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Introduction and Summary

Since the conception of quantum field theory (QFT) in the late 1920s and
till 1960 it was believed that any respectable field theory (and the only one
known at that time was quantum electrodynamics, QED) must have a single
vacuum (ground state), and the raison d’être of QFT is quantization of small
oscillations near the vacuum in the same manner as we quantize harmonic
oscillator. The quantized fields in the Lagrangian represent particles which
can scatter due to cubic and high order terms in the Lagrangian, and the
ultimate goal of QFT is to predict the S matrix, in practice order by order
in perturbation theory. The problem of renormalization and elimination
of “infinities” was believed to be the most fundamental (and mysterious)
problem of QFT.

Since then all that changed, with accumulation of evidence that QFT is
in fact (a) an effective theory requiring ultraviolet (UV) completion, and (b)
it has a much richer structure than was thought previously, in particular,
physical states may have nothing to do with the fields that appear in the La-
grangian, the vacua need not be unique (or, even physically equivalent), small
field oscillations by far do not exhaust relativistic quantum dynamics, etc.
Especially fruitful where breakthrough developments in non-Abelian gauge
theories (e.g. QCD), and supersymmetric theories in the 1970s and 80s. Ap-
proximately at the same time people learned how to quantize topologically
stable solitons and, somewhat later, discovered weak-strong coupling duali-
ties in QFT, i.e. distinct descriptions of the same range of phenomena in two
different frameworks.

As we will see, the discovery of quantum anomalies in the late 1960s was
a precursor and a hint to all later developments. Quantum anomalies appear
if there are two symmetries in the classical action which come into conflict
upon quantization, so that only one of two symmetries can be maintained at
the quantum level.

Quantum anomalies can be classified as follows:
(a) local versus global;
(b) terminal (i.e. those which kill the theory making it internally inconsis-

tent; also known as internal) versus external (i.e those which destroy a global
“external” symmetry without destroying the theory under consideration);

(c) chiral, scale, and gravitational anomalies;
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(d) subtle anomalies in supersymmetric theories, for instance, a fermion
parity anomaly in two dimensions.

I plan to cover all these topics (in more or less detail) in my lecture course.
Implications of quantum anomalies are numerous. First and foremost,

their knowledge is needed in order to avoid theories which look fully “legit-
imate” at the classical level, but become terminally sick upon quantization.
For instance, suppose one would like to build an extension of the Standard
Model, with additional fermions beyond the standard three generations. If
the fermion content is chosen inappropriately, such an extension may well be
internally inconsistent.

Second, the chiral quantum anomalies play an important role in the soft
pion theory in QCD, and in the ’t Hooft matching condition, which, in turn,
presents the foundation for the Seiberg duality in supersymmetric QCD.
The scale quantum anomalies which are typical of asymptotically free field
theories (such as QCD) can be used for establishing a number of low-energy
theorems. I plan to discuss all these implications too, emphasizing more
recent developments.

Pedagogical Example: Chiral Anomaly in the

Schwinger Model
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33 Chiral Anomaly in the Schwinger Model

Our first encounter with the chiral anomalies in gauge theories occurred

in Chapter 5. We invoked them, in a pragmatic way, in our deliberations

more than once. The current chapter is designed to explain conceptual issues

behind the anomalies. The questions to be asked are “why they appear?”

and “what they imply?”. Here I will address these questions on a more

systematic basis.

This topic is important, since the phenomenon of anomalies plays a role

in a number of subtle aspects of gauge dynamics. Our first task will be to

understand the physical meaning of the phenomenon. This is best done in a

simple example [1] of a two-dimensional model which can be treated at weak

coupling — the Schwinger model on a spatial circle. It clearly demonstrates

that (i) anomalies appear when two contradictory requirements clash, and

we have to choose one of them as “sacred” (usually gauge invariance); (ii)

anomalies have two faces: infrared and ultraviolet, and (iii) the infinite

number of degrees of freedom in field theory is crucial. The chiral anomaly

involves fermions. There is another anomaly in gauge theories, the scale

anomaly. It takes place even in pure Yang–Mills theory, with no quarks.

I will present a number of methods allowing us to derive both. Then we

will pass to implications. I will discuss the ’t Hooft matching condition, one

of a few tools applicable to non-Abelian theories at strong coupling. We

will prove that the chiral symmetry of QCD must be spontaneously broken,

at least at large N . As an illustrative example of the usefulness of proper

understanding of the anomalies we will calculate the π0 → γγ decay rate.

