
34 Anomlies in QCD and Similar Non-Abelian Gauge Theories

In this section we will discuss QCD and non-Abelian gauge theories at large

which are self-consistent, i.e. free of internal anomalies. In particular, deal-

ing with chiral theories we should follow strict rules in constructing the

matter sector (see Section 22.1.1). Nevertheless, these theories have exter-

nal anomalies: the scale anomaly and and those in the divergence of external

axial currents.† The latter are also referred to as the chiral (a.k.a triangle,

a.k.a Adler–Bell–Jackiw [8]) anomalies. We will analyze and derive the chi-

ral and scale anomalies using QCD as a showcase. More exactly, we will

assume that the theory under consideration has the gauge group SU(N)

and contains Nf massless quarks (Dirac fields in the fundamental repre-

sentation). In this section it will be convenient to write the action in the

canonic normalization,

S =

∫
d4x



−

1

4
Gaµν G

µν a +

Nf∑

f=1

ψ̄f i /D ψf


 . (34.1)

We will start from examining the classical symmetries of the above action.

In addition to the scale (implying, in fact, full conformal) invariance of

the action of which I will speak later, (34.1) has the following symmetry
Global

symmetries of
QCD

U(1)V ×U(1)A × SU(Nf )L × SU(Nf )R (34.2)

acting in the matter sector. The vector U(1) corresponds to the baryon

number conservation, with the current

jBµ =
1

3
ψ̄f γµ ψ

f . (34.3)

The axial U(1) corresponds to the overall chiral phase rotation

ψfL → eiαψfL , ψfR → e−iαψfR , ψL,R =
1

2
(1∓ γ5)ψ . (34.4)

† By external I mean such currents which are not coupled to the gauge fields of the theory under
consideration.
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398 Chiral Anomaly

The axial current generated by (34.4) is

jµA = ψ̄f γ
µ γ5 ψf . (34.5)

Finally, the last two factors in (34.2) reflect the invariance of the action
Singlet and

nonsinglet axial
currents with regards to the chiral flavor rotations

ψfL → Ufg ψ
g
L , ψfR → Ũfg ψ

g
R , (34.6)

where U and Ũ are arbitrary (independent) matrices from SU(Nf ). Equa-

tion (34.6) implies conservation of the following vector and axial currents:

jaµ = ψ̄ γµ T
a ψ , and j5 aµ = ψ̄ γµ γ5 T a ψ . (34.7)

Here T a’s are the generators of the flavor SU(Nf ) in the fundamental rep-

resentation. These generators act in the flavor space, i.e. ψ is a column of

ψf ’s while the matrices T a act on this column.

At the quantum level (i.e. including loops with a regularization) the fate

of the above symmetries is different. The vector U(1) invariance generated

by (34.3) stays a valid anomaly-free symmetry at the quantum level.† The

same is true with regards to the vector SU(Nf ) currents, they are conserved.

The axial currents are anomalous. One should distinguish, though, between

the singlet current (34.5) and the SU(Nf ) currents j5 aµ = ψ̄f γ
µ γ5 T a ψf .

The former is anomalous in QCD per se. The latter become anomalous only

upon introduction of appropriate external vector currents. As we will see

later, this circumstance is in one-to-one correspondence with the sponta-

neous breaking of the axial SU(Nf ) symmetry in QCD, accompanied by the

emergence of N2
f − 1 Goldstone bosons. The vector SU(Nf ) symmetry is

realized linearly.

In the weakly coupled Schwinger model considered in Section 33.1 we

could take both routes (and we actually did) to derive the chiral anomaly:

infrared and ultraviolet. The first route is closed in QCD, since this theory

is strongly coupled in the infrared domain which invalidates any conclusions

based on the Feynman graph calculations Neither quarks nor gluons are

relevant in the infrared. However, the second route is open, and we will

follow it in the subsequent sections. We will limit ourselves to one-loop

analysis. Higher loops, where present, generally speaking, lie outside the

scope of this book. The only exception is a class of supersymmetric gauge

theories, to be considered in Part II (Section 59).

