drell-Yan are

Ŵ → 1

Q2

∫

dωi Cqq(ωi, Q)
[

χ (i)
n,ω1

n̄/ χ (i)
n,ω2

][

χ
(i)
n̄,ω3

n/ χ
(i)
n̄,ω4

]

− 1

Q3

∫

dωi Cqg(ωi, Q)
[

χ (i)
n,ω1

n̄/ χ (i)
n,ω2

]

Tr
[

Bβ
n̄,ω3

Bn̄,ω4

β

]

− 1

Q3

∫

dωi Cgq(ωi, Q)Tr
[

Bν
n,ω1

Bn,ω2

ν

][

χ
(i)
n̄,ω3

n/ χ
(i)
n̄,ω4

]

+
1

Q4

∫

dωi Cgg(ωi, Q) Tr
[

Bν
n,ω1

Bn,ω2

ν

]

Tr
[

Bβ
n̄,ω3

Bn̄,ω4

β

]

, (97)
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FIG. 4: Tree level matching onto the operators in Drell-Yan.

where the powers of Q are included to make the coefficients dimensionless. The operators
displayed in Eq. (97) are just products of the operators that occured in DIS, so for these
terms the decoupling of soft and usoft gluons occurs in a straightforward manner. To show
that the operators in Eq. (97) are the most general set needed we must show that all other
operators that are order λ4 either reduce to these or vanish between the matrix elements in
Eq. (95). For instance, λ4 operators also exist where a Bν

n,ω field is contracted with a Bµ
n̄,ω′

field, or the color structures of the operators in Eq. (97) could be arranged in a different
way.

We now give a general argument for why we can always rewrite an arbitrary operator in
the form of Eq. (97) or show that it does not contribute to DY. All operators relevant for
DY contain four order λ collinear fields chosen from ξn,p, ξn̄,p, B

µ
n,p, or B

µ
n̄,p. Furthemore, two

must move in direction n and two in the direction n̄ (other possibilities end up vanishing by
baryon number conservation or because they involve a set of fields between physical states
that can not possibly form a color singlet operator). For operators with 4 quark fields,
Fierz transformations can always be made to arrange the fields such that those in the same
direction sit in the same bilinear. Using as an example the operator with two collinear
quarks in the n directions and two gluons in the n̄ direction and leaving out the soft Wilson
lines for the moment, the most general matrix element is

〈pnp̄n̄|χa,α
n,ω1

χb,β
n,ω2

BA,µ
n̄,ω3

BB,ν
n̄,ω4

|pnp̄n̄〉 ∆ab;AB
µν;αβ , (98)

where a, b are quark colors, A,B are gluon colors, and α, β are spinor indices for the quarks.
∆ab;AB

µν;αβ is some tensor that connects the indices in an arbitrary way. In the contraction of
a, b and A,B there are two possible ways to make an overall color singlet, one where both
the quarks and gluons are in a color singlet, and another where both the quarks and gluons
are in a color octet. We will discuss both of these possibilities in turn.

In the color singlet case, including the soft and ultrasoft Wilson lines is trivial, since
using Eqs. (17), (19), and (A6) we see that they cancel due to unitarity/orthogonality of the
various Wilson lines in the fundamental/adjoint representations. Thus, there are no soft,
usoft, or collinear interactions that connect the n and the n̄ fields. As in previous sections
this leads to a factorization of the matrix element in Eq. (98), namely

〈pn|χ(0)a,α
n,ω1

χ(0)b,β
n,ω2

|pn〉 〈p̄n̄|B(0)A,µ
n̄,ω3

B(0)B,ν
n̄,ω4

|p̄n̄〉 ∆ab;AB
µν;αβ . (99)

Since the proton spins are summed over, we can write (with the help of Eq. (46))

〈pn|χ(0)a,α
n,ω1

χ(0)b,β
n,ω2

|pn〉 ∝ δab(n/)αβ 〈pn|χ(0)c,γ
n,ω1

n̄/χ(0)c,γ
n,ω2

|pn〉 , (100)

so that spin and color are summed over in the matrix element. Similarly the antiproton
matrix element can be simplified to

〈p̄n̄| B(0)A,µ
n̄,ω3

B(0)B,ν
n̄,ω4

|p̄n̄〉 ∝ δABgµν⊥ 〈p̄n̄|Tr
[

B(0)α
n̄,ω3

B(0)n̄,ω4

α

]

|p̄n̄〉 . (101)
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Here we used the fact that the matrix element is symmetric in µ and ν, and that only the
perpendicular index µ of the field Bµ is order λ. Using Eqs. (100) and (101) the original
matrix element in Eq. (98) can be written as