Many more applications are known. They would be in order in a good

textbook on particle theory. With regret, I have to leave them aside in this

general field theory textbook.

33.1 Schwinger model on a circle

Two-dimensional QED with the massless Dirac fermion seems to be the

simplest gauge model. The Lagrangian is

L = − 1

4e20
FµνF

µν + ψ̄ i 6Dψ , (33.1)

where Fµν is the photon field strength tensor,

Fµν = ∂µAν − ∂νAµ , (33.2)

e0 is the gauge coupling constant having the dimension of mass for D = 2 .

Moreover, Dµ is the covariant derivative

Defining the
covariant

derivative in the
Schwinger modeliDµ = i ∂µ +Aµ , (33.3)
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and ψ is the two-component spinor field. Gamma matrices in Minkowski

space can be chosen in the following way:
Consult

Sections 12.3 and
45.2

γ0 = σ2 , γ1 = −i σ1 , γ5 = −σ3 . (33.4)

The spinor ψL =
(ψ1

0

)
will be called left-handed (γ5ψL = −ψL), while the

spinor ψR =
(

0
ψ2

)
will be called right-handed (γ5ψR = ψR), correspondingly.

Note also that ψ̄ = ψ†γ0.

In spite of the considerable simplification compared to the four-dimensi-

onal QED, the dynamics of the model (33.1) is still too complicated for

our purposes. Indeed, the set of the asymptotic states in this model dras-

tically differs from the fields in the Lagrangian. In the two-dimensional

theory the photon, as is well-known, has no transverse degrees of freedom

and essentially reduces to the Coulomb interaction.† The latter, however,

grows linearly with the distance. The linear growth of the Coulomb poten-

tial results in confinement of the charged fermions in the Schwinger model

irrespectively of the value of the coupling constant e0 . The model (33.1)

was even used as a prototype for describing color confinement in QCD (see

e.g. [2] and Section 41).

In order to simplify the situation further let us do the following. Consider

the system described by the Lagrangian (33.1) on a finite spatial domain of

length L . If L is small, e0L≪ 1 , the Coulomb interaction never becomes

strong and one can actually treat it as a small perturbation. In particular,

in the first approximation its effect can be neglected altogether. We impose

periodic boundary conditions on the field Aµ and antiperiodic ones on ψ .

Thus, the problem to be considered below is the Schwinger model on the

circle. Notice that the antiperiodic boundary conditions are imposed on

the fermion field for convenience only. As will be seen, any other boundary

condition (periodic, for instance) would do as well; nothing would change

except minor technical details. Thus,Boundary
conditions

Aµ(t , x=−1
2L) = Aµ(t , x= 1

2L) ,

ψ (t , x=−1
2L) = −ψ (t , x= 1

2L) .
(33.5)

Equations (33.5) imply that the fields Aµ and ψ can be expanded in the

Fourier modes, exp
[
ikx2π

L

]
for the bosons and exp

[
i(k + 1

2 )x 2π
L

]
for the

fermions (k = 0,±1,±2, ...).

Now, let us recall the fact that the Lagrangian (33.1) is invariant under

† It is instructive to compare this assertion with those in Section 41.
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the local gauge transformations

ψ → eiα(t, x)ψ , Aµ → Aµ+ ∂µ α(t, x) . (33.6)

It is quite evident that all modes for the field A1 except the zero mode (i.e.

k= 0) can be gauged away. Indeed, the term of the type a(t) sin
[
kx2π

L

]
in

A1 is gauged away by virtue of the gauge function

α(t, x) = L (2πk)−1 a(t) cos

[
kx

2π

L

]
.

The latter is periodic on the circle and does not violate the conditions (33.5),

as it should be. Thus, in the most general case we can treat A1 as an x-

independent constant.

This is not the end of the story, however, since the possibilities provided

by gauge invariance are not yet exhausted. There exists another class of ad-

missible gauge transformations — sometimes, they are referred to as “large”

gauge transformations — with the gauge function which is not periodic in
Large gauge

transformations
x,

α =
2π

L
nx , n = ±1 , ±2 , . . . , (33.7)

where n is an integer. In spite of nonperiodicity, such a choice of the gauge

function is also compatible with the conditions (33.5) . This fact is readily

verifiable: since ∂α
∂x = const and ∂α

∂t =0 the periodicity for Aµ is not violated;

the analogous assertion is also valid for the phase factor eiα – the difference

of phases at the endpoints of the interval x∈ [−L
2 ,

L
2 ] is equal to 2πn .