† I hasten to make a reservation. This statement is valid in vector-like theories. As we already
know from Section 23, this is not true in the chiral models such as the Standard Model. You
should remember that for the time being we discuss QCD.
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34.1 Chiral anomaly in the singlet axial current

Differentiating (34.5) naively we get ∂µj
µ
A = ψ̄f

←
/D γ5ψf − ψ̄fγ5/Dψf = 0 by

virtue the equation of motion /D ψf = 0. Experience gained in the Schwinger

model teaches us, however, that the axial current conservation will not hold

upon switching on a gauge-symmetry respecting regularization. To make the

calculation of the anomaly reliable we must exploit only the Green functions

at short distances. This means that we must focus directly on ∂µj
µ
A exploit-

ing one of appropriate ultraviolet regularizations. The following demonstra-

tion will be based on the Schwinger and Pauli–Villars regularizations. ‡

34.1.1 The Schwinger regularization

In this regularization we ε-split the current,

jA,Rµ (x) = ψ̄f (x+ ε) γµ γ
5

{
exp

[∫ x+ε

x−ε
ig Aρ(y) dyρ

]}
ψf (x− ε) . (34.8)

Here the superscript R marks the regularized current while Aρ ≡ Aaρ T
a.

The ε parameter must be set to zero at the very end. The exponent is

necessary to ensure gauge invariance of the regularized current jA,Rµ after

the split Look through
Section 33.3

ψ̄f (x+ ε)ψf (x− ε) . (34.9)

Next, we differentiate over x using the equations of motion above. Ex-

panding in ε and keeping terms O(ε) we arrive at

∂µjA,Rµ = ψ̄f (x+ ε)
{
−ig /A(x+ ε) γ5 − γ5 ig /A(x− ε)

+ ig γµγ5εβ(0)Gµβ(0)
}
ψf (x− ε) . (34.10)

The third term in the braces in (34.10) contains the gluon-field strength

tensor and results from differentiation of the exponential factor. The gluon

4-potential Aµ and the field strength tensor Gµβ are treated as background

fields. For convenience I impose the Fock–Schwinger gauge condition on the

background field, yµAµ(y) = 0 (for a pedagogical course on this gauge and

its uses see [7]).† In this gauge Aµ(y) = 1
2y

ρGρµ(0) + ... . Now, we contract

the quark lines (34.9) to form the quark Green’s function S(x− ε, x+ ε) in

the background field and then get ‡ Chiral anomaly

‡ The widely used dimensional regularization is awkward and inappropriate in those problems
in which γ5 is involved.
† This gauge condition is not obligatory, of course. Although it is convenient, one can work in

any other gauge; the final result is gauge independent.
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∂µjA,Rµ = −ig Nf TrC,L

{
−2i ερGρµ(0) γµγ5 S(x− ε, x+ ε)

}

= −Nf
g2

2
Gρµ(0)a G̃αφ(0)a

ερεα

ε2
1

8π2
TrL

(
γµγ5γφγ5

)

=
Nf g

2

16π2

{
Gαβ a G̃aαβ

}
bckgd

, (34.11)

where

G̃αβ =
1

2
εαβρµG

ρµ , (34.12)

and the subscripts C and L mark the traces over the color and Lorentz

indices, respectively. The most crucial point is that the Green’s function

S(x − ε, x + ε) is used only at very short distances ∼ ε → 0, where it is

reliably known in the form of an expansion in the background field. We need

only the first nontrivial term in this expansion (the Fock–Schwinger gauge),

S(x, y) =
1

2π2

/r

(r2)2
− 1

8π2

rα

r2
g G̃αφ(0) γφγ5 + ..., r = x− y . (34.13)

In passing from the second to the third line in Eq. (34.11) I averaged over

the angular orientations of the four-vector ε.

34.1.2 The Pauli–Villars regularization

Parallelizing our two-dimensional studies in Section 33.7 we introduce the

Pauli–Villars fermion regulators R with mass MR to be send to infinity at

the very end. Then the regularized singlet axial current takes the form

jA,Rµ = ψ̄f γµγ
5 ψf + R̄f γµγ

5Rf . (34.14)

Since the current is now regularized, its divergence can be calculated ac-

cording to the equations of motion,

∂µ jA,Rµ = 2iMR R̄fγ
5Rf . (34.15)

As was expected, the result contains only the regulator term. Our next task

is to project it onto “our” sector of the theory in the limit MR →∞. In this

limit only the two-gluon operator will survive, as depicted in the triangle

diagram of Fig. 34.1. This diagram can be calculated either by the standard

Feynman graph technique, or using the background field method [7], which

‡ If you have difficulties in reproducing (34.11), a step-by-step derivation can be found on p. 609
in [7].
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γ2iMR   R
5

Fig. 34.1. Diagrammatic representation of the triangle anomaly. The solid and
dashed lines denote the regulator and gluon fields, respectively.

is quite straightforward in the case at hand,

2iMR R̄fγ
5Rf → 2iMRNfTrC,L

(
γ5 i

i /D −MR

)

→ −2MRNfTrC,L

[
γ5 1

(iD)2 −M2
R + ig

2 Gµνσ
µν

(i/D +MR)

]
.

