II Compitino di Matematica per la Fisica

Silvia Penati, Carlo Oleari 21/6/2012

1. Usando le proprietà della trasformata di Fourier, calcolare la trasformata della funzione

$$f(x) = \frac{x+1}{(x^2+2x+3)^2}$$

2. Calcolare i primi tre coefficienti dello sviluppo della funzione

$$y = \cos x$$

sui polinomi di Hermite. Si ricorda che i polinomi di Hermite formano una base su $L^2(\mathbb{R}, \exp(-x^2) dx)$ e che $H_0(x) = 1$, $H_1(x) = 2x$ e $H_2(x) = 4x^2 - 2$.

3. Dato uno spazio di Hilbert \mathcal{H} e un suo s.o.n.c. $\{u_n\}_{n\in\mathcal{N}}$, si consideri l'operatore $T:\mathcal{H}\to\mathcal{H}$

$$Tx = \sum_{n \in \mathcal{N}} \lambda_n(u_n|x)u_n$$

con $\{\lambda_n\}$ una successione di numeri complessi.

- Verificare che se $\{\lambda_n\} \in l^{\infty}(\mathcal{C})$, allora T è ben definito e continuo.
- Calcolarne la norma.
- Discutere se esiste l'operatore aggiunto e, nel caso, determinarlo.
- Determinare autovalori e autofunzioni di T.
- 4. Risolvere la seguente equazione integrale

$$\int_{-\infty}^{+\infty} dy \ e^{-a(x-y)^2} f(y) = e^{-bx^2}$$

dove a, b sono parametri reali, 0 < b < a.

- **5.** Sia \mathcal{H} uno spazio di Hilbert e P, Q due proiettori tali che QP = P.
 - \bullet Discutere eventuali relazioni di inclusione tra il rango di Pe il rango di Q,e tra il nucleo di Pe il nucleo di Q.

Per generici $\alpha, \beta \in \mathcal{C}$, si consideri l'operatore $A = \alpha P + \beta Q$. Discutere per quali valori di α e β l'operatore A è un proiettore. Per α, β non nulli

- \bullet Determinare la norma di A.
- Determinare A^{\dagger} .
- Discutere il rango di A ed eventuali relazioni di inclusione con il rango di P e di Q.