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Laboratory
reference clock

PR

Laboratory frame Rocket frame

Fig. 11. Laboratory and rocket frames, further schematized from Fig. 10. The central reference
clock of each frame is shaded.

A firecracker explodes. The explosion is recorded by the clock in the labora-
tory lattice nearest to the explosion. It is recorded also by the clock in the
rocket lattice nearest to the explosion. How do the coordinates of the recording
laboratory clock compare with the coordinates of the recording rocket clock?
One result can be derived immediately from the principle of relativity: the
recording laboratory and rocket clocks will have the same y coordinates. To
show this, let the recording rocket clock carry a wet paint brush that makes
marks on the laboratory lattice as it moves past. Figure 12 shows this for the
special case, y = 1 meter. The marks on the laboratory lattice serve to measure
the laboratory y coordinate of the y = 1 rocket clock. These paint marks
appear on the y = 1 laboratory clocks rather than above them or below them.
For suppose that the paint marks appear on the lattice rods below the y = 1
laboratory clocks: Then both observers will agree that the y = 1 rocket clocks
passed “inside” the y = 1 laboratory clocks. Permanent paint marks would
verify this for all to see. Similarly, if the paint marks appear on the lattice
rods above the y = 1 laboratory clocks, both observers will agree that the
y = 1 rocket clocks passed “outside” the y = 1 laboratory clocks. In either
case there would be a way to distinguish experimentally between the two
frames. But no one has been able to distinguish between these two frames using
any other experiment. The principle of relativity embodies the assumption that
any such experimental distinction between inertial reference frames is impos-
sible. Therefore we assume that no one could distinguish between the two
frames using this experiment. It follows that the y coordinate of any event—
such as the explosion that began this paragraph—will have the same y coordi-
nate in the rocket frame as in the laboratory frame.

By a similar argument the z coordinate of an event is the same in the rocket
frame as in the laboratory frame. Notice that both the y coordinate and the z
coordinate of an event are measured in a direction perpendicular to the direc-

Fig. 12. Demonstration that y coordinate of
an event is the same in laboratory and rocket D et clocke
frames.

Laboratory and rocket
observers record single
event

y coordinate of event is
same in lab and rocket
frames

z coordinate of event is
same in lab and rocket
frames
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Looking for measure of
separation AB that has
same value in all
inertial frames

Event A: flash emission
EventB:flashreception

Details: lab and rocket
coordinates of events
A and B

tion of relative motion of the two frames. Equality of distance in each frame
measured perpendicular to the direction of relative motion gives us a clean
way to compare clocks in the two latticeworks. Let a flash of light bounce
back and forth between a mirror mounted on the rocket reference clock and a
mirror mounted on the y = 1 rocket clock directly above the reference clock.
This flash will return to the origin every two meters of rocket light-travel time.
We can trace the path of this flash of light in the laboratory frame up to the
same y coordinate and back down again. Using the equality of the speed of
light in the two frames we can calculate the laboratory time corresponding to
the 2-meter round-trip time in the rocket frame. In the next section this study
will lead to a demonstration of the invariance of the interval.

5. Invariance of the Interval

Distance between two town gates is calculated from the difference between the
x coordinates of the two gates and the difference between the y coordinates.
How does one find the analogous physical quantity, the spacetime interval
between two events? And between what two events shall this interval be
evaluated?

Let event A be the emission of a flash of light. Let event B be the reception of
this flash after its reflection from another object. All that matters in the end is
the pair of events. Neither the light nor the object that reflects it is of any
direct interest. Nevertheless, an analysis of the track of this pulse through
spacetime reveals quickly and simply a quantity (the interval) that is associated
with the two events and that has the same value in all inertial reference frames.

Event A: A spark plug fires. A flash of light flies up to reflector R in Fig. 13.
Then the flash wings down. Event B: The flash is recorded. Now for the
details (Figure 13).

The spark plug fires in the laboratory frame at the zero of time and at the
origin of the x, y, z coordinate system (crosshatched). The rocket passes by
with such timing that it records the spark as taking place also at its origin
(likewise crosshatched) and at its zero of time. So much for the coordinates of
the event of emission:

Xemission = 0; Yemission = O, tmnissiun — 0 (laboratory fran]e)
xlemission — 0; ylcmission = 09 t’(‘missim] =10 (rOCket frame)
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A. Light path as observed in labora- B. Light path as observed in rocket

tory frame

frame rocket frame

Fig. 13. Emission and reflection of the reference flash, and its reception at origin of rocket frame.
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The reflector is mounted on the rocket clock 1 meter directly above the
origin.

