
Finite-dimensional inequivalent irreducible projective
representations of the Lie algebra of the rotation group1

[Ji, Jj ] = i ǫijkJk i, j, k = {1, 2, 3} = {x, y, z} (0.1)

The squared modulus is given by

J2 = J2
x + J2

y + J2
z (0.2)

and from eq. (0.1) it can be easily shown that

[J2, Ji] = 0 (0.3)

A standard representations ~J (s) and a standard basis |s,m〉 are obtained by diagonalizing

simultaneously J2 and Jz

(

J (s)
)2 |s,m〉 = s(s+ 1) |s,m〉 (0.4)

J (s)
z |s,m〉 = m |s,m〉 (0.5)

with

s = 0,
1

2
, 1,

3

2
, . . . (0.6)

m = −s, −s+ 1, −s+ 2, . . . , s− 2, s− 1, s (0.7)

By defining

J± = Jx ± iJy (0.8)

it can be easily shown that

〈s′,m′|J±|s,m〉 =
√

(s∓m)(s±m+ 1) δs,s′ δm′,m±1 (0.9)

and by inverting eq. (0.8) we can compute

〈s′,m′|Jx|s,m〉 and 〈s′,m′|Jy|s,m〉 (0.10)

The representations in this basis are given in the following.

1 s = 0

~J (0) = ~0 (1.1)

1http://virgilio.mib.infn.it/~oleari
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