〈pnp̄n̄|χa,α
n,ω1

χb,β
n,ω2

BA,µ
n̄,ω3

BB,ν
n̄,ω4

|pnp̄n̄〉 ∆ab;AB
µν;αβ (102)

∝ Tr[∆ µ
µ n/] 〈p̄n̄|Tr

[

B(0)ν
n̄,ω3

B(0)n̄,ω4

ν

]

|p̄n̄〉 〈pn|χ(0)
n,ω1

n̄/χ(0)
n,ω2

|pn〉 ,

where the trace of ∆ is over spin and color, and just gives an overall constant. The final
result in Eq. (102) is identical to the matrix element of the second operator in Eq. (97).

If each of the n and n̄ field bilinears involve color octet structures, then the soft and usoft
Wilson lines don’t cancel, since they don’t commute with the SU(3) generators. However,
one can use the color identity

Y †
nS

†
nT xSn̄Yn̄ ⊗ Y †

n̄S
†
n̄T xSnYn = T x ⊗ SnYnY

†
n̄S

†
n̄T xSnYnY

†
n̄S

†
n̄ (103)

where each T x, S, and Y factor is in the appropriate representation of the color group.
Eq. (103) moves all the soft and ultrasoft interactions between either the n or the n̄ collinear
fields. Thus, again the fields in one bilinear can not be contracted with fields in the other
bilinear and the matrix element factors. However this time the factored matrix element
vanishes. For the example discussed above,

〈pn|χ(0)α
n,ω TCχ

(0)β
n,ω′ |pn〉 = 0 , (104)

since an color octet operator vanishes between color singlet states. The same holds true for
the matrix element of an octet gluon operator.

An identical proof of decoupling goes through for the case of 4 quarks, where we again
either have two color singlet or two color octet n and n̄ bilinears. With 4 gluon fields we
can either have the two n and two n̄ fields coupled as singlets, or coupled in the same higher
representation (an 8, {10, 10}, or 27). In the latter case the matrix element between color
singlet states still vanishes so the proof for the 4 gluon operators also goes through in an
identical way.

Thus we have shown that the matrix element of an operator with an arbitrary contraction
of indices either vanishes or can be written in terms of a product of a matrix element which
is related to a proton pdf and a matrix element which is related to an antiproton pdf as in
the example in Eq. (102). This is the result we want. To see how the final formulae are
derived note that we can write the matrix element of Eq. (97) in the form of a convolution

1

4

∑

spins

〈pnp̄n̄| Ŵ |pnp̄n̄〉 =
∑

a,b

∫

dωi Ca,b(ωi)〈pn|Oa
n(ω+, ω−)|pn〉〈p̄n̄|Ob

n̄(ω
′
+, ω

′
−)|p̄n̄〉 ,

(105)

where ω± = ω1 ± ω2 and ω′
± = ω3 ± ω4. The operators here are the same as in DIS, with

a = (i) for the quark operator, and a = g for the gluon operator

O(i)
n (ω+, ω−) =

1

Q

[

χ(i)
n,ω1

n̄/

2
χ(i)
n,ω2

]

,

Og
n(ω+, ω−) = − 1

Q2
tr
[

Bµ
n,ω1

Bn,ω2

µ

]

. (106)
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Apart from the dependence on the labels, the Wilson coefficients in Eq. (105) can also
depend on the renormalization point µ and the kinematic variable Q. Using Eq. (38) we see
that the matrix elements in Eq. (106) set ω− = ω′

− = 0 and ω+ = 2
√
sz1, ω

′
+ = 2

√
sz2 where

z1 and z2 are the convolution variables. Since all kinematic variables aside from Q2 are
integrated over in Eq. (96) the only other variable that can appear in the Wilson coefficient
is the center of mass energy which produces the ℓ+ℓ− pair, namely 4ŝ = ω+ω

′
+. Thus, the

Wilson coefficients only depend on ω+ω
′
+ = 4sz1z2. Defining new coefficients

Hab(z1z2) = Cab(ω+ω
′
+ = 4sz1z2, Q, µ) (107)

we can replace the matrix elements in Eq. (106) with parton distribution functions using
Eq. (38) to obtain:

1

4

∑

spins

〈pnp̄n̄| Ŵ |pnp̄n̄〉 =
1

τ

∫ 1

0

dz1 dz2

{

−H(i)(j)(−z1z2)
[

fi/p(z1)f̄j/p̄(z2) + f̄i/p(z1)fj/p̄(z2)
]

+H(i)(j)(z1z2)
[

fi/p(z1)fj/p̄(z2) + f̄i/p(z1)f̄j/p̄(z2)
]

+
z2

2
√
τ
H(i)g(z1z2)fi/p(z1)fg/p̄(z2)−

z2
2
√
τ
H(i)g(−z1z2)f̄i/p(z1)fg/p̄(z2)

+
z1

2
√
τ
Hg(j)(z1z2)fg/p(z1)fj/p̄(z2)−

z1
2
√
τ
Hg(j)(−z1z2)fg/p(z1)f̄j/p̄(z2)

+
z1z2
4τ

Hgg(z1z2)fg/p(z1)fg/p̄(z2)

}

. (108)

This is the final convolution formulae for Drell-Yan and is valid to all orders in αs and
leading order in the power expansion. At tree level the matching calculation shown in Fig. 4
yields zero for all the Wilson coefficients except

H(i)(i)(−z1z2) = −2πτ

3
Q2

i δ(τ − z1z2) , (109)

where Qi is the charge of parton i. The coefficients H(i)g(±z1z2) and Hg(j)(±z1z2) start at
order αs(Q), while H

(i)(i)(z1z2) and H
gg(z1z2) start at order α

2
s(Q).

C. Deeply Virtual Compton Scattering, γ∗p→ γ(∗)p′

Next we examine deeply virtual Compton scattering (DVCS). To be more precise we
examine the exclusive reaction γ∗p→ γ(∗)p, where the incoming photon is highly virtual, the
final photon is either off-shell or real, and the incoming and outgoing protons have different
momenta. The reason we have included this process in the inclusive section is that DVCS has
the remarkable property that the nonperturbative physics is described by a so called non-
forward parton distribution function (NFPDF). The NFPDF is a more general distribution
function that reduces to the standard parton distribution functions (familiar from DIS) for
some values of the momentum fraction, and behaves like a lightcone wavefunction (familiar
from the pion examples) for other values. Deeply virtual Compton scattering was first
studied in perturbative QCD in Refs [36, 37, 38], and proofs of factorization to all orders in
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perturbation theory were later presented in Refs [39, 40]. In addition properties of NFPDFs
were studied in Ref. [27]. Here we present a proof of factorization for DVCS based on SCET.

As with the previous proofs it is important to understand the kinematics of the process.
We take the incoming proton and photon momenta to be p and q respectively, with x =
Q2/(2p · q) and q2 = −Q2 ≫ Λ2

QCD. The outgoing proton and photon momentum are p′ and

q′ respectively, with 0 ≥ q′2 ≥ −Q2. It is convenient to define a parameter ζ ≡ 1− n̄·p′/n̄·p,
which measures the change to the proton’s large momentum. Working in the Breit frame
and neglecting contributions that are ≪ Λ2

QCD/Q we have:

Label Momenta Residual Momenta

qµ =
Q
2 (n̄

µ−nµ) +0

pµ =
Q
2x n

µ + x
2Q m2

p(n
µ+n̄µ)

p′µ =
Q
2x(1−ζ)n

µ+p′µ⊥ + x
2Q

[

m2
p(1−ζ)nµ+{m2

p(1+ζ)−t}n̄µ
]

q′µ =
Q
2

(ζ
x −1

)

nµ +
Q
2 n̄

µ−p′µ⊥ + x
2Q

[

ζm2
pn

µ + (t−ζm2
p)n̄

µ
]

(110)

Here the label momenta are order Q or Qλ, while the residual momenta are order Qλ2 and
depend on p2 = m2

p and t = (p′ − p)2 = (p′2⊥−ζ2m2
p)/(1−ζ), which are both ∼ Λ2

QCD. The

invariant mass of the intermediate hadronic state is (p+ q)2 ≈ Q2(1−x)/x just like DIS, so
for 1− x≫ ΛQCD/Q the intermediate state can be integrated out.