The reception of the flash occurs in the rocket frame at the:'same place as the
emission. The light flash travels a round-trip path of 2 meters. This trip re-
quires 2 meters of light-travel time. The coordinates of the event of reception
in the rocket frame are therefore

x,rccoption = 0; y’rcccption = Oy t,rcccption = 2 meters

More relevant than an absolute coordinate is the difference in coordinates be-
tween the event of reception and the event of emission

Ax, > xlrncnptiun = —xl(-mixsion =0
’
Ay = y’rcccption o y,emission =0
At = tlreception = t,emixxion = 2 meters

In the laboratory frame the light flash is received, not at the origin, but at the
distance Ax to the right of the origin. High rocket speed implies a large Ax;
low rocket speed, a small Ax. (The distance is shown as 1 meter in the figure,
but the following analysis is correct for any distance.) In the laboratory frame
the flash travels the hypotenuse of two right triangles. Each has a base of
(Ax/2) and an altitude of 1 meter. The total length of the light path is

21 + (Ax/2)2]2

Recall that the speed of light is the same in the laboratory frame as in the rocket
frame—the preposterous-but-true character of nature! Therefore the time
difference between emission and reception in the laboratory frame is given by
the identical formula

(4) At =1 ’rec(-pt.ion — femission = 2[1 + (Ax/2)2jl/2

in meters of light-travel time.

Why is this time greater than 2 meters? Because the hypotenuse of a right
triangle in Fig. 13,A, is greater than its altitude! There is no escape from the
conclusion that the time between emission and reception is not the same in the
two reference frames.

Both time and space differences between the event of reception and the event
of emission are summarized in Table 5.

Table 5. Difference in coordinates between the event of reception and the
event of emission.

Laboratory frame Rocket frame
xn:ccplion = Xemission — AX x,reception = x,cmisaion = AX’ = 0
Ireception — temission = At = 2[1 + (A'\'/Z)Z]”2 ”rcception = "cmiemion = At’ = 2 meters

The time lapse is different in the two reference frames; and so is the space
separation—just as the coordinates Ax and Ay of the separation between two
town gates are different for the Daytime and Nighttime surveyors! However,
for the surveyors there was a combination of coordinates—the square of the
distance between gates—that was the same for both of them

(distance)* = (Ax)* + (Ay)* = (AX') + (Ay')

Time between A and B
has different values for
lab and rocket
observers



24

1. The Geometry of Spacetime

Interval between A and
B has same value for
lab and rocket
observers

Interval AB has same
value in all rocket
frames!

What is the same in
two inertial frames;
what is nearly the
same,; and what is
different

Is there any similar combination of coordinates for two events that will have
the same value in the laboratory and rocket frames? Answer: Yes! the square
of the interval

(5)  (interval)? = (A7) — (Ax)? = (AZ')2 — (Ax')® = (2 meters)?

as one checks directly by substituting in the quantities listed in Table 5.

The rocket frame chosen in which to analyze these two events is a rather
special one, in that both emission and reception occur at the same place in it.
Figure 13,C, shows the path of the reflected light in a second rocket frame
(“super-rocket frame’’) that is moving even faster relative to the laboratory
frame than is the first rocket. In this second rocket frame the difference be-
tween the x coordinates for emission and reception (double primes on symbols)
X" reception — X emission = AX’’ 18 a negative quantity because the reception
occurs on the negative x axis in this frame. Nevertheless, (—Ax"")? = (Ax")
and we can still use the right triangles in Fig. 13,C, to show that the total
length of the light path in this second rocket frame is given by the expression
2[1 4+ (Ax"'/2)*]'*—which is the same in form as that for the laboratory frame.
The speed of light must have the same value in the second rocket frame as in
the first rocket frame. Therefore the time between emission and reception
is given by

1 reception — I"emission = At = 2[1 + (Ax"[2)*]2
Therefore
(A7) — (Ax") = (2 meters)?
also, and in summary

(6) (AD? — (Ax) = (AP — (AX")? = (A?")? — (Ax"')? = (2 meters)®

Now forget the outgoing light flash, the reflector, and the returning light
flash. They were only tools. They helped to identify the quantity that has the
same value in different frames of reference. From now on focus on the quantity
itself, the interval. Disregard the details of the derivation.

What has been learned? Two events, A and B, occur at the same point in the
rocket frame (Ax’ = 0) but at different times (A7’ = 2 meters). Viewed in the
laboratory frame, those same two events are separated in space by a distance
Ax—the faster the rocket happens to be moving, the greater the distance.
This result is hardly surprising. One is even entitled to say, “What could be
more obvious!” The surprise comes elsewhere. First, the time At between the
two events as recorded in the laboratory frame does not have the same value as
it has in the rocket frame. Second, the time between A and B as punched out
by the two relevant recording laboratory clocks is greater than the time be-
tween the same two events as recorded by the indentical reference clock of the
rocket: Ar > Ar’. Third, the factor of increase of the time (see Table 5)

At/Ar = [1 + (Ax/2)

is close to unity (that is, the increase itself is very small) if the distance Ax
covered by the rocket between events A and B is small. However, if the rocket
moves very fast, Ax is a very great quantity, and the factor of discrepancy be-
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tween the two times is enormous. Fourth, despite this newly found difference
in time as recorded in the two reference frames, and despite the long-known
difference between the space separation of the events in ‘the two reference
frames (Ax #= Ax’ = 0), there is nevertheless a quantity that is the same in the
laboratory frame as the 2 meters of elapsed light-travel time between A and B
in the rocket frame. This quantity is the interval,

(interval) = [(A1)? — (Ax)'2

The rocket speed may be very high. Then Ax will be very large. But then Az is
also very large. Moreover, the magnitude of Az is perfectly tailored to the
size of Ax. In consequence, the special quantity (A7)* — (Ax)* has the value
(2 meters)?, no matter how great Ax and At individually may be.