(34.16)

Here I omitted an extra minus sign which would have been necessary if it

were an ordinary fermion loop. Given that the triangle loop in Fig. 34.1

is that of the regulator fields, the extra minus sign must not be inserted.

The term i /D in the last brackets can be dropped because of the trace with

γ5. Remembering that MR → ∞ one can expand the denominator in Gσ.

The zeroth-order term in this expansion vanishes for the same reason. The

term O(Gσ) vanishes because of the color trace. The term O((Gσ)2) does

not vanish, while all higher order terms are suppressed by positive powers

of 1/MR and disappear in the limit MR →∞. In this way we arrive at

2iMR R̄fγ
5Rf → M2

R g
2

2
NfTrC (GµνGαβ) TrL

(
γ5σµνσαβ

)

×
∫

d4p

(2π)4
1

(p2 −M2
R)3

. (34.17)

which, in turn, implies that

∂µ jAµ = Nf
g2

16π2
Gαβ a G̃aαβ , (34.18)

in full accord with the result (34.11) obtained in the Schwinger regulariza- Chiral anomaly

tion. Characteristic distances saturating the triangle loop in Fig. 34.1 are

of the order of M−1
R → 0 at MR →∞.
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34.1.3 The chiral anomaly for generic fermions

What changes occur in the chiral anomaly if instead of the fundamental

representation we consider fermions in some other representation R? The

answer to this question is simple. If we inspect derivations in Sections 34.1.1

and 34.1.2 we will observe that the result for the anomalous divergence of the

axial current is proportional to TrT aT b. For the fundamental representation

in SU(N)

TrT aT b =
1

2
δab .

In the general case

TrT aT b = T (R)δab ,

where T (R) is (one half) of the Dynkin index for the given representation.See Eq. (56.4)
and Table 10.3

Thus, if we have Nf massless Dirac fermions in the representation R, then

Eq. (34.18) must be replaced by the following formula:

∂µ
(
ψ̄fγµγ

5ψf
)

= Nf
T (R) g2

8π2
Gαβ a G̃aαβ . (34.19)

For instance, for the adjoint representation in SU(N) one has T (adj)= N .

Note that for the real representations, such as the adjoint, one can consider

not only Dirac fermions, but Majorana fermions as well. Each Majorana

fermion counts as Nf = 1
2 . The same is true with regards to the Weyl

fermions with which one has to deal in chiral Yang–Mills theories.

34.2 Introducing external currents

What does that mean? Assume that we study QCD. Then our dynamical

gauge bosons are gluons. However, typically, we have a number of color-

singlet conserved vector currents that can be “gauged” too. These vector

currents correspond to global symmetries. One can couple these currents

to “external” nondynamical gauge bosons. One can think of them as of

gauge bosons of a weakly coupled theory whose dynamics can be ignored.

The axial currents which were anomaly-free can (and typically will) acquire

anomalies with regards to these external nondynamical gauge bosons.

For example, the currents jaµ given in Eq. (34.7) are conserved. Gauging

the global SU(Nf )V symmetry we introduce auxiliary vector bosons Aµ a

with the coupling jaµA
µ a. Now, the divergence of j5, aµ which was anomaly-

free in QCD per se, will acquire the FF̃ term, with F ’s built from the above

auxiliary vector bosons Aµa.

