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Fig. 24. Origin and disintegration of a r-meson.

the lapse of laboratory time 2 And how far does it travel? Or how much is the
laboratory distance x, measured downward through the upper atmosphere
from the point of formation? In a word, given an event E separated from an
origin O by known coordinates x’, ¢" in the rocket frame, how can one predict
the coordinates x, ¢ of the same event relative to the same origin in the labora-
tory frame (Fig. 25,A)?

This is a new kind of question. Up to now we have limited attention to the
invariant interval as a way to describe the separation between two events. This
interval has a value independent of the choice of reference frame; thus

(15) (spacelike interval)? = —(timelike interval)* = x* — 1 = x)2— @y

Fig. 25. Coordinates of the origin (point O) and disintegration (point E) of a w-meson as
plotted on a laboratory and on a rocket spacetime diagram.
A. Laboratory spacetime diagram B. Rocket spacetime diagram
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Coordinates of event
differ from frame to
frame

Lorentz transformation
for coordinates

Covariant defined

Three ideas leading to
Lorentz transformation

Now we focus attention on the coordinates themselves as indicators of the
separation of the event E from the origin O. We do so recognizing in advance
that these quantities depend upon the choice of frame of reference. In this
respect the coordinates lack the universal standing that the invariant interval
has as a measure of separation. But no matter. Physics has to get on with the
world’s work. One uses the method of describing separation that is best
suited to the job in hand. On some occasions the useful fact to give about a
torpedo boat is the 50-meter separation between bow and stern. On another
occasion it may be much more important to know that the bow is 40 meters
north of the stern and 30 meters east of it. In the present example it does not
meet our needs to know that the point of disintegrative explosion of the
m-meson is separated from the point of origin by an invariant interval 7 of
~ 10~* second. We want to know the x and 7 coordinates individually for the
separation.

However much the (x, 1) coordinates of the event E in the laboratory frame
differ from the (x, #’) coordinates of the same event in the rocket frame, these
two sets of coordinates are related to each other by a well-defined and simple
law. This law is summarized in the Lorentz coordinate transformation

x= (1 =By + (1 — g2y
£= Bl = B 4 (1 — B

where g, is the speed of the rocket frame relative to the laboratory. Because of
the existence of this law, the coordinates are said to provide a covariant
description of the separation of events in spacetime, in contrast to the invariant
measure of separation supplied by the interval. The portion ‘“‘variant” of the
adjective “‘covariant” indicates that the coordinates vary from one reference
system to another. The prefix “co” implies a coordinated variation of the
coordinates of all events according to the same law. Thus x’ and ¢’ differ from
one event to another; and so do x and 7; but the four coefficients

(] e, 6’2)—1/2 6r(] = Br2)—l/2
Br(l = Brz)_”2 (l ok 67'2)—”2

that connect these two sets of coordinates have values that are independent of
the event under consideration.

The derivation of the Lorentz transformation formula, its use, and its points
of analogy to well known features of Euclidean geometry —seen in the parable
of the surveyors—form the theme of this section.

The three ideas that go into deriving the Lorentz transformation can be
stated at once: (1) The coefficients in the transformation are independent of
the event under consideration (“‘covariant transformation”). (2) The coeffi-
cients in the transformation are such as to guarantee that a point that is at
rest in the rocket frame moves in the laboratory frame with a speed 8, in the
x direction. (3) The coefficients are also such as to guarantee that any interval
has the same value in laboratory and rocket frames.

The principles (1,2,3) have a simple application to the disintegration of the
wm-meson. In the laboratory reference frame this event is separated from the
event of birth by coordinates (x, 7), now to be calculated in terms of the

(16)
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velocity 8, of the rocket frame attached to the r-meson. The ratio of x to 1 is
directly given by the velocity

xft = B
or

X = Bt
or
(17) x? = B

The timelike interval defined by x and ¢ is given by the time between birth and
death in the rocket frame (where the w-meson stays always at xi=10)

P—xt=12—x?=1?2-0=1r
Make use of Eq. 17 and insert 82 in place of x* in this formula. Find

2 — Br?.t?. —_ t'2 = 712
or
2= 11— B3 =11 = B7)
or
= =8yt =(1- B2 M2r,

(Example: 8, = (12/13) of the speed of light; 1 — 2= 1—(144/169) =
25/169; (1 — A2 = 13/5 = 2.6; thus m-meson life as measured in labora-
tory is 2.6 times longer than “proper life;” that is, 2.6 times longer than the
life measured in the reference frame attached to w-meson itself.) The distance
traveled is given by the velocity multiplied by the time; thus,

x =Bt =Bl — BAY

This calculation completes the original problem: to find the laboratory co-
ordinates of the point of disintegration of the r-meson relative to its point of
birth.