All of these relationships can be seen at a glance in Fig. 13,A. The hypote-
nuse of the first right triangle is Az/2. Its base is Ax/2. To say that (Af)* —
(Ax)* has a standard value, and thus to state that (A7/2)* — (Ax/2)* has a
standard value, is to say that the altitude of this right triangle has a fixed
magnitude (I meter in the diagram) no matter how fast the rocket is going.
What then was the keystone of the argument establishing the fact that (A7)* —
(Ax)? has the value (2 meters)?, no matter how fast the rocket is moving? The
keystone was the principle of relativity, according to which there is no differ-
ence in the laws of physics between one inertial reference frame and another.
This principle was put to use here in two very different ways. First, it was used
to reason that distances at right angles to the direction of relative motion are
recorded as of equal magnitude in the laboratory frame and in the rocket
frame. Otherwise one frame could be distinguished from the other as the one
with the shorter perpendicular distances. Second, the principle of relativity
was employed to deduce that the speed of light must be the same in the
laboratory frame as in the rocket frame—a deduction supported by the
Kennedy-Thorndike experiment. The speed being the same, the fact that the
light-travel path in the laboratory frame (the hypotenuses of two triangles) is
longer than the simple round-trip path in the rocket frame (the altitudes of the
two triangles: up 1 meter and down again) directly implies a longer time in
the laboratory frame than in the rocket frame.

In brief, in the one elementary triangle of Fig. 13,A, are displayed the four
great ideas that underlie all of special relativity: invariance of perpendicular
distance, invariance of the speed of light, dependence of space and time co-
ordinates upon the frame of reference, and invariance of the interval.

If Fig. 13,A, thus epitomizes all of special relativity in a form easy to re-
member, the foregoing analysis of the figure nevertheless leads to what at first
sight seems to be a preposterous conclusion. How can it possibly make sense
for the lapse of time between two events to be longer in the laboratory than in
the rocket? Has it not already been argued that ““distances at right angles to
the direction of relative motion™ are equal, “otherwise one frame could be
distinguished from the other as the one with the shorter perpendicular dis-
tances”? What about the difference between time lapses in the two frames?
Does not this difference give a way to differentiate physics in one frame from

One diagram illustrates
the four great ideas of
special relativity

FIG. 13,A, PAGE 22

Is inequality of lab and
rocket time lapses a
paradox?
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Relativity of time
(Lorentz) compared
with relativity of
“northing”* (Euclid)

The spacetime
diagram: simple way
to display events

Fig. 14. The north-south separa-
tion of point B from point A (the
“northing of B relative to A”) de-
pends upon the choice of the direc-
tion north.

physics in the other? Yet is not such a difference ruled out by the principle of
relativity—the principle that one inertial reference frame is as good as another?

For answers to these questions, turn back to the parable of the surveyors.
Consider point B in Fig. 14. It is one meter straight north of another point, A,
according to the reckoning of the Nighttime surveyor and his North Star
north. Now consider the location of point B according to the Daytime surveyor
and his magnetic north. Is the y separation Ay between A and B (surveying
terminology: the northing of B relative to A) also one meter in the Daytime
frame? No, Ay is less than one meter! How can this be? Because the altitude
(Ay) of a right triangle is shorter than the hypotenuse (1 meter). Does this mean
that the rules of surveying in the Daytime coordinate system are different
from those in the Nighttime coordinate system? Evidently not! Similarly,
there is no flaw in the construction or functioning of the laboratory clocks
that makes them give longer readings for the time lapse AB. The “discrepancy”™
between the laboratory clocks and the rocket clock is caused instead by the
character of spacetime geometry itself. That is the way the world is built! The
analogy between the Lorentz geometry of spacetime and the Euclidean geome-
try of the surveyors’ world is expanded in Table 6 (pages 28 and 29).

6. The Spacetime Diagram; World Lines

A simple way to look at the events of emission and reception of the last sec-
tion is to plot the position of the event on the horizontal axis and the time of
the event on the vertical axis of a spacetime diagram (Fig. 15). The light is
emitted from a spark plug attached to the reference clock of the first rocket.
This plug fires at the instant when this clock passes the laboratory reference
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clock. Both clocks then read zero. Therefore the event of emission is located
at the origin of the spacetime diagram plotted by the rocket observer

X misstonie= 0, t/emission =0

It is also located at the origin of the spacetime diagram made by the laboratory
observer

Xemission = 0, femission = 0

The further history of the relevant light ray looks different as plotted in the
spacetime diagrams of the laboratory and the two rockets. In the first rocket
the reception of the reflected flash occurs at x’ = 0 and 2 meters of time later
than the reference event

x’reception = 0, t’reoepf,i.m = 2 meters

as already recorded in Table 5 and as seen more directly in Fig. 15,B. In the
laboratory frame the event of reception is located to the right of the origin

Xreception = @ POSitive quantity
Lreception = [(2 meter 5)2 + -7‘21-ecept.ion]”2
= a time greater than 2 meters

as shown in Fig. 15,A. In the second rocket frame (the second rocket is moving
faster than the first!) the event of reception appears to the left of the origin
(Fig. 15,C)

X" reception = @ Negative quantity
t”reoeption = [(2 meters)’ + (-x,,reeel‘:tion)z]l/2
= a time greater than 2 meters (again!)