To further illustrate the point in the most graphic way, let us assume
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Nf = 2. Then ψ is a two-component column in the flavor space, while

three generator matrices are in fact the Pauli matrices (up to a normalizing

factor 1/2). The background gauge fields are Aµ 1,2,3, or, alternatively, Aµ 3

and Aµ±. The current jBµ in (34.3) is conserved too. Therefore, we can

also introduce an external field Aµ with the coupling Aµ ψ̄fγ
µψf . Another

possible alternative is to gauge the electromagnetic interaction, in addition

to Aµa. Then we will have a photon (which is an external gauge boson with

regards to QCD) interacting with the current 2
3 ūγµu − 1

3 d̄γµd. The latter

current is a linear combination of the isotriplet and isosinglet,

jemµ =
2

3
ūγµu−

1

3
d̄γµd =

1

2

(
ūγµu− d̄γµd

)
+

1

6

(
ūγµu+ d̄γµd

)
. (34.20)

To distinguish the photon field from other external gauge bosons, temporar-

ily (in this section) we will denote it by Aµ. Then the interaction takes the

form eAµ jemµ .

It is instructive to study this simple example further and to derive the

anomaly in the j5, aµ currents. Keeping in mind a particularly important

application (to be discussed shortly) we will limit ourselves to the neutral

component, which we will denote by aµ,

aµ ≡ j5, (a=3)
µ =

1

2

(
ūγµγ

5u− d̄γµγ5d
)
. (34.21)

We will have to analyze the same graph as previously (Fig. 34.1), with

Third component
(in the isospace)
of the flavor axial
current defined in

(34.7)
the regulator fields for the u and d quarks. They carry exactly the same

quantum numbers of those of the u and d quarks. The only difference is that

the regulator loop, as usual, has the opposite sign.† It is obvious that the

current aµ is anomaly-free in QCD per se since the triangle loops with the

u and d quark regulators exactly cancel each other. Including the external

photons with the interaction eAµ jemµ , which obviously distinguishes between

u and d, will ruin the cancellation.

In fact, we do not have to do the full computation anew. All we have to do

is to reevaluate the diagram in Fig 34.1 with the external gluons replaced

by photons. Starting from Eq. (34.18) derived in Section 34.1.2 we must

take into account the difference in the vertex factors in this triangle graph.

First, we will deal with the color factors, N = 3. While in (34.18), with

the gluon background field, we used TrC

(
T aT b

)
= 1

2δ
ab, in the case of the

photon background field we replace this by TrC 1 = N . Next, in the u loop

we replace g → Qu e and in the d loop g → Qd e. (Here Qu = 2/3 and

† This is, certainly, in addition to the requirement of taking the regulator masses in the limit
MR =∞ at the very end.
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Qd = −1/3.) As a result,

Nf g
2 → 1

2

(
Q2
u −Q2

d

)
e2 , (34.22)

where the factor 1
2 is due to 1

2 in the definition (34.21). Assembling all

factors together we arrive at

∂µa
µ =

α

4π
N
(
Q2
u −Q2

d

)
FµνF̃µν (34.23)

where Fµν = ∂µAν − ∂νAµ. Generalization to other external currents is

straightforward.

Studying anomalies in the presence of external currents provides us with

a precious tool for uncovering subtle aspects of strong dynamics at large

distances, as we will see momentarily.

34.3 Longitudinal part of the current

Under certain circumstances one can reconstruct from (34.23) the longi-

tudinal part of the current [9, 10]. Let us separate the longitudinal and

transverse parts of aµ,

aµ ≡ aµ|| + aµ⊥ , ∂µa
µ
⊥ = 0 . (34.24)

It is clear that (34.23), viewed as an equation for the current, says noth-

ing about aµ⊥. However, it imposes a constraint on aµ||, which allows one

to unambiguously determine aµ|| under appropriate kinematical conditions.

Namely, assume that the photons in (34.23) are produced with the momenta

k(1) and k(2) and are on mass shell, i.e.
[
k(1)

]2
= 0 ,

[
k(2)

]2
= 0 . (34.25)

The total momentum transferred from the current aµ to the pair of photons

is qµ = k
(1)
µ + k

(2)
µ (Fig. 34.2). Then

+

Fig. 34.2. Anomaly in aµ.
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FµνF̃µν −→ −2× 2× εµναβ k(1)
µ ǫ(1)ν k(2)

α ǫ
(2)
β . (34.26)

Here ǫ
(1,2)
µ is the polarization vector of the first or second photon. The first

factor of 2 in (34.26) comes from combinatorics: one can produce the first

photon either from the first Fµν tensor or the second. Gauge invariance

with regards to the external photons is built in in our regularization.