The problem of the w-meson was an introduction to a general problem: to
find the laboratory coordinates of a given event from a knowledge of the
rocket coordinates of that event. If we say that this objective is equivalent to
deriving the equations of the Lorentz transformation, then we have come a
certain way in deriving that transformation by the simplest of arguments. In
effect, we have found two of the four coefficients in the equations of the
Lorentz transformation

t= (1—By)1r+AX
BAL — A1 + BX

X

About the two remaining coefficients, which we temporarily call A and B, we
know nothing for an elementary reason. The r-meson was always at the point
x' = 0 in the rocket frame. Therefore the two coefficients A and B could have
had any finite values whatever without affecting the numerical results of
the calculation. To determine these coefficients we turn our attention from the
special event of disintegration, E, to a more general event, one which occurs at
a point with arbitrary x’ and 7. Once again we demand that the interval have

Derivation of Lorentz
transformation: first
details

w-meson problem
solved

Derivation of Lorentz
transformation: final
details
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the same numerical value in laboratory and rocket frames. In other words,
we demand fulfillment of the equality

’2 — x2 —_ 1’2 - x’?
or
[(1 — 8212 + Ax'E — [B(1 — B2 + BXJt = 12 — x°
or

(18) 12 4+ 21 — B2 VHA — BB)X't’ + (A2 — B)x’2 = 12 — x"

It is impossible to satisfy this equation with a single choice of values for A and
B for all conceivable choices of 7 and x’ unless these values for A and B are
chosen in a very special way. The quantities A and B must, first, be such as to
make the coefficient of x’7" on the left-hand side of (18) vanish as it does on
the right; hence,

and, second, be such as to make the coefficient of — x’2 be the same on the left
and right of (18); hence

B2 — A2 =1
We have here two equations for the two unknowns, A and B, from which we

find
A =Bl — g

and

B = (1 - g2
This calculation completes the derivation of the Lorentz transformation of
Egs. 16.

The new point of view of covariance focuses on the components x, ¢ of a
spacetime interval (Eqgs. 16), rather than on the magnitude of this interval
(Eq. 15). Intervals have the character of a universal language; they are the
same for observers in all reference frames. In contrast, the components of a
spacetime separation as measured in one reference frame provide a very spe-
cialized language for speaking about the separation. This specialized language
is similar in form to the specialized language used in another reference frame
to describe the same separation. Both languages employ “space components’
and “time components.” This circumstance in and by itself is of no help in
comparing information possessed by one set of observers with information
possessed by the other set of observers. An English reader looking at a
Turkish newspaper gets little comfort from knowing that Turkish, too, uses
verbs and nouns! He requires more—a dictionary. In translating information
about space and time components supplied by observers on another frame of
reference, one requires a dictionary. This dictionary is provided by the Lorentz
transformation of Egs. 16.

A similar dictionary is required for a problem even closer at hand. A Day-
time surveyor using magnetic north requires a dictionary. Only by using one
can he translate intp his own language the north and east readings that are made
by a Nighttime surveyor (who uses North-Star north). No such dictionary is
required if the two discuss their findings in the universal language of distances.
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Fig. 26. The covariance approach to geometry deals with components,
such as the components of the vector OA. (In contrast, the invariance
approach to geometry deals with lengths, such as a length OA. Such a
length has a value independent of any choice of frame of reference; in
other words, it is the same whether determined by a surveyor who uses
North-Star north or by a surveyor who uses magnetic north.)

The components in one frame are (x, y) = (7, 6). The components in
the other frame are (x/, y’) = (2, 9), (numbers verifiable by reference to
the diagram). These numbers evidently do not have the same values in
the two frames of reference. Instead, they are connected by the “equa-
tions of a covariant transformation,”

x = (4/5)x" +3/5)y y = —@G/5)x" +(4/5))'
or, in the example of the vector OA,
7 =(4/5)2 4+ (3/5)9 6= —(3/5)2+(4/59

The special numerical values of the coefficients in the transformation
equations as written above go with the special roration illustrated in the

diagram.

Evidently there is a striking contrast between the approach that focuses on
invariants (distances, the universal language) and the method of description
that deals with components (northward and eastward separations, different
values found by the two surveyors). This contrast between invariant quanti-
ties and covariant quantities is illustrated in Fig. 26.

The student in the parable of the surveyors did only half a job, it now ap-
pears. He showed each surveyor how to translate his findings into the uni-
versal language of distance

(distance)? = (Ax)? + (Ay): = (Ax')> + (AY')?

However, he did not produce a dictionary that would interpret between dis-
cussions in the specialized Daytime and Nighttime languages of components.
His achievement was useful as far as it went. But on occasion the Daytime
surveyor wants to know, not merely a distance OA, but also the actual com-
ponents (Ax, Ay) of the separation OA. Moreover, circumstances may
prevent him from directly measuring these components himself. In this event
he has at his disposal only measurements of the components (Ax’, Ay’) of the
separation OA made by his colleague, the Nighttime surveyor. How is he to
translate from the available numbers (Ax’, Ay’) to the desired numbers (Ax,
Ay)? Where is the dictionary? And what must one know in order to be able to
construct the dictionary? Answer: Just as one has to know the relative velocity
B, of two reference frames to construct the Lorentz transformation from
(Ax/, A?’) to (Ax, Ar), so one must know the slope S, of the line Oy’ relative to
the line Oy in order to translate from (Ax’, Ay’) to (Ax, Ay). In the example
shown in Fig. 26, the slope of Oy’ relative to Oy is S, = 3/4. That is, for every
4 units of advance upwards along the y axis, one must travel 3 units to the
right in order to arrive at the y’ axis. In terms of the slope S, the ““transforma-
tion formula for rotation” is

Ax= (14 SH2Ax + S(1 + Sz Ay

19
&) Ay = —S(1+ SH1AX + (14 S2r Ay

Euclidean transforma-
tion for rotated
coordinates
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Fig. 27. Representation of the general vector as the vector sum of two vectors, which point along
the y” and x’ axes, respectively—a step in deriving the rotational transformation of Egs. 19 as
described in the text.