A. Laboratory spacetime diagram B. Rocket spacetime diagram C. Super-rocket spacetime diagram

Fig. 15. Spacetime diagrams showing emission of the reference flash and its reception after
reflection. The hyperbola drawn in each figure satisfies the equations (interval)* = # — x* =
12 — x2 =" — x'"2 ;
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Table 6. Comparison of the difference in northing between points A and B
in Daytime and Nighttime coordinate systems and the difference in
time between events A and B in laboratory and in rocket reference

frames.

Questions

Answers of a student of
surveying concerning
difference in northing

between points A and B.

(See Fig. 14.)

Answers of a student of
spacetime physics concerning
difference in time
between events A and B.
(See Fig. 13.)

In which frame of reference
does the separation of B from
A appear simplest?

What is simplifying featurein
this frame of reference?

Why does this feature sim-
plify the measurement of the
separation AB?

What is an alternative frame
for analyzing the separation
AB?

What complication is there
in analyzing the separation in
this alternative frame?

How is this difficulty met?

What is the reading on the
first of these measuring de-
vices?

And the reading on the sec-
ond of these measuring de-
vices?

Does the coordinate thus
found for B directly measure
its separation from A?

Then how does one find the
separation AB from measure-
ments in this frame of ref-
erence? :

Coordinate system of Night-
time surveyor based on
North-Star north.

Points have same x’ coordi-
nate; or Ax’ = 0.

One meter stick oriented to
North-Star north suffices (1)
to verify that both points do
have the same x’ coordinate
and (2) to measure directly
the northing of B relative
to A.

Coordinate system of Day-
time surveyor based on mag-
netic north.

No single one of his meter
sticks, oriented to magnetic
north, can locate both A
and B.

Two of these north-oriented
meter sticks are needed, one
located Ax meters to the
right of the other.

Point A at y = 0.

Point B located Ay meters
north.

No! The northing Ay is less
than the distance AB. More
precisely,

Ay = [(AB)* — (Ax)'

From the formula for dis-
tance,

(distance)® = (Ax)? + (Ap)>
(Test by substituting in the
expression for Ay from the
entry above!)

Reference frame of rocket.

Events have same x’ coordi-
nate; or Ax’ = 0.

One recording clock attached
to rocket frame suffices (1) to
verify that both events do
have the same x’ coordinate
and (2) to measure directly
the time delay of B relative
to A.

Reference frame of labora-
tory.

No single one of the record-
ing laboratory clocks can
register both A and B.

Two of these laboratory
clocks are needed, one lo-
cated Ax meters to the right
of the other.

Event A at t = 0.

Event B delayed by Ar sec-
onds.

No! The delay At is greater
than the interval AB. More
precisely,

At = [(AB) + (Ax)T".

From the formula for inter-
val,

(interval)? = (A1) — (Ax)?
(Test by substituting in the
expression for Ar from the
entry above!)
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What is the distinction in the
present examples between
measurements made in the
primed and the unprimed
frames?

Isn’t there something pre-
posterous about this result?

Yes! Does not this discrep-
ancy prove that there is some
inner contradiction in the
reasoning?

Is there some fundamental
difference between the primed
and the unprimed frame of
reference that is responsible
for the one-sided difference
between coordinate values?

Then what is responsible for
this one-sidedness?

How can the identical char-
acter of the physics in the two
frames of reference be readily
illustrated?

For such a choice of C, what
is the distinction between
measurements made in the
primed and the unprimed
frames?

How can the discussion be
summarized?

Ay is less than Ay’ (=AB).

Meaning that identical meter
sticks give nonidentical
northings?

No! A single Nighttime meter
stick suffices to establish the
distance AB. But there is no
single Daytime meter stick
with which one establishes
the (lesser) magnetic northing
of B relative to A. Therefore
no Daytime meter stick can
be said to disagree with the
Nighttime meter stick.

For Ay < Ay’? No!

The point B happens to lie
on the same North-Star north
line as A, but not on the same
magnetic north line as A.

Pick a point C that has the
same x coordinate as A (C in
the line of magnetic north
relative to A)

Ay (=AC) is greater than
Ay'.

There is no paradox about
northward component of AB
having different valuesin two
coordinate systems; the dis-
crepancy is not a fault of the
meter sticks; not even a fault
at all; the “discrepancy” is
caused by the inner workings
of Euclidean geometry.

At is greater thanAt'(=AB).

Meaning that identical clocks
record nonidentical times?

No! A single rocket clock
records the interval AB. But
there is no single laboratory
clock with which one estab-
lishes the (greater)laboratory
time delay of B relative to A.
Therefore no laboratory
clock can be said to disagree
with the rocket clock.

For At >At"? No!

Event B by chance occurs at
the same point in the rocket
frame as A, but not at the
same point as A in the labo-
ratory frame.

Pick an event C that has the
same x coordinate as A (C
at the same place as A in the
laboratory frame, but later
in time).

At (=AC) is less than Af'.