The statement following from (34.23) and (34.25) is as follows [9, 10]: for

on-mass-shell photons the two-photon matrix element of aµ|| is determined

unambiguously,

〈0| aµ|| |2γ〉 = i
qµ

q2
α

π
N
(
Q2
u −Q2

d

)
εµναβ k(1)

µ ǫ(1)ν k(2)
α ǫ

(2)
β . (34.27)

This result is exact and is valid for any value of q2, in particular, at q2 → 0.

I would like to emphasize the emergence of the pole 1/q2, with far-reaching

physical consequences. Note that the gluon anomaly in the singlet axial

current (see Eq. (34.19)) does not imply the existence of the pole in aµ|| at

q2 → 0 because one cannot put gluons on shell — the condition (34.25)

crucial for the derivation of (34.27) cannot be met.

That (34.27) is the solution to (34.23) is obvious. The fact that it is

the only possible solution is less obvious. I refer the reader to [9, 10] for a

comprehensive proof.

Exercises

34.1 Consider two-dimensional CP(1) model with fermions presented in

Section 55.3.4. Find the anomaly in the divergence of the axial

current ψ̄γµγ5ψ. Can it be called the triangle anomaly?

35 ’t Hooft Matching and its Physical Implications

In this section we will turn to physical consequences. We will start from a

general interpretation of the pole in (34.27) and similar anomalous relations

for other currents, formulate the ’t Hooft matching condition, prove (at

large N) spontaneous breaking of the global SU(Nf )A symmetry and, finally,

calculate the π0 → 2γ decay width.

35.1 Infrared matching

Poles do not appear in physical amplitudes for no reason. In fact, the

only way an amplitude can acquire a pole is through massless particles
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in the spectrum of the theory which are coupled to the external currents

under consideration. There are two possible scenarios: (i) the global axial

symmetry is spontaneously broken (it would be more exact to say that it is

realized nonlinearly); (ii) linear realization with massless spin-1/2 fermions.

In the first case massless Goldstone bosons appear in the physical spec-

trum. They must be coupled to j5, aµ and external vector gauge bosons.

Equation (34.27) or similar equations for other currents present a constraint

on the product of the Goldstone boson couplings which can always be met.

The second scenario is more subtle and, apparently, is rather exotic. It

is true that the triangle loop (Fig. 34.2) with massless spin-1/2 fermions

yields qµ

q2
in the longitudinal part aµ|| of the axial current [9, 10]. However, not

only the kinematic factor qµ

q2
is exactly predicted by anomaly, the coefficient

in front this factor is known exactly too. For instance, in the example of

Section 34.3, this coefficient is α
π N

(
Q2
u −Q2

d

)
. For the chiral symmetry

to remain unbroken, the massless spin-1/2 (composite) fermions that might

be potential contributors to the triangle loop must exactly reproduce this

coefficient, which, generally speaking, is a highly nontrivial requirement.

The search for massless spin-1/2 fermions which could match the coefficient

in front of qµ

q2 in aµ|| is the celebrated ’t Hooft matching procedure [10]

Needless to say, if free massless N -colored quarks existed in the spec-

trum of asymptotical states, they would automatically provide the required

matching.† Alas ... quark confinement implies the absence of quarks in the

physical spectrum. The only spin-1/2 fermions we deal with in QCD are

composite baryons.

35.2 Spontaneous breaking of the axial symmetry

Let us see whether or not we can match (34.27) with the baryon contribution.

We will put N = 3, as in our world, and consider first Nf = 2. Then the

lowest-lying spin-1/2 baryons are proton and neutron (p and n), with the

electric charges charges Qp = 1 and Qn = 0, respectively. Hence, only p

contributes in the triangle loop in Fig. 34.2. If it were massless, it would

generate a formula repeating (34.27) with the substitution

N
(
Q2
u −Q2

d

)
→ Q2

p . (35.1)

† In all theories strongly coupled in the infrared the only proper way of obtaining aµ
||

in the form

(34.27) is the ultraviolet derivation through the external anomaly. However, if we pretend to
forget all correct things about QCD and just blindly calculate the triangle loop of Fig. 34.2
with noninteracting massless quarks, we would get exactly the same formula. I hasten to
add that this coincidence acquires a meaning only in the context of the ’t Hooft matching.
Feynman diagrams, in particular, that in Fig. 34.2, saturated in the infrared, have no meaning
whatsoever in QCD-like theories.
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The right- and left-hand sides in Eq. (35.1) are equal! Thus, in this particular

case the ’t Hooft matching does not rule out the linearly realized axial

SU(2) symmetry with massless baryons p and n. This may be an accidental

coincidence, though. Therefore, let us not make hasty conclusions and try

to examine the stability of the above matching.