Proof:
- ) 1. Every arbitrary vector (Ax’, Ay’) can be regarded (Fig. 27) as the sum of
Hetivapol o Euclideah a vector (Ax’, 0) along the x’ axis plus a vector (0, Ay’) along the y’ axis.
smpstermation It is enough to establish the correctness of Eqgs. 19 for these two types of
vectors individually in order to confirm the correctness of Egs. 19 in

general.
2. A vector that points along the y’ axis and that has length Ay’ has com-
ponents along the x and y axes that stand to each other in the ratio S,

(definition of slope!); thus
Ax/Ay = S,
or
(Axy/(Ayy = S
(Ax) = SAAyy

3. The distance from the origin to the tip of the vector has the same value in
the two reference frames

(Ax) + (Ayy = (Ax'Y + (AY')

or

or
S2AAy» + (Ayy = 0+ (AY')?
or
Ayr=~04+ SH Ay
or
Ay =+ SH2 Ay
and

, Ax = S,Ay = S(1 + S22 Ay’

Comparing these results with Egs. 19 for a rotational transformation, we
see that we have checked the two coefficients of Ay’.
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4. Similarly, consider a vector that points exclusively along the x’ axis, with
components (Ax’, 0). Its components along the y and x axes stand to each
other in the ratio

Ay/Ax = — S,

This information plus the invariance of the distance
(Ax) + (Ayy = (Ax* +0
lead by the same type of reasoning to the result

Ax = (1452 2Ax
Ay = —S,(1 + 8.2 12Ax

These expressions confirm the remaining two coefficients in Egs. 19 for a
Euclidean transformation.

In summary, the covariant transformation in Euclidean geometry from
(Ax’, Ay’) to (Ax, Ay) is clearly analogous to the transformation from (Ax/,
Ar’) to (Ax, Ay) in the Lorentz geometry of the real physical world. The slope
S; of the axis of one coordinate system relative to the corresponding axis of the
other system is analogous to the velocity 3, of one inertial reference frame rela-
tive to the other. The ratios between the two sides of a right triangle and its
hypotenuse in Euclidean geometry

b b o
(1 + Sr2)l/2 an (l + STZ)I 2

are replaced in Lorentz geometry by the expressions
1 Br

T—pn 2" T=gom
The minus sign in the expression (1 — 3,2)'/2 contrasts with the plus sign in
(1 + S;»)'2. The negative sign originates from the minus sign in the expression
for the interval in Lorentz geometry.

9. The Velocity Parameter

Have we finished? We have determined how to go from a knowledge of the
components of a separation in one reference frame to a calculation of the
components of the separation in another reference frame. In brief, we have
written down the covariant law of connection of components both for a
Lorentz transformation (“transformation in x, ¢ plane’) and for a rotation
(“transformation in x, y plane’). In one, the formulas contain the parameter
8. (the relative velocity); in the other, the parameter S, (the relative slope).
However, neither of these parameters provides the simplest way to describe
the relation between two coordinate systems. It is desirable to replace both 3,
and S, by more natural parameters. We can find better means to describe a
velocity and a rotation! Angle is the best measure of rotation. Similarly, a
certain velocity parameter 6, yet to be defined, is the most convenient measure
of velocity. The usefulness and meaning of this velocity parameter in describing

Relative slope S,
(Euclid) compared
with relative velocity
Br (Lorentz)

Additivity of angles -
suggests looking for
additive velocity
parameter
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FIG. 26, PAGE 45

Slopes in Euclidean
geometry are not
additive

velocities will best be appreciated by asking here: Why is an angle a more
convenient parameter than a slope for measuring a rotation?

And the answer is: Because angles are additive and slopes are not. What does
this statement mean? Refer to Fig. 26. The vector OA is inclined to the )’ axis.
This inclination may be described by the slope S’ (the number of units of
distance in the x’ direction per unit of distance in the y’ direction). In the ex-
ample this slope is

S!'=2/9

In contrast, the vector OA is inclined to the y axis by a slope
S =27/6
Further, the y’ axis is inclined to the y axis by a slope
S, = 3/4
Question: Is the following law of addition of slope correct?
slope of OA\ , /slope of OA slope of y’ axis
relative to | = | relative to |+ relative to
» axis y axis Y axis

Test (“experimental mathematics™):

716) £ 2/9) + (3/4)
(42/36) % (8/36) + (27/36)
42?=8+27=35 No!

