
21.15 Global Anomaly

In Section 21.10 we discussed the massless quark effects in the presence of

instantons. In particular, a formula for counting the number of the fermion

zero modes was derived. An inspection of this formula leads one to a per-

plexing question. Indeed, let us assume that, instead of QCD, we deal with

an SU(2) theory with one massless left-handed Weyl fermion transforming

as a doublet with respect to SU(2). So far only the Dirac fermions were con-

sidered; one Dirac fermion is equivalent to two Weyl fermions. Now we want

to consider a chiral theory. Before the advent of the instantons this theory

was believed to be perfectly well-defined. It has no internal anomalies, see

Chapter 8. Moreover, in perturbation theory, order by order, one encounters

no reasons to make the theory sick. And yet, this theory is pathological.

Analysis of the instanton-induced effects helps us reveal the pathology.

Indeed, following the line of reasoning in Section 21.10 in the SU(2) the-

ory with a single massless left-handed Weyl fermion we would immediately

discover that the instanton-induced fermion vertex of the ’t Hooft type must

be linear in the fermion field. Indeed, in the instanton transition with one

Dirac fermion ∆Q5 = 2,† but the Weyl fermion = 1/2 of the Dirac fermion,

and hence ∆Q5 = 1!

It was obvious to many that something was unusual in this theory. The

intuitive feeling of pathology was formalized by Witten who showed [45]

that this theory is ill-defined because of the global anomaly. Such theory is

mathematically inconsistent. It simply does not exist.

One of the possible proofs of the global anomaly is based on the fermion

level restructuring in the instanton transition. The key elements are the

following: (i) the vacuum-to-vacuum amplitude in the theory with one Weyl

fermion is proportional to
√

det(iD); (ii) only one of the fermion levels

changes its positions with regards to the sea level (I mean the Dirac sea, of

course) when K = n goes in K = n + 1, as opposed to one pair in the case

† Weyl fermion’s contribution to the chiral anomaly is 1/2 of that of the fermion
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of the Dirac fermion, Fig. 21.3. This forces the partition function to vanish

making all correlation functions ill-defined. For further details see Ref. [45].

Exercises

21.1 Generalize our derivation of the antiinstanton field in the spinorial

notation, see Eq. (21.36), for instantons. Hint: treat the indices of

the color matrix as dotted.

21.2 Prove Eq. (21.76) through a direct calculation using definitions and

results presented in Sections 20.2, 21.3, and 21.5.

Solution:

As a warm up exercise let us determine the vector v̂. Since any rotation
matrix M can be written as M = exp(iωaτa/2) = cos ω

2 + i ~n~τ sin ω
2 (here

ω = |~ω| and ~n is the unit vector in the direction of ~ω), we determine that

~̂v = ~n sin
ω

2
, v̂4 = − cos

ω

2
,

implying that v̂2 = 1. Let us choose the reference frame in which ~R = 0
and only R4 6= 0. One can always do that. Then

ηaαβ η̄bαγ Rβ Rγ = −δabR
2
4 .

One should also use the facts that

Oab =
1

2
Tr
{
τb v̂µτ

+
µ τa v̂ντ

−
ν

}

and

τa τ+
µ τa = −τ+

µ + sµ , sµ =

{
0 , for µ = 1, 2, 3,

−4 i , for µ = 4
.

Now, assembling all these expressions one arrives at

Oab ηaαβ η̄bαγ Rβ Rγ = v̂2R2
4 − 4v̂2

4R
2
4 → v̂2R2 − 4 (v̂R)

2
.

21.3 Explicitly calculate the integral in (21.26). Find the instanton field

in the A0 = 0 gauge for arbitrary values of τ .

21.4 Verify that the expression (21.107) is indeed a solution of Eq. (21.105).

21.5 Verify Eq. (21.128).