To this end we add the third quark, s, keeping intact the axial current

to be analyzed, see (34.21). The electromagnetic current (34.20) acquires

the additional term −1
3 s̄γµs. The anomaly-based prediction (34.27) remains

intact.

In the theory with u, d and s quarks the lowest-lying spin-1/2 baryons

form the baryon octet

B = (p, n, Σ±, Λ,Σ0, Ξ−, Ξ0). (35.2)

If both the vector and axial SU(3) flavor symmetries are realized linearly,

the baryon-baryon-photon coupling constants and the constants 〈B|aµ|B〉
at zero momentum transfer are unambiguously determined from the baryon

quantum numbers (for instance, 〈Σ+|aµ|Σ+〉 = Σ̄γµγ5Σ). Calculating the

triangle diagram of Fig. 34.2 (more exactly, its longitudinal part) we find

that the baryon octet does not contribute there due to cancellations: the

proton contribution (the quark content uud) is canceled by that of Ξ− (the

quark content ssd) while the Σ− contribution (the quark content dds) is

canceled by Σ+ (the quark content uus). Other baryons from (35.2) are

neutral and decouple from the photon. The absence of matching seemingly

tells us that that global SU(3)A symmetry must be spontaneously broken.

Although the above argument is suggestive, it it is still inconclusive. It

tacitly assumes that baryons with other quantum numbers, e.g. JP = 1
2

−
,

are irrelevant in the calculation of aµ||, which need not be the case. How can

one prove that the combined contribution of all baryons cannot be equal to

(34.27)?

To answer this question let us explore the N dependence in Eq. (34.27).

The anomaly-based calculation naturally produces the factor N on the right-

hand side. At the same time, saturating the triangle loop by baryons at Consult
Section 38

large N the linear dependence on N cannot be obtained [11]: each baryon

loop is suppressed exponentially, as e−N , since each baryon consists of N

quarks. This observation proves that the global SU(Nf )A symmetry must

be spontaneously broken at least in the multicolor limit. As a result, N2
f −1

massless Goldstone bosons (pions) emerge in the spectrum. Note that this

argument is inapplicable to the singlet axial current (see the remark at the

end of Section 34.3). The singlet pseudoscalar meson need not be massless.

Caveat: To my mind, the above assertion of the exponential suppression
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of the baryon loops has the status of a “physical proof” rather than mathe-

matical theorem. It is intuitively natural, indeed. However, in the absence

of the full dynamical solution of Yang–Mills theories at strong coupling, one

cannot completely rule out exotic scenarios in which the loop expansion in

1/N (implying e−N for baryons) is invalid, see [12]. I do think that this

expansion is valid in QCD per se. Doubts remain concerning models with

more contrived fermion sectors. Note that in two dimensions examples of

baryons defying formal 1/N expansion for are known.

35.3 Predicting the π0 → 2γ decay rate

If the global SU(Nf )A symmetry is realized nonlinearly, through the Gold-

stone bosons (which for two flavors are called pions), saturation of the

anomaly-based formula (34.27) is trivial (Fig. 35.1). The pole in aµ|| is due

to the pion contribution. The constraint (34.27) provides us with a relation

Fig. 35.1. The pion saturation of the anomaly.

between the aµ → π0 amplitude and the π0 → 2γ coupling constant. The

result is known from the 1960s. For completeness I will recall its derivation.

The π0 → γγ amplitude can be parametrized as

A(π0 → 2γ) = Fπ2γ FµνF̃µν → −4Fπ2γ k
(1)
µ ǫ(1)ν k(2)

α ǫ
(2)
β εµναβ (35.3)

where I use the same notation as in Sections 34.2 and 34.3 . Moreover, the

amplitude 〈0|aµ|π0〉 is parametrized by the constant fπ playing the central

role in the pion physics,Pion constant fπ

〈0|aµ|π0〉 =
1√
2
i fπ qµ , fπ ≈ 130 MeV . (35.4)

Then the pion contribution to the matrix element in the left-hand side of
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Eq. (34.27) is

〈0| aµ|| |2γ〉 = i
qµ

q2
fπ√

2
4Fπ2γ ε

µναβ k(1)
µ ǫ(1)ν k(2)

α ǫ
(2)
β . (35.5)

Comparing with (34.27) we arrive at the following formula:

Fπ2γ =
N

2
√

2

1

fπ

α

π

(
Q2
u −Q2

d

)
→ 1

2
√

2 fπ

α

π
. (35.6)

This is in good agreement with experiment.