As a result, we arrive at the conclusion that the variable A1 (remember

that in the sense of x-dependence A1 is constant, it depends only on time)

should not be considered on the whole interval (−∞, ∞) . The points

A1, A1 = ±2π

L
, A1 = ±4π

L
, ...

are gauge equivalent and must be identified. The variable A1 is an inde-

pendent variable only on the interval [0, 2π
L ]. Going beyond these limits

we find ourselves in the gauge image of the original interval. Following

the commonly accepted terminology we say that A1 lives on the circle of
A1 is an
angle-type
variablecircumference 2π

L .

Everybody knows that the gauge invariance of electrodynamics is closely

interrelated with conservation of the electric charge. Indeed, the Lagrangian

(33.1) (with finite as well as infinite L) admits multiplication of the fermion

field by a constant phase,

ψ → eiαψ , ψ†→ ψ†e−iα.
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Using the standard line of reasoning one easily derives from this phase in-

variance the conservation of the electric current

jµ = ψ γµ ψ , Q̇(t) = 0 , Q =

∫
dx j0(x, t) .

The vanishing of the the divergence ∂µ jµ follows from the equations of

motion.

The Lagrangian (33.1) exhibits the second conservation law. Observe that

the classical Lagrangian (33.1) is invariant under another phase rotation, the

global axial transformation

ψ → e−i αγ
5
ψ , ψ† → ψ†ei αγ

5
,

which multiplies the left- and right-handed fermions by the opposite phases

(remember, γ5 = −σ3) . At the classical level the axial current

jµ5 =ψ γµγ5 ψ

is conserved just in the same way as the electromagnetic one. One can

readily check using the equations of motion that ∂µj
µ5 = 0. If the axial

charge of the left-handed fermions is Q5 =+1 , for the right-handed fermions

Q5 =−1 . The conservation of Q and Q5 is equivalent to the conservation of

Conservation laws
for chiral

fermions (at the
classical level) the number of the left-handed and right-handed fermions separately. This

fact is quite obvious for any Born (tree) graph. Indeed, in all such graphs

the fermion lines are continuous, the photon emission does not change their

chirality, and the number of ingoing fermion legs is equal to that of the

outgoing legs. In the exact answer including all quantum effects, however,

only the sum of the chiral charges is conserved, only one of two classical

symmetries survives quantization of the theory.

As will be seen below, the characteristic excitation frequencies for A1 are

of order of e0 while those associated with the fermionic degrees of freedom

are of order L−1. Since e0L≪ 1 the variable A1 is adiabatic with respect

to the fermionic degrees of freedom. Consequently, the Born–Oppenheimer

approximation is justified in our case. In the next subsection we will analyze

in more detail the fermion sector assuming temporarily that A1 is a fixed

(time-independent) quantity. From Eqs. (33.10) and (33.11) it is evident

that fermionic frequencies are indeed of order L−1. Calculation of the A1

frequencies is carried out later, see (33.31).

For our pedagogical purposes we can confine ourselves to the study of the

limit e0L≪1 . Those readers who would like to know about the solution of

the Schwinger model on a circle with arbitrary L should turn to the original

publications (e.g. [3]).
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33.2 Dirac sea: the vacuum wave function

Following the standard prescription of the adiabatic approximation we freeze

the time dependence of the photon field Aµ and consider it as “external.”

As for the µ = 0 component of the photon field, it is responsible for the

Coulomb interaction between the charges; the corresponding effect is of the

order e0L≪1 and does not show up in the leading approximation to which

we will limit ourselves in the present section. Thus, we can put A0 ≈ 0. The

difference between these two components lies in the fact that the fluctuations

of A0 are small, while this is not the case for A1 . The wave function is not

localized in A1 in the vicinity of A1 = 0 . It is just this phenomenon –

delocalization of the A1 wave function and the possibility of penetration to

large values of A1 – that will lead to observable manifestations of the chiral

anomaly.