Conclusion: Slopes are not additive! Question: If slopes are not additive and .S
is not equal to the sum of S” and S, what then is the correct way to deduce the
slope S from S’ and S,? Answer:

slope of OA
relative to

y axis

S = Ax/Ay (by definition of slope)

(1 + Srz)—lIZAxl JE S,.(l = Srz)_usz'
" fromEqs, 19
_Sr(l -+ S’Z)—IIZAx: s (1 I Srz)—usz, (from Eqgs )

A SHAY (by eliminating (1 + S;*)~'2 from
- —SAx + Ay’ numerator and denominator)
_ (Ax'[AY)Y + S, (by dividing numerator and
T —=S(AX'/AY) + 1 denominator by Ay’)
Thus finally,
P i Y
(20) :S’-—— l 1= S/Sr

In other words, two slopes S” and S, can be treated as additive only when the
product S’ S, in the denominator can be neglected in comparison with unity.
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Fig. 28. The angle is a convenient way to
measure inclination between y axis and y’
axis—convenient because angles satisfy a
simple law of addition: 6 = ¢’ + 6,.

Since slopes are not additive and are thus not the convenient way to measure
the inclination of two coordinate systems, what then is a more suitable way to
measure this inclination? Answer: The angle between the y and )’ axes. Why?
Because angle does satisfy a simple law of addition (Fig. 28).

angle of OA angle of OA angle of y’ axis

relative to | = relative to |+ relative to
y axis y' axis y axis
or
(21) 0=10 +0,

The existence of this relation makes the angle the simple measure of incli-
nation.

What is the relation between this new measure of inclination and the old
measure, the slope S, of the y’ axis relative to the y axis? Answer:

(22) S, =tan 6, (from the definition of tangent in trigonometry ; see Fig. 29)

Fig. 29. Relation between relative slope S, of
corresponding axes of two Euclidean coordi-
nate systems and the angle 6, between these
axes.

Angles ARE additive
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Euclidean law of
addition of slopes

Law of addition of
velocities

Question: How does one understand the law of addition of slopes when one
recognizes that a slope is the tangent of an angle? Answer:

tan 6 = tan (6 + 6,) (additivity of angles)
_ tan ¢’ + tan 6, :
(23) N e tan (. (trigonometry)
or
/!
S= li_j—ﬁ% (tangents measure slopes)

Comparison of the complicated law of addition of tangents, or slopes, and the
simple law of addition of angles, 8 = 6’ + 6,, confirms that angles provide the
simplest measure of rotations.

What is the simplest measure of velocity? Not velocity itself. Velocity itself
does not satisfy a simple law of addition. What is the law of addition of
velocities? Let a bullet be fired forward at a velocity 8’ in the rocket frame of
reference (Fig. 30).

(number of meters of advance)
in the x’ direction for each/ SR
meter of advance in the read-\ (bxAr)
(ings t" of the rocket clocks)

g =

Fig. 30. World line of a bullet plotted in the rocket
spacetime diagram. The bullet is fired forward with a
velocity 8/ = Ax’/At’ in the rocket frame.

The rocket is moving at the velocity 8, relative to the laboratory. What is the
velocity 8 of the bullet relative to the laboratory—as measured with the
laboratory latticework of clocks? Answer: The velocity is

number of meters of advance
(in the x direction for each

meter of advance in the read-
(ings t of the laboratory clocks)

Bi= = (Ax/AD)

2 (1 — B 12Ax" + B(1 — BA)2AY (Lorentz transfor-
B(1 — B2 2Ax' + (1 — B 2AY mation, Egs. 16)

_Ax' + gAY (by eliminating (1 — ,2)~'/ from
L B.Ax" 4 At - numerator and denominator)
_ (AX'/AY) + B, (by dividing numerator and

~ BAAX'[AY) + 1 denominator by At’)
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Thus finally,

1488, (law of addition of velocities)

In other words, velocities are not additive. Limiting case, for low velocities
only: The two velocities 8’ and 8, can be treated as additive (to a certain level
of accuracy) when the product 8’8, in the denominator is negligibly small
compared to unity (to that same level of accuracy, whether this level of ac-
curacy is 1 part in 10 or 1 part in 10%). Example of lack of additivity of ve-
locities: The rocket is already going at 3/4 of the speed of light when it fires a
bullet. The bullet itself moves at 3/4 of the speed of light relative to the
rocket. What is the speed of the bullet relative to the laboratory? Answer: Not
(3/4) 4+ (3/4) = 1.5 times the speed of light, but instead
g = GMH+GCMA) _ G2 _24_ 46
14+ (3/4)3/4) (25/16) 25 X

(meters of laboratory distance per meter of travel time of light in the labora-
tory). Thus the relativistic law of addition of velocities (24) ensures that no
object can ever be propelled at a speed as great as the speed of light.

Considering that velocities themselves are not additive, we propose to find a
new measure of velocity, a “velocity parameter” 6, which is additive; thus,

velocity parameter velocity parameter velocity parameter
of bullet relative | =| of bullet relative |+ | of rocket relative
to laboratory to rocket to laboratory
or
(25) 6=20 46,

This parameter § will be quite different in meaning from the angle that de-
scribes rotations. The velocity parameter cannot be represented as a simple
angle in any diagram, and for a very good reason. Distances between points
on a piece of paper are governed by the laws of Euclidean geometry. In
contrast, the intervals between the events of the physical world are controlled
by the Lorentz geometry of spacetime. But the impossibility of freezing moving
bullets and ticking clocks onto a piece of paper does not deprive these lively
objects of one iota of their reality. And the further impossibility of depicting
the additivity of the velocity parameter # on a page does not discourage us,
but merely invites us to look at the real world of fast particles and high-
-energy physics to see the law of addition of velocity parameters in action.
This law of addition of velocity parameters, 6§ = 6’ + 6,, is every bit as real as
the law of addition of angles of rotation.
What is the connection between velocity 8 and velocity parameter 67 The
appropriate formula is analogous to the formula for slope in terms of angle
(slope = tangent of angle). It has the form

(26) B = tanh 6

Here ‘““tanh” is read “‘hyperbolic tangent.”” The hyperbolic tangent function,
as well as the hyperbolic sine and cosine functions, sinh 8 and cosh 6 (with

Velocity parameter:
defined to be additive!

