Finite-dimensional inequivalent irreducible projective representations of the Lie algebra of the rotation group ${ }^{1}$

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} \quad i, j, k=\{1,2,3\}=\{x, y, z\} \tag{0.1}
\end{equation*}
$$

The squared modulus is given by

$$
\begin{equation*}
J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2} \tag{0.2}
\end{equation*}
$$

and from eq. (0.1) it can be easily shown that

$$
\begin{equation*}
\left[J^{2}, J_{i}\right]=0 \tag{0.3}
\end{equation*}
$$

A standard representations $\vec{J}^{(s)}$ and a standard basis $|s, m\rangle$ are obtained by diagonalizing simultaneously J^{2} and J_{z}

$$
\begin{align*}
\left(J^{(s)}\right)^{2}|s, m\rangle & =s(s+1)|s, m\rangle \tag{0.4}\\
J_{z}^{(s)}|s, m\rangle & =m|s, m\rangle \tag{0.5}
\end{align*}
$$

with

$$
\begin{align*}
s & =0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{0.6}\\
m & =-s,-s+1,-s+2, \ldots, s-2, s-1, s \tag{0.7}
\end{align*}
$$

By defining

$$
\begin{equation*}
J^{ \pm}=J_{x} \pm i J_{y} \tag{0.8}
\end{equation*}
$$

it can be easily shown that

$$
\begin{equation*}
\left\langle s^{\prime}, m^{\prime}\right| J^{ \pm}|s, m\rangle=\sqrt{(s \mp m)(s \pm m+1)} \delta_{s, s^{\prime}} \delta_{m^{\prime}, m \pm 1} \tag{0.9}
\end{equation*}
$$

and by inverting eq. (0.8) we can compute

$$
\begin{equation*}
\left\langle s^{\prime}, m^{\prime}\right| J_{x}|s, m\rangle \quad \text { and } \quad\left\langle s^{\prime}, m^{\prime}\right| J_{y}|s, m\rangle \tag{0.10}
\end{equation*}
$$

The representations in this basis are given in the following.
$1 s=0$

$$
\begin{equation*}
\vec{J}^{(0)}=\overrightarrow{0} \tag{1.1}
\end{equation*}
$$

[^0]
$2 \quad s=1 / 2$

$$
\begin{gather*}
J_{x}^{\left(\frac{1}{2}\right)}=\frac{1}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \equiv \frac{\sigma_{x}}{2} \quad J_{y}^{\left(\frac{1}{2}\right)}=\frac{i}{2}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \equiv \frac{\sigma_{y}}{2} \quad J_{z}^{\left(\frac{1}{2}\right)}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \equiv \frac{\sigma_{z}}{2} \tag{2.1}\\
\left(J^{\left(\frac{1}{2}\right)}\right)^{2}=\frac{3}{4}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{2.2}
\end{gather*}
$$

$3 s=1$

$$
\begin{gather*}
J_{x}^{(1)}=\frac{1}{\sqrt{2}}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad J_{y}^{(1)}=\frac{i}{\sqrt{2}}\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad J_{z}^{(1)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \tag{3.1}\\
\left(J^{(1)}\right)^{2}=2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{3.2}
\end{gather*}
$$

$4 \quad s=\frac{3}{2}$

$$
\begin{array}{cl}
J_{x}^{\left(\frac{3}{2}\right)}=\left[\begin{array}{cccc}
0 & \frac{\sqrt{3}}{2} & 0 & 0 \\
\frac{\sqrt{3}}{2} & 0 & 1 & 0 \\
0 & 1 & 0 & \frac{\sqrt{3}}{2} \\
0 & 0 & \frac{\sqrt{3}}{2} & 0
\end{array}\right] & J_{y}^{\left(\frac{3}{2}\right)}=i\left[\begin{array}{cccc}
0 & -\frac{\sqrt{3}}{2} & 0 & 0 \\
\frac{\sqrt{3}}{2} & 0 & -1 & 0 \\
0 & 1 & 0 & -\frac{\sqrt{3}}{2} \\
0 & 0 & \frac{\sqrt{3}}{2} & 0
\end{array}\right] \\
J_{z}^{\left(\frac{3}{2}\right)}=\left[\begin{array}{cccc}
\frac{3}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & -\frac{3}{2}
\end{array}\right] & \left(J^{\left(\frac{3}{2}\right)}\right)^{2}=\frac{15}{4}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \tag{4.2}
\end{array}
$$

$5 \quad s=2$

$$
\begin{gather*}
J_{x}^{(2)}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & \frac{\sqrt{6}}{2} & 0 & 0 \\
0 & \frac{\sqrt{6}}{2} & 0 & \frac{\sqrt{6}}{2} & 0 \\
0 & 0 & \frac{\sqrt{6}}{2} & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] J_{y}^{(2)}=i\left[\begin{array}{ccccc}
0 & -1 & 0 & 0 & 0 \\
1 & 0 & -\frac{\sqrt{6}}{2} & 0 & 0 \\
0 & \frac{\sqrt{6}}{2} & 0 & -\frac{\sqrt{6}}{2} & 0 \\
0 & 0 & \frac{\sqrt{6}}{2} & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \tag{5.1}\\
J_{z}^{(2)}=\left[\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -2
\end{array}\right] \quad\left(J^{(2)}\right)^{2}=6\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \tag{5.2}
\end{gather*}
$$

[^0]: ${ }^{1}$ http://virgilio.mib.infn.it/~oleari