In two-dimensional electrodynamics the Dirac equation determining the

fermion energy levels has the form
[
i
∂

∂t
− σ3

(
i
∂

∂x
+A1

)]
ψ = 0 . (33.8)

For the kth stationary state ψ ∼ exp (−iEkt)ψk(x), and the energy of this

state is

Ek ψk(x) = σ3

(
i
∂

∂x
+A1

)
ψk(x) . (33.9)

Furthermore, the eigenfunctions are proportional to

ψk∼ exp
[
i (k + 1

2) 2π
L x

]
, k = 0 , ±1 , ±2 , . . . . (33.10)

The extra term 1
2

2π
L x in the exponent ensures the antiperiodic boundary

conditions, see Eqs. (33.5) . As a result, we conclude that the energy of the

kth level for the left-handed fermions is

Ek(L) = −
(
k +

1

2

)
2π

L
+A1 , (33.11a)

while for the right-handed fermions

Ek(R) =

(
k +

1

2

)
2π

L
−A1 . (33.11b)

The energy level dependence on A1 is displayed in Fig. 33.1 . The dashed

lines show the behavior of Ek(L) and the solid lines are Ek(R) . At A1=0 the

energy levels for the left-handed and right-handed fermions are degenerate.

If A1 increases, the degeneracy is lifted and the levels are split. At the

Level flow.
Rearrangement of
levels in gauge

equivalent points.point A1=
2π
L the overall structure of the energy levels is precisely the same
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(L) (R)

cut off

cut off

7π/L

5π/L

3π/L

π/L

−3π/L

−5π/L

−7π/L

4π/L

1/ǫ

−1/ǫ

−π/L

Ek

A1

Fig. 33.1. Fermion energy levels as a function of A1 .

as for A1= 0 ; the degeneracy takes place again. The identity of the points

A1= 0 and A1= 2π
L is the remnant of the gauge invariance of the original

theory (see the discussion in Section 33.1).

We note that the identity is achieved in a non-trivial way; in passing from

A1 = 0 to A1 = 2π
L a restructuring of the fermion levels takes place. All

left-handed levels are shifted upwards by one interval while all right-handed

levels are shifted downwards by the same one interval. This phenomenon,

the restructuring of the fermion levels, is the essence of the chiral anomaly,

as will become clear shortly.

Let us proceed from the one-particle Dirac equation to field theory. The

first task is the construction of the ground state, the vacuum. To this end,

following the well-known Dirac prescription we fill up all levels lying in the

Dirac sea, leaving all positive-energy levels empty. The following notations

will be used below for filled and empty levels with a given k : |1L,R , k〉 and

| 0L,R , k〉, respectively. The subscript L(R) indicates that we deal with the

left-handed (right-handed) fermions.

Recall that A1 is a slowly varying adiabatic variable; the corresponding

quantum mechanics will be considered later. At first, the value of A1 is

fixed in the vicinity of zero, A1 ≈ 0 . Then, the fermion wave function of
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the vacuum, as seen from Fig. 33.1 , reduces to

Ψferm.vac. =

( ∏

k=0, 1 , 2 , ...

|1L , k〉
)( ∏

k=−1 ,−2 , ...

| 0L , k〉
)

(33.12)

×
( ∏

k=−1 ,−2 , ...

|1R , k〉
)( ∏

k=0, 1 , 2 , ...

| 0R , k〉
)
.

The Dirac sea, or all negative-energy levels, are completely filled. Now let A1

increase adiabatically from 0 to 2π
L . The same figure shows that at A1=

2π
L

the wave function (33.12) describes a state which, from the standpoint of the

normally filled Dirac sea, contains one left-handed particle and one right-

handed hole (small circles on Fig. 33.1) .

Do the quantum numbers of the fermion sea change in the process of the

transition from A1= 0 to A1= 2π
L ? Answering this question, we would say

that the appearance of the particle and the hole does not change the electric

charge since the electric charges of the particle and the hole are obviously

opposite. In other words, the electromagnetic current is conserved. On the

other hand, the axial charges of the left-handed particle and the right-handed

hole are the same (Q5 = −1) and, hence, in the transition at hand

∆Q5 = −2 . (33.13)

A more formal analysis, to be carried out shortly, will confirm this assertion.