Velocity is hyperbolic
tangent of velocity
parameter
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Constructing table of
hyperbolic tangents

tanh 6 = sinh 6/cosh 6), forms a standard part of mathematics. Tables of all
three functions are given in every comprehensive compilation of tables. Formal
definitions of these functions are presented in Table 8. Nevertheless, we need
no knowledge of these tables and this mathematical literature. All that we
want to know about the function tanh 6 can—naturally enough—be found
from its very definition. Two properties define it: (a) It must correctly describe
the law of addition of velocities. Out of the relation

LB
1=} 88
and the demand 6 = 6’ + 6, we read the law of addition
y i _ tanh ¢’ + tanh 6, (from equation
) b0 ) ==t = 1 + tanh ¢ tanh 6, of definition 26)

(b) For low velocities the velocity parameter # must reduce to the usual meas-
ure of velocity, 8. This requirement means that tanh  must become arbitrarily
close to @ itself for small 6. We recall that the ordinary tangent of an ordinary
angle reduces to the angle itself for small angles, provided that the angle is
measured in radians. When the angle is measured in degrees, there is a correc-
tion factor, =/180°. Similarly, the velocity parameter can here be measured in a
variety of units, analogous to degrees and minutes, but the simplest unit is
that in which tanh 6 ———>0. We can call this unit the hyperbolic radian
(dimensionless).

How can the connection between velocity parameter and velocity be found
from the principles of (@) additivity and (b) tanh 6 = @ for small velocity
parameters?

Answer: (1) Start with a velocity parameter 8 small enough so that tanh 6 can
be identified with 6 to some appropriate level of accuracy. Thus, write

tanh 0.01 = 0.01

as the first entry in the desired table of hyperbolic tangents.
(2) Get the next entry by using the law of addition (27); thus,

tanh 0.01 + tanh 0.01
| 4 (tanh 0.01)(tanh 0.01)
_0.01 + 0.01
~ 14 0.0001

(3) At this point a decision has to be made about the accuracy of the
number work. Why not take tanh 0.02 to have the value 0.02 just as we took
tanh 0.01 to have the value 0.01? Because there is a correction term of 0.0001
in the denominator of (28). Its presence implies that 0.02 will depart from the
correct value of tanh 0.02 by roughly 1 part of 10*. We here and now decide that
we will calculate all tanh values correct to one part in 10*. We will therefore
want to include the 0.0001 correction in the denominator. But if we have to
make such a correction in evaluating tanh 0.02, why did we not make such a
correction in evaluating tanh 0.01? Because that correction would have been
still smaller. In other words, the difference between tanh 0.01 and 0.01 can be

(28)  tanh 0.02 = tanh (0.01 + 0.01) =
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neglected when one is concerned to have his results correct to “only’’ one part
in 10%. To this accuracy we thus finally have i

0.020000
1.0001

(4) Now ask for the value of tanh 0.04

tanh 0.02 = = 0.019998

tanh 0.02 4 tanh 0.02
1 + (tanh 0.02)(tanh 0.02)

= 0.039980

tanh 0.04 = tanh (0.02 + 0.02) =

_2X0.019998
~ 1+ (0.019998)

The correction term in the denominator now affects the numerical value of the
result by about 4 parts in 10%. Nevertheless the result is good to about 1 part in
10%. The result has been obtained by using a correct formula (Eq. 27) to com-
bine hyperbolic tangent values, which were themselves correct to 1 part in 10

(5) We construct further entries in the hyperbolic tangent table by the same
type of combinatorial procedure. Thus, from a knowledge of tanh 0.04 and
tanh 0.01 we can calculate tanh 0.05 = tanh (0.04 + 0.01). We go on to get
tanh 0.1, tanh 0.2, and tanh 0.4; then tanh 0.5 = tanh (0.4 4 0.1). Similarly
we calculate tanh 1, tanh 2, and any other values we want. In this way we find
the results summarized in Fig. 31.