There is no paradox about
time lapse from A to B hav-
ing different values in two
reference frames; the dis-
crepancy is not a fault of the
clocks; not even a fault at all;
the “discrepancy” is caused
by the very structure of the
geometry of the spacetime in
which all physics takes place.
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Invariant interval The different points marked “reception” in the different spacetime diagrams

corresponds to  all refer to the same event. The event is the same but its coordinates in different -

hyperbola on  frames are different. What do these different coordinates of the same event
spacetime diagram  have in common? They all satisfy the equation

(time separation)? — (space separation)* = (interval)* = constant

This is the equation of a hyperbola. Therefore, an event which is plotted on the
hyperbola t* — x* = (constant) in the spacetime diagram of any laboratory or
rocket frame will be plotted somewhere on a hyperbola with the same equation in
the spacetime diagram of every other laboratory and rocket frame.

Is there likewise a single curve that correlates the different coordinate
values obtained by the Daytime and Nighttime surveyors for a single gate?
The x and y coordinates of, say, gate A with respect to the town square depends
on the choice of the north direction (Fig. 16). The Daytime and Nighttime
plots of this gate are shown in Fig. 17, parts A and B. Think of a third and still
different set of axes rotated even more than the Nighttime axes relative to the
Daytime axes. For the surveyor who uses this third set of axes the x’’ coordi-
nate of gate A may be negative (Fig. 17,C).

Fig. 16. Relative standards of north
for Daytime, Nighttime, and a third
surveyor respectively.

A. Daytime plot ' B. Nighttime plot C. Plot by third surveyor

Fig. 17. Coordinates of Gate A as observed by Daytime, Nighttime, and a third surveyor
respectively. The circle drawn in each figure satisfies the equations (distance)* = x* + y* =
xlg + ylg = xllz + yllz
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The different points marked “gate A in the different plots all refer to the
same gate. The gate is the same but its coordinates in different plots are differ-
ent. What do these different coordinates of the same gate have in common?
They all satisfy the equation

(x separation)? 4 (p separation)®> = (distance)®> = constant

This is the equation of a circle. Therefore, a point that is plotted on the circle
x2 + y* = (constant) in the coordinate system of any surveyor will be plotted
somewhere on a circle with the same equation in the coordinate system of every
other surveyor.

Here is the fundamental difference between textbook Euclidean geometry
and the real Lorentz geometry of spacetime. In Euclidean geometry the
distance between two points is an invariant, and as a result, for all surveyors
gate A will lie somewhere in the xy plane on a circle centered on the town
square. In Lorentz geometry the interval between events is an invariant, and as
a result, for all laboratory and rocket observers a given event will lie some-
where on a hyperbela in the spacetime diagram when referred to the refer-
ence event.

In Euclidean geometry the length—or its square—is always a positive
quantity

(Ax) + (Ayy = (AxP + Ay )1 >0
In contrast, the squared interval of Lorentz geometry
(Ar) — (Ax) = (Ary — (Ax')?

may be positive, negative, or zero, depending on whether the time or the space
component predominates. Moreover, whichever of these three descriptions
characterizes the interval in one reference frame also characterizes the interval
in any other reference frame, because the interval has the same value in all
frames. Accordingly we find that nature provides a fundamental way to classify
the relation between two events. An interval between two events is called
timelike, lightlike, or spacelike depending on whether the squared interval is
positive, zero, or negative, respectively, as shown in Table 7.

Table 7. Classification of the relation between two events.

Description Squared interval Name
Time part of interval dominates over space part positive timelike interval
Time part of interval equals space part zero lightlike interval
Space part of interval dominates over time part negative spacelike interval

The value of the interval between two events is represented by different
symbols depending on whether it is timelike or spacelike. The value of a time-
like interval is given the Greek letter tau () and is called the invariant timelike
distance between two events or the proper time (or sometimes the local time)
between the two events

@) Ar = [(A) — (Ax)y]”

Invariant distance
corresponds to circle
on xy diagram

Three types of
separation between
two events:
timelike

lightlike

spacelike

Proper time and proper
distance
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World line of particle

Path in space has
length

The value of a spacelike interval between two events is given the Greek letter
sigma (o) and is called the invariant spacelike distance or the proper distance
between the two events

@®) Ao = [(Ax)* — (Arp]'2

Figure 18 represents as a function of time the location of a particle which
started along the x axis from the origin at 7 = 0. Such a plot of position
versus time in a spacetime diagram is called the world line of the particle.
Each lattice clock encountered by the particle punches out the time of coinci-
dence. Thus the world line of the particle can be considered to be made up of
these separate events of coincidence. No particle has ever been observed to
travel faster than light. Therefore a particle will always travel /ess than one
meter of distance in one meter of light-travel time. It follows that events along
this world line will have a greater time separation than their separation in
space: the world line of a particle will consist of events that are timelike with

Fig. 18. Timelike world line of a particle.

respect to the initial event and to each other. In other words, a particle must
follow a timelike world line. A timelike world line is characterized at every point
P by a local tangent which lies between the world lines of light rays originating
at that point. These light rays travel one meter of distance in one meter of
light-travel time. Events along the world line of a light ray have equal space
and time separations. Therefore the world line of a light ray consists of events
that are /ightlike with respect to the initial event and to each other. In other
words light rays follow lightlike world lines.