We will proceed in a manner analogous to the analysis for DIS. The amplitude (up to an
overall momentum conserving δ-function) is given by a time ordered product of currents:

Tµν(p, q, q
′) = 〈p′, σ′|T̂µν(q, q′)|p, σ〉

T̂µν(q, q
′) = i

∫

d4z ei(q+q′)·z/2 T
[

Jµ(−z/2)Jν(z/2)
]

. (111)

This time ordered product is contracted with a lepton tensor to obtain the amplitude. Now
current conservation requires qµTµν = q′νTµν = 0, however the DVCS Tµν is not symmetric
under µ ↔ ν. For electromagnetic currents Jµ we have

Tµν = −
(

gµν −
q′µqν

q ·q′
)

T1 +
(

pµ −
q′µ p·q
q ·q′

)(

pν −
qν p·q′
q ·q′

)

T2

+ℓµℓ
′
ν T3 + ℓµ

(

pν −
qν p·q′
q ·q′

)

T4 +
(

pµ −
q′µ p·q
q ·q′

)

ℓν T5 + . . . , (112)

where the functions Ti = Ti(x, ζ, Q
2, t), and the vectors ℓµ ≡ q′µ−qµ+pµ(q2−q′2+t)/(2p·q) and

ℓ′µ ≡ qµ−q′µ+pµ(q′2−q2+t)/(2p·q′) are defined so that q ·ℓ = q′ ·ℓ′ = 0. In Eq. (112) and below
the ellipses denote spin dependent terms. For simplicity we will show how factorization is
achieved for the spin independent contributions shown in Eq. (112) with the understanding
that it is no more difficult to also include the other terms.

It is convenient to define a parameter 0 ≤ α ≤ 1, by q′2 ≡ −αQ2. The DIS hadronic
time-ordered product is obtained in the limit p′ → p, where α → 1 and ζ → 0. From
Eq. (110) we see that

ζ = x(1 − α) +O
( t

Q2
,
m2

p

Q2

)

, (113)
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so these parameters are not independent. Since the intermediate hadronic state has invariant
mass O(Q2) we can match T̂µν onto operators in SCET. Requiring qµT̂µν = 0 and q′ν T̂µν = 0
for the order Q label momenta leads to

T̂µν → gµν⊥
Q

(

O
(i)
1 +

Og
1

Q

)

+
1

Q
(nµ + n̄µ) (αnν + n̄ν)

(

O
(i)
2 +

Og
2

Q

)

+ . . . , (114)

where the ellipses are spin dependent terms and the displayed operators are

O
(i)
j = ξ̄

(i)
n,p′W

n̄/

2
C

(i)
j (P̄+, P̄−)W

†ξ(i)n,p ,

Og
j = n̄µn̄ν tr

[

W †(Gn)
µλW Cg

j (P̄+, P̄−)W
†(Gn)

ν
λ W

]

. (115)

We have suppressed the dependence of the Wilson coefficients C(P̄+, P̄−) on Q, α, and µ.
The form of the operators in Eq. (115) looks the same as the DIS operators given in Eq. (84),
however the operators here are more general because the Wilson coefficients depend on α.
In the limit α → 1 the DVCS operators reduce to the DIS operators. However, since the
field structure of the DVCS operators is identical to DIS several results follow immediately.
For instance, the steps which factorize soft and usoft gluons and leave fields with superscript
(0) are the same and are not repeated here,

O
(i)
j = χ (0)(i)

n,ω

n̄/

2
C

(i)
j (P̄+, P̄−)χ

(0)(i)
n,ω′ ,

Og
j = −tr

[

B(0)µ
n,ω Cg

j (P̄+, P̄−) (B
(0)
n,ω′)µ

]

. (116)

The restrictions on the DVCS Wilson coefficients from charge conjugation are the same as in
Eq. (87), Cj(P̄+, P̄−) = −Cj(−P̄+, P̄−), however because p 6= p′ this is not simply a relation
between quark and anti-quark Wilson coefficients. The way in which DVCS is unique is that
the matrix elements involve nucleon states with different momenta. This is what leads to
results in terms of non-forward parton distribution functions.