Two features of the velocity parameter stand out at once from Fig. 31, quite
apart from any details of the numbers. First, the slope of the curve of tanh 6
versus 6 goes to unity at small §—another way of saying that the velocity,
B = tanh 6, and the velocity parameter 6 approach equality at small §. Second,
the velocity parameter 8 goes to indefinitely large positive (or negative) values
as the velocity, 8 = tanh 6, itself approaches plus (or minus) unity. In other

Fig. 31. Relation between velocity parameter 6 and the velocity 8 = tanh 6 as determined
directly from the law of addition

tanh 6, + tanh 6,
1 4+ tanh 6, tanh 6,

as described in the text. Example: A bullet is fired at a speed 8’ = 0.75 from a rocket traveling
at a speed 8, = 0.75. Find the speed g of the bullet relative to the laboratory. The velocity is
not additive but the velocity parameter is. From the graph (point A) read off ¢' = 6, = 0.973.
Add: 9 = ¢ + 6, = 1.946. For this value of the velocity parameter read off from the graph
(point B) the result § = 0.96. The same result is obtained in the text in another way (p. 51).

tanh (6; + 6.) =

Contrast between
velocity parameter and
ordinary angle



54

1. The Geometry of Spacetime

Velocity parameter and
invariant speed of light

Simplicity of velocity
parameter

words any values for the velocity parameter are conceivable, extending over
the entire range from § = — « to §# = + «. The contrast between “hyperbolic
angles” or velocity parameters, with this infinite extent of variation, and
ordinary angles is evident. An ordinary angle leads to nothing new after it has
increased through the finite range from 0 to 27 radians.

Velocity parameters and the law of addition of velocities—what connection
have these ideas with the elementary physical observations that forced on
physics the spacetime point of view? The most direct connection possible:
From the observations—and from what was known even in 1905 about elec-
tromagnetic waves—Einstein was led to conclude that the speed of light is the
same in all inertial reference frames. In other words—to translate into the
language of idealized experiments—a photon shot with the speed of light from
a fast rocket travels relative to the laboratory with a speed that is also equal to
that of light. In the language of velocity parameters, the rocket has a finite
parameter 6,; but the photon (8’ = 1) has an infinite velocity parameter
(6" = = ; Fig. 31, upper right, asymptotic limit). Add a finite number to in-
finity and end up with infinity for the sum 6 = ¢ + 6,. Thus the speed of the
photon in the laboratory frame, 8 = tanh 6 = tanh o = 1, again agrees with
the speed of light. We have come full circle, back to the starting idea of rela-
tivity: that the speed of light has the same value in all frames of reference.

We conclude that the velocity parameter with its simple law of addition,
6 = 6’ + 6,, is the natural way to measure velocities. Then why does one not
have a direct intuitive grasp of this measure of velocity? Why is not the hyper-
bolic angle as familiar to every school child as the ordinary angle? The answer
is simple. Everyday experience deals with angles of all sizes, large and small.
Therefore no one would be so naive as to add slope S’ = 1 (angle of 45°) to
slope S, = 1 (another angle of 45°) and expect to get slope S = S’ + S, = 2
(angle of 63° 26’. Wrong!). One knows that the correct way is to add two angles
(sum: 45° + 45° = 90°; slope S = ). But everyday experience does not deal
with velocities close to the speed of light. Motor cars, real rockets, and real
bullets travel with speeds that are extremely small compared to the speed of
light. Therefore it is not surprising that it took a long time to recognize the
truth about spacetime physics. But now, at last, the difference that exists in
nature between the law of combination of velocities (the complicated Eq. 24)
and the law of combination of velocity parameters (the simple Eq. 21: § =
¢’ + 6,) is understood. Moreover, previously perplexing observations—such
as the equality of the speed of light in all reference frames—become simple to
describe when one adopts the concept of the velocity parameter. In addition,
this parameter —and everything that goes with it in the spacetime description
of physics—are necessities. There is no substitute for these ideas for anyone
who wants to look upon the structure of the physical world as that four-
dimensional world really is. More and more this necessity becomes clear as
electronuclear machines and high velocity particles become part of the fabric
of modern civilization.

There is no way around it! The velocity parameter provides the simple way
to measure speed, as the ordinary angle provides the simple way to measure
inclination. Having accepted this conclusion, what profit can we draw from
it in the form of a simpler way to describe a Lorentz transformation?
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Ask first, by way of orientation, the analogous question about the Euclidean
geometry of the xy plane. Does the formula (Egs. 19) for calculating one set of
coordinates in terms of the other

Ax= (1+ 8572 Ax + S(1 + 712 Ay’
Ay = =S+ SH 1A + (1 + SH12Ay

reduce in complexity when one expresses the relative slope S, of the y and y’
axes in terms of the ordinary angle 4,7 Answer: The coefficients in the rota-
tional transformation become

; cos? §, + sin? 0,) 0 < 1 ) 2
2)—1/2 — 2 112 = Bl st —_ - —
(14 S22 = (1 + tan26,) 12 = ( 6, = Ty = Cos 0,

and

sin 6,

2)—1/2 — = = 81
Sl + S;?) tan 6, cos 6, ool cos 6, = sin 6,

Therefore the transformation equation itself takes the form
Ax= Ax' cosf,.+ Ay’ sin 0.