Distance is a central idea in all applications of Euclidean geometry. For
instance, using a flexible tape measure it is easy to measure the distance s
along a path that starts at the town square and winds out through gate A
(Fig. 19,A). The distance As between any two nearby points on the path (for
instance, those marked 3 and 4 in the figure) can also be calculated using the
difference in coordinates Ax and Ay of the two points with respect to any
coordinate system. Since distance is invariant, the distance between these two
points will be the same when calculated in any coordinate system even though
the separate coordinates Ax and Ay have different values in different coordi-
nate systems. Elsewhere along the path the distance between another pair of
nearby points will also be independent of the coordinate system used in evalu-
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Fig. 19, A. Distance along a winding path Fig. 19, B. Proper time along a curved world
which starts at the town square. Notice that line in a spacetime diagram. Notice that the
the total distance along the winding path from  total proper time along the curved world line
point O to point B is greater than the distance  from event O to event B is smaller than the
along the straight y axis from point O to proper time along the straight t axis from
point B. event O to event B.

ating that distance. So too for the sum of the lengths of all the segments of the
path! Thus different surveyors using different coordinate systems will all agree
on the distance along a given path from a specified initial point O to a specified
final point B.

It is possible to proceed from O to B along quite another path—for ex-
ample, along the straight line OB in Fig. 19,A. The length of this alternative
path is evidently different from that of the original path. This difference in
length of different paths between O and B is a feature of Euclidean geometry
so well known as to occasion hardly any comment and certainly no surprise.
- In Euclidean geometry a curved path between two specified points is /onger
than a straight path between the same two points. The existence of the dif-
ference of length between two paths violates no law. No one would claim that
a tape measure fails to perform properly when laid along a curved path.

Proper time is to a world line in Lorentz geometry what length is to a path
in Euclidean geometry. The world line is started at an event O and ended at
an event B. There are many different world lines that start at O and end at B.
The lapse of proper time on each is well defined; but it differs between one
world line and another. Is this surprising? Then it is appropriate to look more
closely at how the proper time is defined and measured.

Consider a particle moving from O to B along the curved world line of
Fig. 19,B. In this example, the particle travels along the x axis at a changing
speed. Let the particle emit a flash of light every meter of time as recorded on
a clock carried with it. The proper time Ar between any two consecutive
flashes (for instance, those marked 3 and 4 in the figure) can be calculated
using the difference in coordinates Ax and At of the two events measured in a

Length is shortest for
direct path

Stretch of world line
measured by proper
time
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particular inertial frame. Because the interval is invariant, the proper time
between these two events will be the same when calculated in any inertial
frame, even though the separate space and time coordinates Ax and Az will
have different values in different reference frames. Elsewhere along the world
line the interval between another pair of consecutive flashes will also be in-
dependent of the reference frame which is used in evaluating that interval. So
too for the sum of the proper-time intervals of all the flashes along the world
line! Thus observers in different inertial reference frames will all agree on the
proper time along a given world line from a specified initial event O to a
specified final event B.

It is possible to proceed from event O to event B along quite another world
line—for example, along the straight world line OB in Fig. 19,B. The elapsed
proper time along this alternative world line is different from the proper time
along the original world line. In Lorentz geometry a curved world line be-
tween two specified events is shorfer than the direct world line between the
same two events—shorter as measured by the elapsed proper time along the
world line. This contrast between Euclidean and Lorentz geometry is shown in
Fig. 20. The distance between nearby points along a curved path is always
equal to or greater than the y displacement between those two points. In
contrast, the proper time between nearby events along a curved world line is
always equal to or less than the corresponding time along the direct world
line. The determination of proper time is a fundamental method of comparing
different world lines between two events.

The change of slope of the world line from point to point in Fig. 19,B, and Fig. 20,B,
means that the clock being carried along the world line changes velocity: it is acceler-
ated. Different clocks will behave differently when accelerated unless these clocks are
sufficiently small. As a rule a clock can withstand a great acceleration only if it is small

A. Euclidean geometry B. Lorentz geometry

Fig. 20. Contrast between Euclidean and Lorentz geometry. In Lorentz geometry the curved
world line is traversed in the shorter proper time.
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Fig. 21. Three alternative world lines connect-
ing event O and event B. The sharp changes of
speed at events Q and R have been drawn for
the ideal limit of small (acceleration-proof)
clocks.

and compact. The smaller the clock, the more acceleration it can withstand, and the
sharper the curves on the world line can be. In all figures like Fig. 19,B, and Fig. 20,B,
we assume the ideal limit of infinitesimally small clocks.

We are now free to analyze a motion in which the particle and the clock are subject
to a great acceleration. In particular, consider a simple special case of the world line of
Fig. 19,B. That world line gradually changed in slope as the particle speeded up and
slowed down. Now make the period of speeding up shorter and shorter (great driving
force!); also make the period of slowing down shorter and shorter. In this way the
proportion of time spent in steady motion at high speed becomes greater and greater.
Thus come eventually to the limiting case where the times of acceleration and decelera-
tion are too short even to show up on the scale of the spacetime diagram (world line
OQB in Fig. 21). In this simple limiting case the whole history of the motion is specified
by (1) the initial event O, (2) the final event B, and (3) the coordinate x of the turnaround
point Q, halfway in time between O and B. In this case it is particularly easy to see how
the lapse of proper time between O and B depends upon the coordinate x of the halfway
point—and thus to compare the three world lines OPB, OQB, and ORB.

