Numerical resolution of the Schrodinger equation

Carlo Oleari

1 The Schrodinger equation

The Schrodinger equation is well known, and with a generic potential it is given by
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also written as 5
ihalll(x, t) = H(x,t)¥(x,1), (1.2)
where, in the x representation
= —ihV = —ih2 (1.3)
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We can write the “formal” solution of the Schrodinger equation as
U(x,t) = Ut to) ¥(x,to), (1.4)
1 t
Ult,tg) = T {exp (—;L dt’H(t’))} : (1.5)
to

where T is the time-ordered-product operator. We dropped the x dependence in the Hamil-
tonian and in the evolution operator U, for ease of notation.

In the following, we will neglect the potential A and the interaction with the electron
spin. We can then write the Hamiltonian as

H(x,pt) = V(x)+T(p), (1.6)
T(p) = —;nv? (1.7)

What makes things more complicated is the fact that V' and T" do not commute. In fact,
it can be shown that (Lie-Trotter formula) if A and B are non-commutative operators, we
have

A B\1"
exp(A+ B) = li [ex () ex ()] . 1.8
p( )= limfexp{— Jexp ( (1.8)
We can then start with the time-evolution operator in its “infinitesimal” form, and apply it
to the wave function

Ut + 6t,1) = exp [—;52? (V + T)} | (1.9)



It is then easy to prove that
exp [T(A+ B)| = exp (TA)exp (TB) + O (7’2) (1.10)
or, even better,
exp [T(A+ B)] = exp (;—A) exp (TB) exp (;TA) +0 (73) (1.11)
Problem: Demonstrate the previous two identities.

Problem: Generalize the previous cases using as starting point

exp [T(A + B)] = [[ exp (¢;7A) exp (d;7B) + O (T”H) (1.12)

=1

The goal is to determine k and the coefficients ¢; and d;.

Note that U is unitary at each step (UUT = 1) so that the evolution of the wave function
preserves the normalization.

For small At, we can then write the evolution of the wave function as

U (x,t+ At) = exp ( ;LV (;, H At) exp (—;_l 22 At) (—;V %" H At) U (x, 1)
(1.13)

On a computer simulation, we can discretize the x space {x;}, and, given an initial wave

funtion ¥y (x;, 1), we can evolve it with eq. (1.13).

2 One spatial dimension

For ease of notation, we write the following formulae in one spatial dimension. They can
be easily generalized to three dimensions

(xlp) =V%£m(§ﬂ (2.1)
(plz) = \/217r—hexp(—ip;f) (2.2)
W) = (alW) (23)
U(p) = (p|¥) (2.4)
Inserting a completion
U(z) = (2]0) = /dp 2[p) (p| W) = /dp exp(%)@ (2.5)
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As you know this is just the Fourier transform F

U(p) = F {¥(2)}

and
W(z) = F ' {¥(p)}.
Since .
ORI L i),
we get

Ffow [ () a0} = [-£ 2] a0

3 Summary

The steps to perform in order to implement eq. (1.13) are then the following:

1. Given the state function at a time ¢, in X space, compute

iV (x,t)

T (x) = exp <_h 5

At) U (x, 1)

with a simple multiplication in x space
2. Compute the Fourier transform of &) (x) to go to the momentum space

v (p) = F{¥® (x)}

3. Multiply ¥ (p) by the kinetic part of the evolution equation

7 2) ip’ s
U™ (p) = exp —ﬁ%At v (p)

4. Go back to x space with the inverse Fourier transform
U (x) = FH{I® (p)}

5. And finally

i Vi(x,t)

U (x,t+ At) = exp <_h At) 7@ (x)

(2.7)

(2.8)

(2.9)

(2.10)

(3.2)

(3.3)

(3.4)

(3.5)

With a few more “tricks” the entire procedure can be performed when a potential A(x,t)

is present. If interested, ask me. Same if the particle has spin S.
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4 The Discrete Fourier Transform

Everything in this section is done in one dimension, but can be generalized, in a straight-
forward way, to three dimensions. We start with a finite x space

0<z<L (4.1)
Divide this interval with N equally-spaced points
L
xi:ﬁ" 1=0,....,N—1 (4.2)
- L= pL L
v — —i=—J |V (= 4.
(p) ~ N§ ( hN) (N‘7> (43)
The finite range in x induces a per10d1c1ty in p. In fact
U(p) = U(p+p) (4.4)
if .
wp . .
———j) =1 v 4.5
that is satisfied by
2mh
p=——N 4.6
p=-7 (4.6)
SO o
0<p< % N (4.7)
and we can discretize the p space too, by dividing the allowed interval with N points
2mh
Dy = 7]2 k, k=0,....,N—1 (4.8)

]I\}NE: < Zﬁj k) |2 (4.9)

where we have defined

The inverse discrete Fourier transform is then given by (see eq. (2.6))

( z—j k:) Ty (4.11)
Problem: Check that, by inserting eq. (4.9) into (4.11), you obtain and identity.

Notice that the order of normal modes in p space is not the most natural one. The
lower k values correspond to positive small momenta. The central values of k£ correspond
to ultraviolet modes, with the change of sign at k¥ = N/2 (from positive to negative large
momenta). Then back to smaller negative momenta. A shift in momentum space needs to
be performed, in order to get a physical picture of @(p)
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5 Work to do

1. Compute the Fourier transform of

1 .Po (:C - xO)Q
U(x) = T OXP —i—(x — x,)| exp [—02] (5.1)
<g) \/E [ bizost }

Comment on the role of x, and p,.
2. Check that [¥(z)]* =1

3. Compute the exact free propagation of a gaussian wave packet and compare it with
your numerical solution.

In particular, compute the expectation value of the position and the width of the wave
packet as a funtion of time.

4. Implement the semi-infinite-width barrier

5. Implement the finite-width barrier

6. Implement the infinite-height barrier. How can it be implemented?
7. Implement the harmonic osciallator.

8. Implement the anharmonic osciallator.

6 Validation and internal consistency checks

You have to address two major points:

1. how you have validated your code: the checks you have performed to be sure that
the code does what is supposed to do. Checks on the Fourier transform, on its inverse,
on the evolution procedure. . .

2. the internal consistency checks: the code itself checks that the parameters chosen
by the user are self compatible and that the run is going to produce physically-sound
results (time interval is “appropriate” for the potential chosen, initial momentum and
kinetic energy are always within the validity limits. . .