(29) :
Ay = —Ax' sin 6, + Ay’ cos 6,

and we conclude: The relation between old and new coordinates takes its
simplest form when the coefficients in the covariant transformation are ex-
pressed as “trigonometric,” or “circular,” functions of the angle of rotation.
Now turn to the Lorentz transformation written in terms of the relative
velocity
Ax= (1 —B2'2Ax + 81 — B2 2 Al
At =81 =B 2AX + (1 — B2 2AY

How does this pair of equations look when expressed in terms of the improved
measure of velocity, 8,7 Answer: Recall the connection between the velocity
B, and the velocity parameter

B, = tanh 6,

Note that the coefficients in the Lorentz transformation depend upon 8,, and

by that very token are fixed by our choice of 8,. These coefficients have the form

(30) (1 —B3)~"2 = (1 — tanh? §,)12
and
31 B.1 — B,2)~2 = tanh 0, (1 — tanh? §,)'2

These expressions have a rather complicated appearance. Nevertheless, they
are well defined. For any given value of 6, we know how to find the value of
tanh 6, (Fig. 31 and corresponding text). From this value of tanh 6, we can
evaluate (30) and (31) with any desired accuracy for any given value of the
velocity parameter. These two functions of 6, have such importance that they
have received names of their own in the literature on hyperbolic functions. To
give the functions in question their standard names in no way decreases our
ability to find the values of these functions at any time we please through our

Simplify Euclidean
transformation using
angle

Simplify Lorentz
transformation using
velocity parameter
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Lorentz transformation
using velocity
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Circular functions
compared with
hyperbolic functions

own efforts and without reference to any treatises or tables. Therefore we
accept and use the standard names hereafter:

hyperbolic >? names;
cosine of 6, nothing

tanh 6, (1 — tanh26,) = sinh ¢, = ( ypeoil >S oot
sine of 6, names!

(I — tanh26,)"'2 = cosh 6, = <

Using this nomenclature, we find that the equations of the Lorentz transforma-
tion take the following form

Ax = Ax’ cosh 6, + At sinh 6,

(32)
At = AX’ sinh 6, + At cosh 6,

and we conclude: The relation between old and new coordinates takes its
simplest form when the coefficients in the transformation are expressed as
hyperbolic functions of the velocity parameter 6, of the relative motion.
Moreover, expressed in terms of hyperbolic sines and cosines, the Lorentz
transformation takes a form that corresponds even more closely than before to
the standard trigonometric form (29) for a rotational transformation.

What can one do to grasp and feel the properties of the hyperbolic functions
that appear in the Lorentz transformation? The two most interesting and im-
portant properties of these functions follow immediately from the definitions
(Egs. 30 and 31). First, the ratio of the two hyperbolic functions has the value

(33) sinh 6,/cosh 6, = tanh 6,

in complete analogy to the corresponding relation for circular functions.
Second, the difference between the squares of the two hyperbolic functions is

(34) cosh?6, — sinh?6, = L tanh?6, 1 — tanh?g,

(1 —tanh?9,) (1 — tanh®6,) 1 — tanh®e, :

Contrast this formula with the analogous relation for trigonometric functions
(35) cos® (angle) + sin? (angle) = 1

Equations 34 and 35 admit a simple geometrical interpretation. Plot
sin (angle) as the horizontal coordinate and cos (angle) as the vertical coordi-
nate in Fig. 32. Then Eq. 35 is the equation of a circle of unit radius—whence
the often used term “‘circular functions” for the sine and the cosine. In con-
trast, (34) is the equation of a hyperbola (Fig. 33)—hence the word ‘““hyperbolic
functions.” The positive sign in the expression cos® + sin? = 1 has its origin in
the way x components and y components of a vector are combined to obtain
the square of the length of that vector. And why the minus sign in cosh? 6 —
sinh?§ = 1? Because the square of a spacetime interval is given by the square of
the separation in time diminished by the square of the separation in space.
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cos?@ + sin?f = 1.

Fig. 32. Circle representing cos 8 versus sin 6
for circular functions. Example: (3/5)* 4
4/51 = 1.

cosh?@ — sinh?6 = 1.

Fig. 33. Hyperbola representing cosh 6 versus
sinh @ for hyperbolic functions. Example:

(5/3) — (4/3) = 1.

The distinction between the plus sign in cos? + sin? = 1 and the minus sign
in cosh? § — sinh? § = 1 has to do with the contrast between the length in
Euclidean geometry and the interval in Lorentz geometry. Look at this point
more closely for the two kinds of geometry in turn. In Euclidean geometry
reconfirm that the covariant transformation of coordinates (Eqs. 29)—now
expressed in terms of circular functions rather than slope—guarantees the
principle of invariance of length. For this purpose calculate (length)? = (Ax) 4
(Ay)? from (Egs. 29) and find

(length)? = (Ax) + (Ay)
= (Ax' cos 6, + Ay’ sin 0,2 4+ (—Ax’ sin 6, + Ay’ cos 6,)?
= (AX')? cos? 0, +2(AxAy)eosb-sint-+ (Ay')? sin? 6,
+ (AX')? sin? 6, —2(AxDAF)-sinb-eos-8-+ (A)')? cos? 6,
= [(AX")? + (AY')] (cos? 8, + sin? 6,)
= (Ax)? + (Ay')
confirming the invariance of the expression for length. Note the importance of

the relation
cos? 0, + sin? 4, = 1

in connecting the ideas of covariance (transformation of coordinates associ-
ated with different orientation of two coordinate systems) and invariance
(length the same in both systems).