Path OPB is the world line of a particle that does not move: x = 0 for all time. The
proper time from O to B by way of P is evidently equal to the time as measured in the
inertial reference system.

rops = 10/3 meters of light-travel time

In contrast, on the way from O to B by way of R, each stretch is lightlike: for each
segment the space and time components of the displacement are equal, and

rors = (twice proper time on stretch OR) = 2 [(time)* — (distance)?'* = 0

Of course no clock can travel as fast as the speed of light. Therefore the world line ORB
is not actually attainable. However, it is the ideal limit of world lines that actually are
attainable. Or, in other words, one can find a speed sufficiently close to the speed of
light, and yet /ess than the speed of light, so that a trip with this speed first one way
then the other will bring an ideal clock back to x = 0 with a lapse of proper time as
short as one pleases.

As distinguished from the limiting case ORB, the world line 0OQB demands an amount
of proper time

roqs = (twice proper time on stretch OQ)
= 2[(5/3)* — (4/3)'*

12
25 — 16
‘2[ 5 ]

= 2 meters of light-travel time

Proper time from O to
B compared for three
world lines
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This is /ess proper time than the proper time rops = 3 1/3 meters that characterized the
“direct” world line OPB!

Evidently proper time in the real physical world of spacetime differs remarkably from
the distance of textbook Euclidean geometry. Distance is shortest for the direct route:
*“A straight line is the shortest distance between two points.” In contrast, the lapse of
proper time is less for the traveler who travels away, accelerating to high speed, then
reverses his course and comes back, than for the man who stays home! (See Ex. 27 and
EX. 49 on the clock paradox). In brief, proper time is the appropriate measure of time
as it will be observed by a particle that travels along a world line, just as the graduations
along a flexible tape provide the appropriate measure of distance covered by a traveler
along a winding path.

7. Regions of Spacetime

Thus far in dealing with the interval between two events, A and B, we have
had occasion to consider only the situation in which they have the same y and
z coordinates. In this situation the separation in space between the two events
is measured by the single quantity

distance = Ax
The interval is given by the expression
[(Ary — (Axppe

However, the orientation of the x, y, and z coordinate axes is evidently a
matter of arbitrary choice. With another orientation of the axes the com-
ponent Ax of the separation between the two events will ordinarily have quite
a different value. Yet the separation in space between the two events is quite
independent of any choice of orientation, and is given by the expression

(distance)* = (Ax)? + (Ap) + (Az)?

In other words, this is the quantity that must replace (Ax)? in the full formula
for the interval. Thus we have the complete expression for the interval between
two events

A at (63 0,2)

and

B at (t+At, x+ Ax,y+ Ay, z+ Az)
in the form
9 (interval of proper time)* = (time)? — (distance)?

= (A7} — (Ax) — (Ay) — (Azy
when the interval is timelike; and when it is spacelike,

(10) (interval of proper distance)® = (distance)* — (time)?
= (Ax)® + (Ay)* + (Az2)*> — (Ar)?
How is ohe to understand the new kind of geometry described by an ex-

pression for “interval of proper distance™ that contains three plus signs—as
in ordinary Euclidean geometry—but also one minus sign? One can follow
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Minkowski (1908) and introduce a new quantity w to measure time, a quantity
defined by )

w= (—1)"2¢
or

(11) Aw = (—1)"2 At
Then the expression for the interval of proper distance takes the form
(interval of proper distance)* = (Ax)* + (Ayy + (Az)? + (Aw)?

The signs are now all positive. The geometry superficially appears to be that of
Euclid—in four dimensions, of course, instead of three. Impressed by this
formula, Minkowski wrote his famous words, “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a
kind of union of the two will preserve an independent reality.”{ Today this
union of space and time is called spacetime. Spacetime is the arena in which
stars, atoms, and people live and move and have their being. Space is different
for different observers. Time is different for different observers. Spacetime is
the same for everyone.

Minkowski’s insight is central to the understanding of the physical world.
It focuses attention on those quantities, such as interval, which are the same in
all frames of reference. It brings out the relative character of quantities, such
as velocity, energy, time, distance, which depend upon the choice of frame of
reference.

Today we have learned not to overstate Minkowski’s argument. It is
right to say that time and space are inseparable parts of a larger unity. It is
wrong to say that time is identical in quality with space. Why is it wrong? Is
not time measured in meters, just as distance is? Are not the x and y coordi-
nates of the surveyor quantities of identical physical character? By analogy,
are not the x and ¢ coordinates of the spacetime diagram of the same nature as
one another? How else could it be legitimate to treat these quantities on an
equal footing, as in the formula [(Ax)* + (Ay) + (Az) — (Ar)*]"2 for a space-
like interval? Equal footing, yes; same nature, no. There is a minus sign in
this formula that no sleight of hand can ever conjure away. This minus sign
marks the difference in character between space and time. It does not really re-
move this minus sign to introduce the imaginary number Aw = (—1)"2Az. It
would if w were a real quantity. But w is not real. No clock ever reads (—1)/?
seconds, or (—1)'/2 meters. Real clocks show real time: Az = 7 seconds, for
example. Consequently the term —(Az7)* is always opposite in sign to the dis-
tance term (Ax)? + (Ay)® + (Az)®. No twisting or turning can ever make the
two signs the same.