The definition of the NFPDFs are given in Eq. (43), and can be used along with the
relations above to obtain expressions for the Ti in terms of the NFPDFs. Before we give
this result we note that the Wilson coefficients depend on the operators P̄± which become
the variables ω± after introducing trivial convolutions and the χn,ωi

fields in Eq. (35). The
delta functions in Eq. (43) then set ω− = −Qζ/x and ω+ = ±Q(2ξ − ζ)/x, where ξ is the
convolution variable. Note that ζ/x = 1 − α, and just like DIS it is the combination ξ/x
which appears. Since charge conjugation relates the Wilson coefficients for ω+ > 0 and
ω+ < 0 it is convenient to define

Hj(ξ/x) ≡ Cj

(

Q(2ξ/x−1+α), Q(α−1), Q, α, µ
)

, (117)

where in the last three arguements we have made the dependence on Q, α, and µ explicit.
Combining Eqs. (43), (116), and (117) then gives

T1 = −e(σ
′, σ)

2Q

∫ 1

0

dξ

{

H(i)
1

( ξ

x

) [

F i
ζ(ξ; t) + F i

ζ(ξ; t)
]

+
1

2x
Hg

1

( ξ

x

)

F g
ζ (ξ; t)

}

+ . . . ,

T2 =
x2(1 + α)

Q3
e(σ′, σ)

∫ 1

0

dξ

{

[

2(1 + α)H(i)
2

( ξ

x

)

−H(i)
1

( ξ

x

)][

F i
ζ(ξ; t) + F i

ζ(ξ; t)
]

+
1

2x

[

2(1 + α)Hg
2

( ξ

x

)

−Hg
1

( ξ

x

)]

F g
ζ (ξ; t)

}

+ . . . ,

T3 = 0 , T4 = 0 , T5 = 0 , (118)
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which are the final convolution results valid to all orders in αs and leading order in the power
expansion. The structure functions T3,4,5 vanish since the vectors ℓµ = ℓ′µ = 0 at leading
order in the power expansion. The terms with ellipses are for the spin flip terms and involve
the NFPDF K defined in Eq. (43). The results for these terms have a similar form to those
in Eq. (118).

Finally we match at tree level. The tree level diagram in QCD is the same as in Fig. 3
except the outgoing photon and proton have momenta q′ and p′ respectively. Only the quark
Wilson coefficients are nonzero at tree level. We find

C
(i)
1 (ω+, ω−, Q, α) = e2Q2

i

(

2Q

2Q+ ω+ − ω−

− 2Q

2Q− ω+ − ω−

)

(119)

C
(i)
2 (ω+, ω−, Q, α) = 0 ,

which gives

H(i)
1

(

ξ

x

)

= −e2Q2
i

(

1

1− ξ/x
− 1

1 + (ξ − ζ)/x

)

(120)

H(i)
2

(

ξ

x

)

= 0 .

Since H(i)
2 = 0 at tree level, DVCS also obeys a Callan-Gross relation.

V. CONCLUSION

What we hope we have demonstrated here is the power of effective field techniques in
the context of factorization for hard scattering processes. The explicit separation of modes
and the implementation of gauge invariance for these modes greatly simplifies seemingly
complex problems. What is normally accomplished by diagramatic Ward identities and
induction techniques now falls out as a consequence of the gauge symmetry of operators in
a low energy soft-collinear effective theory.

As we have emphasized the factorization formulae derived in this paper are not new. The
purpose here was simply to extend the formalism introduced in [9, 10, 11, 12, 13] to cases
with back-to-back collinear particles, and apply these ideas to more general processes than
previously considered. Furthermore, the factorization proofs presented are perhaps simpler
than those previously given (certainly they are more concise). We believe that within the
confines of the SCET more difficult, and unresolved problems can be addressed, such as
power corrections in cases without an OPE, and proofs of factorization for more complex
processes.
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Type Momenta (+,−,⊥) Fields Wilson lines

onshell collinear-n p
µ
1 ∼ (λ2, 1, λ) ξn, A

µ
n Wn

collinear-n̄ p
µ
2 ∼ (1, λ2, λ) ξn̄, A

µ
n̄ Wn̄

soft qµ ∼ (λ, λ, λ) qs, A
µ
s Sn, Sn̄

usoft kµ ∼ (λ2, λ2, λ2) qus, A
µ
us Yn, Yn̄

offshell p = p1 + p2 pµ ∼ (1, 1, λ) ψQ, A
µ
Q Xn, Xn̄

p = p1 + q pµ ∼ (λ, 1, λ) ψL
n , A

Xµ
n WX

n , SX
n

p = p2 + q pµ ∼ (1, λ, λ) ψL
n̄ , A

Xµ
n̄ WX

n̄ , SX
n̄

TABLE I: Summary of the onshell modes discussed in section IIA, and the auxiliary fields intro-

duced to represent the offshell fluctuations that are integrated out in this appendix.