The connection between covariance and invariance in Lorentz geometry

rests equally clearly on the relation

cosh?, — sinh?6, = 1

Confirmation:
Euclidean transforma-
tion preserves distance
invariant

Confirmation: Lorentz
transformation
preserves interval
invariant
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Inverse Lorentz
transformation

This one sees on calculating any interval whether spacelike or timelike
( interval of )2 o ( interval of >2
proper distance proper time
= (space separation)? — (time separation)?
= (Ax) — (Ar)?
= (Ax’ cosh 6, + At sinh 8,)> — (Ax’ sinh 6, + A cosh 6,)

= (AX')* cosh? 6, +-2Ax"YA+)-eosh-8—sinhd-+ (Ar') sinh? 6,
— [(AX’Y sinh? §, +2(Ax)A+)-sinh-b-eosh-6-+ (A1) cosh? 6,]
= [(AX")* — (A?)*] (cosh26, — sinh26,)
= (AX'? — (A
Here one sees reconfirmed in the simplest way possible that a Lorentz transfor-
mation preserves the invariance of the expression for the interval.

The Lorentz transformation—we have now confirmed in all detail —
translates from the specialized language of rocket coordinates (x', t') to the
specialized language of laboratory coordinates (x, 1). Moreover, the scheme of
translation is consistent at every point with the universal language of intervals
(consistency of covariant description of spacetime physics with invariant
description of spacetime physics). However, we need still more: The typical
Turkish-English dictionary is bound together with an English-Turkish dic-
tionary—where is the second “relativity dictionary?” How can we go back-
wards from a knowledge of x and 7 to a knowledge of x’ and ¢'? If one dic-
tionary is provided by the formulas

x = x’ cosh 6, + ¢’ sinh 6,
t = x’ sinh 6, + ¢’ cosh 4,

what are the formulas for translation backwards from laboratory records to
rocket records? Answer: The Lorentz transformation “inverse” to Eqgs. 36 is

(36)

x" = xcosh 6, — ¢ sinh 6,
—x sinh 6, + ¢ cosh 6,

Proof: Substitute these expressions for x’ and 7’ into Egs. 36 and verify that
identities result (an English word translated into Turkish and then back into
English comes out as the original word provided that the one dictionary is the
true inverse of the other!).

In the following table, formal definitions of the hyperbolic functions and
some of the relations that they satisfy are presented in parallel with similar
definitions and relations for circular functions. In this table e is the base of the
natural logarithms and has the numerical value 2.718281 . ... The symbol i
stands for the square root of minus one, so that i? = — 1. The usual rules for
addition and multiplication of exponents apply to exponents containing i. The
angle 6 is expressed in circular or hyperbolic radians (not degrees). The ex-
expression 4!, for instance, means four factorial: 4 X 3 X 2 X 1. To under-
stand these relations derive lines 7 to 13 from the definitions in lines 1 to 6 on
each side of the table and show qualitatively how the graphs of Figs. 32 and 33
follow from these relations. Note especially the differences in sign between the
two sides of the table.

(37) ;
{

II



Table 8. Circular and hyperbolic functions.

Circular functions Hyperbolic functions
DEFINITIONS
. 8 _ p—ib . e — et
15 SNl =i=—ar— 1. sinh 8 = 3
1L —if 8 -6
Higes o= biont: 2 coshitim TS
2 2
sin 6 sinh 6
3. tan 0 = ) 3. tanh 8 = YT
5 03 6° 07 . 63 0° 67
4.sm0=0-—§+-5—!—ﬂ+--- 4.smh0=0+§?+3—!+ﬁ+---
(& o 0° 0* 0 0%
5‘c°50=1_ﬁ+ﬁ_'€§+"' 5.cosh0=l+ﬁ+‘—ﬁ+—6—!+~~
Sipy B2 e e L 2 S
6.tan0—9+3+150+ 6. tanh 8 = 0 3+150
RELATIONS

7. sin (—0) = —sin 6
8. cos (—6) = cos @
9. tan (—6) = —tan @
10. cos* 0 + sin? 6 = 1 |
11. sin (6, + 62) =

sin 6, cos 8, + cos 8, sin 6.

12. cos (6, + 6,) =

coSs 6, cos 0, — sin 6, sin 6,

tan @ tan @
13. tan (6, + 6.) = ﬁn—%—z

7. sinh (=) = —sinh @
8. cosh (—6) = cosh @
9. tanh (—6) = —tanh 6
10.[ cosh? @ — sinh?a = 1]
11. sinh (8, + 6,) =
sinh 0, cosh 8, + cosh 6, sinh 6.

12. cosh (6, + 6,) =
cosh 6, cosh 6, + sinh 6, sinh 6,

_ tanh 6, + tanh 6,
l2: tann (8= i) e + tanh 6, tanh 6,

POOR MAN’S QUICK RECIPES

For small 8 sin 8 =0
tand =6

Example: 6 = 0.1

Poor man’s recipe  sin 8 = 0.1

tan 6 = 0.1
Accurate values sin 8 = 0.0998
tan 0 = 0.1003

For small 8 sinh 8 =6
tanh 6 = 6

Example: 6 = 0.1

Poor man’s recipe sinh 6 = 0.1
tanh 8 = 0.1
Accurate values sinh 6 = 0.1002

tanh 6 = 0.0997

For large 6 sinh 6 = ¢7/2
cosh 8 = €°/2
Example: 6 =3 e’ =20
Poor man’s recipe sinh 8 = 10
cosh o = 10
Accurate values sinh 6 = 10.018

cosh 8 = 10.068




