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1 The Schrödinger equation

The Schrödinger equation is well known, and with a generic potential it is given by

ih̄
∂

∂t
Ψ(x, t) =

{
1

2m

[

p− qA(x, t)
]2

+ V (x, t)− g
q

2m
S ·B(x, t)

}

Ψ(x, t) , (1.1)

also written as

ih̄
∂

∂t
Ψ(x, t) = H(x, t)Ψ(x, t) , (1.2)

where, in the x representation

p = −ih̄∇

(

px = −ih̄
∂

∂x
, . . .

)

(1.3)

We can write the “formal” solution of the Schrödinger equation as

Ψ(x, t) = U(t, t0)Ψ(x, t0) , (1.4)

U(t, t0) = T
[

exp
(

− i

h̄

∫ t

t0
dt′H(t′)

)]

, (1.5)

where T is the time-ordered-product operator. We dropped the x dependence in the Hamil-

tonian and in the evolution operator U , for ease of notation.

In the following, we will neglect the potential A and the interaction with the electron

spin. We can then write the Hamiltonian as

H(x,p, t) = V (x) + T (p) , (1.6)

T (p) = − h̄2

2m
∇2 . (1.7)

What makes things more complicated is the fact that V and T do not commute. In fact,

it can be shown that (Lie–Trotter formula) if A and B are non-commutative operators, we

have

exp (A+ B) = lim
n→∞

[

exp
(
A

n

)

exp
(
B

n

)]n

. (1.8)

We can then start with the time-evolution operator in its “infinitesimal” form, and apply it

to the wave function

U(t+ δt, t) = exp
[

− i

h̄
δt (V + T )

]

. (1.9)
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It is then easy to prove that

exp [τ(A+ B)] = exp (τA) exp (τB) +O
(

τ 2
)

(1.10)

or, even better,

exp [τ(A+ B)] = exp
(
1

2
τA
)

exp (τB) exp
(
1

2
τA
)

+O
(

τ 3
)

(1.11)

Problem: Demonstrate the previous two identities.

Problem: Generalize the previous cases using as starting point

exp [τ(A+ B)] =
k∏

i=1

exp (ciτA) exp (diτB) +O
(

τn+1
)

(1.12)

The goal is to determine k and the coefficients ci and di.

Note that U is unitary at each step (UU † = 1) so that the evolution of the wave function

preserves the normalization.

For small ∆t, we can then write the evolution of the wave function as

Ψ (x, t+∆t) = exp

(

− i

h̄

V (x, t)

2
∆t

)

exp

(

− i

h̄

p2

2m
∆t

)

exp

(

− i

h̄

V (x, t)

2
∆t

)

Ψ(x, t)

(1.13)

On a computer simulation, we can discretize the x space {xi}, and, given an initial wave

funtion Ψ0 (xi, t0), we can evolve it with eq. (1.13).

2 One spatial dimension

For ease of notation, we write the following formulae in one spatial dimension. They can

be easily generalized to three dimensions

〈x|p〉 =
1√
2πh̄

exp
(
ipx

h̄

)

(2.1)

〈p|x〉 =
1√
2πh̄

exp
(

− ipx

h̄

)

(2.2)

Ψ(x) ≡ 〈x|Ψ〉 (2.3)

Ψ̃(p) ≡ 〈p|Ψ〉 (2.4)

Inserting a completion

Ψ(x) ≡ 〈x|Ψ〉 =
∫

dp 〈x|p〉〈p|Ψ〉 =
∫

dp
1√
2πh̄

exp
(
ipx

h̄

)

Ψ̃(p) (2.5)

Ψ̃(p) ≡ 〈p|Ψ〉 =
∫

dx 〈p|x〉〈x|Ψ〉 =
∫

dx
1√
2πh̄

exp
(

− ipx

h̄

)

Ψ(x) (2.6)
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As you know this is just the Fourier transform F

Ψ̃(p) = F {Ψ(x)} (2.7)

and

Ψ(x) = F−1
{

Ψ̃(p)
}

. (2.8)

Since

F
{

dΨ(x)

dx

}

=
i

h̄
p Ψ̃(p) , (2.9)

we get

F
{

exp

[

− i

h̄

(

− h̄2

2m

d2

dx2

)

∆t

]

Ψ(x)

}

= exp

[

− i

h̄

p2

2m
∆t

]

Ψ̃(p) (2.10)