APPENDIX A: FACTORIZATION OF SOFT AND COLLINEAR n & n̄ MODES

This Appendix discusses the simultaneous factorization of the soft (λ, λ, λ) modes, n-
collinear (λ2, 1, λ) modes, and n̄-collinear (1, λ2, λ) modes. These three classes of modes
can not interact with each other in a local manner and therefore do not couple through
the SCET Lagrangian. However, they can couple in a gauge invariant way through external
operators and currents. These interactions in currents are built up by integrating out offshell
fluctuations with p2 ≫ (Qλ)2. For the special case of factorization of soft from n-collinear
modes this was shown in detail in the Appendix of Ref. [12]. There it was shown that
integrating out certain modes with offshellness p2 ∼ Q2λ causes the Wilson lines Wn and Sn

to appear in operators in a gauge invariant way. Here we will extend this approach to the
factorization of modes for cases involving two classes of collinear particles. For simplicity
we restrict ourselves to the case where the original operators involve only collinear quark or
gluon fields. This type of factorization was used for the pion form factor example discussed
in Sec. III.B and the Drell-Yan process presented in Sec. IV.B.

The basic idea is to first match onto a Lagrangian with couplings between onshell and
offshell modes that give all order λ0 diagrams. The offshell modes (with p2 ≫ (Qλ)2) can
then be integrated out, so that all operators are expressed entirely in terms of the onshell
degrees of freedom. In table I a summary is given of the three types of offshell momenta that
are induced by adding soft, n-collinear, and n̄-collinear momenta. For each type auxiliary
quark and gluon fields are defined, and for convenience momentum labels are suppressed
in this section. For example, the ψQ quarks are created by the interaction of a n-collinear
quark with an n̄-collinear gluon, whereas the ψL

n quarks are created when a collinear quark

ξn is knocked offshell by a soft gluon. For the field ψQ we write ψQ = ψQ
n + ψQ

n̄ , where

ψQ
n = 1

4
n/n̄/ ψQ and ψQ

n̄ = 1
4
n̄/n/ ψQ. Then we have n/ψQ

n = n̄/ψQ
n̄ = 0 and n/ψL

n = n̄/ψL
n̄ = 0.

Various Wilson lines are also required and are listed in the table. It is convenient to define
a generic Wilson line L[a, A] along direction a with field A by the solution of

(

a·P + g a·A
)

L[a, A] = 0 . (A1)

With this notation the on-shell Wilson lines are Wn = L[n̄, An], Wn̄ = L[n,An̄], Sn =
L[n,As], and Sn̄ = L[n̄, As]. (Recall that the subscripts on W and S mean different things.)
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The Wilson lines involving offshell fields that we will require are

Xn = L[n̄, AQ+A
X
n +An] , Xn̄ = L[n,AQ+A

X
n̄ +An̄] , (A2)

WX
n = L[n̄, AX

n +An] , WX
n̄ = L[n,AX

n̄ +An̄] ,

SX
n = L[n,AX

n +As] , SX
n̄ = L[n̄, AX

n̄ +As] .

Below we discuss the results which allow us to integrate out offshell fluctuations. The
structure of the auxiliary Lagrangians and construction of their solutions are very similar
to the case presented in Ref. [12], to which we refer for a more detailed presentation.

From table I we see that adding n and n̄-collinear momenta gives p2 ∼ Q2, whereas adding
soft and collinear momenta gives p2 ∼ Q2λ. Loops that are dominated by offshell momenta
only modify Wilson coefficients and not the infrared physics. Therefore, to determine the
structure of SCET fields in an operator it sufficient to integrate out the offshell fields at
tree level. For convenience we can integrate out the fluctuations starting with those with
the largest offshellness. Recall that we only wish to consider offshell propagators connected
to external operators. A subtlety for quarks is that distinct auxiliary fields are needed for
the incoming and outgoing offshell propagators. However, the solution for the outgoing field
turns out to be the conjugate of the incoming field, so to avoid a proliferation of notation
we simply denote the outgoing terms in the Lagrangian by +h.c., and present a solution for
the incoming fields. Finally, note that for the gluon field AQ the fields An, An̄, A

X
n , A

X
n̄ , and

As appear as background fields while for the fields AX
n and AX

n̄ it is An, An̄, and As that
appear as background fields.