The difference in sign between the time term and the space terms in the ex-
pression for the interval gives Lorentz geometry a unique feature, which is new
and quite different from anything in Euclidean geometry. In Euclidean geome-
try it is never possible for the distance AB between two points to be zero un-
less all three of the quantities Ax, Ay, and Az are simultaneously zero. In
contrast, the interval AB between two events can vanish even when the

tA. Einstein et al., The Principle of Relativity, (Dover Publications, New York).

Minkowski on unity
of spacetime

Difference between
time and space
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Case where interval
vanishes

Light cones: partitions
in spacetime

Fig. 22. Spacetime diagram showing x, y, and
t coordinates of events for which z = 0.

separations Ax, Ay, Az in space and At in time between B and A are indi-
vidually quite large.

Under what condition does the interval AB vanish? The interval vanishes
when the time part of the separation between A and B is identical in magnitude to
the space part of the separation

a2 At = £[(Ax2 + (Ay) + (A2

What is the physical interpretation of this condition? The expression on the
right is the distance between the two points. But light travels one meter of
distance in one meter of light-travel time. Therefore the expression on the
right also represents the time that is needed by light to travel the distance be-
tween A and B. On the other hand, At represents the time that is available to
travel this distance. In other words, condition (12) is satisfied—and the interval
AB vanishes—when a light flash starting at event A can arrive precisely in time
for event B (or when a flash starting at B can arrive at A). The interval between
two events is zero when they can be connected by one light ray.

It is interesting to map out in an appropriate diagram the location of all
events B that can be connected with one given event A by a light ray. For
simplicity let event A occur at the origin of the spacetime diagram. Let the
coordinates x, y, z of event B be taken to have any values. Then the time
coordinate of event B has either the value

(13) atare = + (02 2 222
or the value
(14) tpuws = — (@ 32+ 28

It simplifies the graphical presentation of this formula to limit attention to
events B whose z coordinate is zero. Then it is appropriate to construct a
spacetime diagram with two spatial coordinates x and y and the time coordi-
nate ¢, as shown in Fig. 22. Every event B in this diagram that is separated
from A by a zero interval (“lightlike interval™) lies either on the “future light
cone” of A (plus sign in Eq. 13) or on the “past light cone” of A (minus sign
in Eq. 14). :

In Fig. 22 consider all those events that have time coordinates 7 meters later
than the zero time of flash A. These events lie on a plane 7 meters above the
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xy plane, and parallel to the xy plane. Among these events those which lie on
the future light cone of A are on a circle. This circle has a radius of 7 meters.
This circle (circle in the present x, y, r diagram; a sphere in a full x, y, z, ¢
diagram!) is the locus of the pulse of radiant energy which emerged from A.
Observed at a later time, the pulse has expanded to a still larger radius. Thus
the forward light cone tells the history of the expanding spherical pulse that
started at A. Similarly the backward light cone tells the history of a con-
verging pulse of radiation, so perfectly focused that it collapses at the origin
at time zero.

The light cone is a unique feature of Lorentz geometry; there is no such
feature in Euclidean geometry. Moreover, associated with the light cone,
Lorentz geometry has a characteristic of the greatest importance for the
structure of the physical world. It provides the following ordering of all events
with respect to their causal relationship to any chosen event A (Fig. 22).

1. Can a particle emitted at A affect what is going to happen at C? If so, C

lies in the future light cone of A.
2. Can a light ray emitted at A affect what is going to happen at B? If so, B
lies on the future light cone of A.
3. Can no effect whatever produced at A affect what happens at D? If so, D
lies outside the light cone of A.
4. Can a particle emitted at E affect what is happening at A? If so, E lies in
the past light cone of A.
5. Can a light ray emitted at F affect what is happening at A? If so, F lies on
the past light cone of A.
Now, the light cone of event A—and the light cone of every other event—has
an existence in spacetime quite apart from any coordinates that may be used
to describe it. Therefore the possibilities mentioned in the five preceding ques-
tions, that one event will affect another event are independent of the reference
frame in which this connection between events is observed. In this sense the
causal connection between two events is preserved in every reference frame.

Figure 23 summarizes the relations between a selected event A and all other

events of spacetime.

8. The Lorentz Transformation

At heights of 10 to 30 kilometers above the earth, cosmic rays are continually
striking the nuclei of oxygen and nitrogen atoms and producing m-mesons,
both charged and neutral. Follow one of the =*-mesons on its way down
(Fig. 24). In the reference frame attached to this particle (‘‘rocket frame™) the
average life of the #*-meson is 2.55 X 10~* seconds. In this rocket frame let the
coordinates of the event of birth be x’ = 0, ¢ = 0 (Fig. 25,B). Let the coordi-
nates of the event of explosion of the n-meson (into muon plus neutrino) be
written

x' =0, ! =1,

How do these events appear to the laboratory observer? As recorded by his
clocks, how long does the w-meson live from birth to death? Or how much is

Spacetime classified
into five regions
relative to event A

Coordinates more
convenient than
interval for describing
trip of w-meson
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