Before the advent of QCD people did not know about color; the factor

N = 3 was omitted from the prediction (35.6). In fact, the analysis of the

π0 → γγ decay was one of a very few quantitative proofs of existence of

color in the early 1970s.

Exercises

35.1 Assume the number of colors to be large, and you try to saturate the

triangle graph in Fig. 34.2 by baryons. What Nc dependence would

you expect?

36 Scale anomaly

In this section I will briefly discuss the scale anomaly in Yang–Mills theories.

For simplicity I will limit myself to pure Yang–Mills, i.e. without matter,

S =

∫
d4x

−1

4g2
0

Gaµν G
µν a , (36.1)

where the subscript 0 marks the bare coupling constant. At the classical

level the action (36.1) is obviously invariant under the scale transformations

x→ λ−1 x , Aaµ → λAaµ , (36.2)

where λ is an arbitrary real number. Barring subtleties (see Appendix

1A), the scale invariance of the theory with any local Lorentz invariant La-

grangian implies the full conformal symmetry [13]. Roughly speaking, scale-

invariant theories contain only dimensionless constants in the Lagrangian

(otherwise, the action would not be invariant under the scale transforma-

tions). Then, the conformal invariance of the action is quite clear, at least,
Look through
Appendix 1A

at the intuitive level.

The scale transformations are generated by the current [13]

jDν = xµ θµν , (36.3)
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where θµν is the symmetric and conserved energy-momentum tensor of the

theory under consideration. For instance, in pure Yang–Mills theory (36.1)

θµν = − 1

g2

(
GaµαG

αa
ν −

1

4
gµν G

a
αβ G

αβ a

)
. (36.4)

The classical scale invariance of (36.1) implies that the current jDν is con-

served, ∂νjDν = 0. Indeed,

∂νjDν = θ µµ , (36.5)

and the trace of the energy-momentum tensor (36.4) obviously vanishes,

θ µµ = 0.

The vanishing of θ µµ is valid only at the classical level. At the quantum

level θ µµ acquires an anomalous part. I will derive this (scale) anomaly at

one loop. Unlike the chiral anomaly, we do not have to deal with γ5 here;

therefore, the simplest derivation is based on dimensional regularization.

Namely, instead of considering the action (36.1) in four dimensions, we will

consider it in 4 − ǫ dimensions where ǫ → 0 at the very end. In 4 − ǫ

dimensions
∫
d4−ǫxG 2

µν is not scale invariant. A change of
∫
d4−ǫxG 2

µν

under the scale transformation is proportional to ǫ, of course. One should

not forget, however, that 1/g2
0 , being expressed in terms of the renormalized

coupling, also depends on ǫ. The latter dependence contains 1/ǫ. As a

result, in the limit ǫ → 0, a finite term giving us noninvariance of (36.1)

remains.

Concretely,

δ S =

∫
d4−ǫx

{
−1

4

(
1

g2
+

β0

8π2

1

ǫ

)
(λǫ − 1)GaµνG

µν a

}

→
∫
d4x lnλ

(
− β0

32π2
GaµνG

µν a

)
(36.6)

where β0 = 11N
3 is the first coefficient of the β function, cf. Eq. (3.8).

Equation (36.6) immediately leads us to the conclusion that [14]

θ µµ = − β0

32π2
GaµνG

µν a . (36.7)

This expression for θ µµ remains valid even in the presence of masslessAnomaly in θ µ
µ

fermions, although the value of β0 changes, of course.

The scale anomaly formula (36.7) expresses the fact that, although the

classical Yang–Mills action contains only dimensionless constants, a dynam-

ical scale parameter Λ of dimension of mass is generated at the quantum

level (this phenomenon is referred to as dimensional transmutation). All
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hadronic masses are proportional to Λ. The expectation value of G 2
µν over

a given hadron is proportional to the mass of this hadron [15] (in the chiral

limit).