3 Summary

The steps to perform in order to implement eq. (1.13) are then the following:

1. Given the state function at a time t, in x space, compute

Ψ(1) (x) = exp

(

− i

h̄

V (x, t)

2
∆t

)

Ψ(x, t) (3.1)

with a simple multiplication in x space

2. Compute the Fourier transform of Ψ(1) (x) to go to the momentum space

Ψ̃(1) (p) = F
{

Ψ(1) (x)
}

(3.2)

3. Multiply Ψ̃(1) (p) by the kinetic part of the evolution equation

Ψ̃(2) (p) = exp

[

− i

h̄

p2

2m
∆t

]

Ψ̃(1) (p) (3.3)

4. Go back to x space with the inverse Fourier transform

Ψ(2) (x) = F−1
{

Ψ̃(2) (p)
}

(3.4)

5. And finally

Ψ (x, t+∆t) = exp

(

− i

h̄

V (x, t)

2
∆t

)

Ψ(2) (x) (3.5)

With a few more “tricks” the entire procedure can be performed when a potential A(x, t)

is present. If interested, ask me. Same if the particle has spin S.
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4 The Discrete Fourier Transform

Everything in this section is done in one dimension, but can be generalized, in a straight-

forward way, to three dimensions. We start with a finite x space

0 ≤ x ≤ L (4.1)

Divide this interval with N equally-spaced points

xi =
L

N
i , i = 0, . . . , N − 1 (4.2)

Ψ̃(p) ≈ 1√
2πh̄

L

N

N−1∑

j=0

exp
(

−i
p

h̄

L

N
j
)

Ψ
(
L

N
j
)

(4.3)

The finite range in x induces a periodicity in p. In fact

Ψ̃(p) = Ψ̃(p+ p̄) (4.4)

if

exp
(

− ip̄

h̄

L

N
j
)

= 1 , ∀ j (4.5)

that is satisfied by

p̄ =
2πh̄

L
N (4.6)

so

0 ≤ p <
2πh̄

L
N (4.7)

and we can discretize the p space too, by dividing the allowed interval with N points

pk =
2πh̄

L
k , k = 0, . . . , N − 1 (4.8)

The wave function in p space of eq. (4.3) is then discretized as

Ψ̃k =
1√
2πh̄

L

N

N−1∑

j=0

exp
(

−i
2π

N
j k
)

Ψj (4.9)

where we have defined

Ψj ≡ Ψ
(
L

N
j
)

(4.10)

The inverse discrete Fourier transform is then given by (see eq. (2.6))

Ψj =

√
2πh̄

L

N−1∑

k=0

exp
(

+i
2π

N
j k
)

Ψ̃k (4.11)

Problem: Check that, by inserting eq. (4.9) into (4.11), you obtain and identity.

Notice that the order of normal modes in p space is not the most natural one. The

lower k values correspond to positive small momenta. The central values of k correspond

to ultraviolet modes, with the change of sign at k = N/2 (from positive to negative large

momenta). Then back to smaller negative momenta. A shift in momentum space needs to

be performed, in order to get a physical picture of Ψ̃(p).
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5 Work to do

1. Compute the Fourier transform of

Ψ(x) =
1

(
π
2

)1/4 √
σ

exp
[

−i
p0

h̄
(x− x0)

]

︸ ︷︷ ︸

boost

exp

[

−(x− x0)
2

σ2

]

(5.1)

Comment on the role of x0 and p0.

2. Check that |Ψ(x)|2 = 1

3. Compute the exact free propagation of a gaussian wave packet and compare it with

your numerical solution.

In particular, compute the expectation value of the position and the width of the wave

packet as a funtion of time.

4. Implement the semi-infinite-width barrier

5. Implement the finite-width barrier

6. Implement the infinite-height barrier. How can it be implemented?

7. Implement the harmonic osciallator.

8. Implement the anharmonic osciallator.

9. . . .

6 Validation and internal consistency checks

You have to address two major points:

1. how you have validated your code: the checks you have performed to be sure that

the code does what is supposed to do. Checks on the Fourier transform, on its inverse,

on the evolution procedure. . .

2. the internal consistency checks: the code itself checks that the parameters chosen

by the user are self compatible and that the run is going to produce physically-sound

results (time interval is “appropriate” for the potential chosen, initial momentum and

kinetic energy are always within the validity limits. . .
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