The terms in the auxiliary Lagrangian involving the p2 ∼ Q2 fields are

LQ
aux = ψ̄Q

n gn·(AQ+A
X
n̄ +An̄)

n̄/

2
(ψL

n + ξn) + ψ̄Q
n

[

n·P + gn·(AQ+A
X
n̄ +An̄)

] n̄/

2
ψQ
n

+(n↔ n̄) + h.c.

+
1

2g2
tr
{

[iDµ
Q + gAµ

Q , iD
ν
Q + gAν

Q]
2
}

+
1

αQ

tr{[iDµ
Q, AQµ]

2} . (A3)

where iDµ
Q = 1

2
nµ[P̄+ gn̄·(AX

n +An)]+
1
2
n̄µ[P+ gn · (AX

n̄+An̄)]. The solution of the equations
of motion for these modes are

ψQ
n = (Xn̄−1)(ψL

n + ξn) , ψQ
n̄ = (Xn−1)(ψL

n̄ + ξn̄) ,

X†
n̄Xn = WX

n W
X†
n̄ . (A4)

(In addition to the last equation a constraint on the components n·AQ and n̄·AQ also comes
from the gauge fixing term, but will not be needed.) The terms in the auxiliary Lagrangian
involving the p2 ∼ Q2λ fields are [12]

LX
aux = ψ̄L

ngn·(AX
n +As)

n̄/

2
ξn + ψ̄L

n

[

n·P + gn·(AX
n +As)

] n̄/

2
ψL
n + (n↔ n̄) + h.c. (A5)

+
1

2g2
tr
{

[iDµ
nX+gAXµ

n , iDν
nX+gAXν

n ]2
}

+
1

αn
tr
{

[iDµ
nX , A

X
nµ]

2
}

+ (n↔ n̄) ,

where iDµ
nX = 1

2
nµ[P̄ + gn̄·An] +

1
2
n̄µ[n·P + gn·As]. The solutions for these modes are

ψL
n = (SX

n −1)ξn , SX†
n WX

n = WnS
†
n ,

ψL
n̄ = (SX

n̄ −1)ξn̄ , SX†
n̄ WX

n̄ = Wn̄S
†
n̄ . (A6)
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Together Eqs. (A4) and (A6) can be used at leading order to eliminate the fields representing
offshell fluctuations with p2 ≫ (Qλ)2. For collinear quarks this leads to the rules in Eq. (17).
Note that we did not need to use the gauge fixing term to resolve the ambiguity in the implicit
solution for the n̄·A and n·A auxillary fields.

As an illustration of these results we discuss the soft-collinear factorization for the pro-
duction of a qnq̄n̄ pair with a large invariant mass Q2. This process is mediated in the full
theory by the electromagnetic current J = ψ̄Γψ (Γ a color singlet). This current will match
onto a current in SCET that is built entirely out of onshell fields. Using the results in this
appendix this current can be systematically derived. To start the quark field in J matches
onto ξn plus all possible fields which the auxiliary Lagrangian can create starting from ξn,
so

J → (ξ̄n + ψ̄L
n + ψ̄Q

n ) Γ (ξn̄ + ψL
n̄ + ψQ

n̄ ) . (A7)

Integrating out the p2 ∼ Q2 fluctuations with Eq. (A4) and inserting a hard Wilson coeffi-
cient C which depends on label operators turns Eq. (A7) into

(ξ̄n + ψ̄L
n )X

†
n̄ CΓXn(ξn̄ + ψL

n̄ ) = (ξ̄n + ψ̄L
n )W

X
n CΓWX†

n̄ (ξn̄ + ψL
n̄ ) . (A8)

To construct the first operator we used the equations of motion for ψQ
n and ψQ

n̄ , and in the
second operator we used the equation of motion identity for the gluons in Xn and Xn̄. In a
similar fashion we can now integrate out the p2 ∼ Q2λ fluctuations with Eq. (A6) to give

ξ̄nS
X†
n WX

n CΓWX†
n̄ SX

n̄ ξn̄ = ξ̄nWnS
†
nCΓSn̄W

†
n̄ξn̄ . (A9)

The operator on the right is the final result used in Eq. (24), and is soft, collinear, and usoft
gauge invariant. It should be obvious from this example how the equations of motion in
Eqs. (A4) and (A6) can be used to determine the factorized form of a general leading order
operator.
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