Equation (33.13) can be rewritten as ∆Q5 = −L
π∆A1 . Dividing by ∆t ,

the transition time, we get

Q̇5 = −L
π
Ȧ1 , (33.14)

which implies, in turn, that the conserved quantity has the form
∫
dx

(
j 05 +

1

π
A1

)
. (33.15)

The current corresponding to the charge (33.15) is obviously

Anomaly in the
axial current

derived from the
level flow

j̃µ5 = jµ5 +
1

π
εµνAν , ∂µ j̃

µ5 = 0 , ∂µ j
µ5 = − 1

2π
εµνFµν , (33.16)

where εµν is the asymmetric tensor, ε01 = − ε10 = 1. (Notice that ε01 =

−1.) The last equality in (33.16) represents the famous axial anomaly in

the Schwinger model. We succeeded in deriving it by the “hand-waving”

arguments, by inspecting the picture of motion of the fermion levels in the

external field A1(t) . It turns out that in this language the chiral anomaly

presents an extremely simple and widely known phenomenon: the crossing of
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the zero point in the energy scale by this or that level (or by a group of levels).

The presence of the infinite number of levels and the Dirac “multiparticle”

interpretation, according to which the emergence of the filled level from the

sea means the appearance of the particle while the submergence of the empty

level into the sea is equivalent to production of a hole — an antiparticle —

are the most essential elements of the whole construction. With the finite

number of levels, when there is no place for such an interpretation, there

can be no quantum anomaly.

I would like to draw the reader attention to a somewhat different (al-

though intimately related with the previous) aspect of the picture. The

fermion levels move parallel to each other through the bulk of the Dirac

sea. Therefore, the disappearance of the levels beyond the zero-energy mark

occurs simultaneously with the disappearance of the “copies” beyond the ul-

traviolet cut-off, which is always implicitly present in the field theory (below

we will introduce it explicitly). Because of this fact the heuristic derivation

of the anomaly given in this section and a more standard treatment based on

the ultraviolet regularization are actually one and the same. Often it turns

out more convenient to trace just the crossing of the ultraviolet cut-off by

the levels from the Dirac sea. Beyond toy models, in QCD-like theories,

the latter approach becomes an absolute necessity, not a question of con-

venience, due to the notorious “infrared slavery.” The connection between

the ultraviolet and infrared interpretations of the anomaly is discussed in

more detail in Sections 33.3 and 33.7 . The interested reader is referred to

the original work [4] where all subtle points are exhaustively analyzed.

33.3 Ultraviolet regularization

In spite of the transparent character of this heuristic derivation almost all of

the “evident” points above can be questioned by the careful reader. Indeed,

why is the wave function (33.12) the appropriate choice? In what sense is

the energy of this state minimal, taking into account the fact that according

to (33.11) ,

E ∼ −
∞∑

k=0

(k + 1
2)

2π

L
,

and the sum is ill-defined (the series is divergent)? Moreover, it is usually

asserted that the quantum anomalies are due to the necessity of the ultravi-

olet regularization of the theory. If so, why speak of the Dirac sea and the

crossing of the zero-energy point by the fermion levels?

Surprisingly, all these questions are connected with each other. Probably,
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it will be most instructive to start with the last one. Now I will explain

that although the ultraviolet regularization was not even mentioned thus

far, actually, it is the key element. More than that, the derivation sketched

above tacitly assumes quite a specific regularization.

The fermion levels stretch in the energy scale up to indefinitely large ener-

gies, positive or negative. The wave function (33.12) describing the fermion

sector at A1≈ 0 contains, in particular, the direct product of an infinitely

large number of the filled states | 1R , k 〉 , | 1L , k 〉 with the negative energy.

It is clear that such an object – the infinite product – is ill-defined, and

one cannot do without some regularization in calculating physical quanti-

ties. The contribution corresponding to large energies (momenta) should be

somehow cut off.

At first sight, it seems it would be sufficient simply to throw away the

terms with |k|> |k|max (|k|max is a fixed number independent of A1). This

is a regularization, of course, but, clearly enough, the prescription will in-

evitably lead to a violation of the gauge invariance and the electric charge

nonconservation. Indeed, in the gauge theories the momentum p always

appears only in the combination p+A , not p (or, what is the same, k) .
Making the

cut-off in a gauge
invariant mannerIn order to preserve gauge invariance, it is possible and convenient to use

the regularization called in the literature the Schwinger, or ǫ , splitting. This

regularization will provide a more solid mathematical basis to the heuristic

derivation presented above. Instead of the original currents

jµ = ψ̄(t, x) γµ ψ(t, x) , jµ5 = ψ̄(t, x) γµ γ5 ψ(t, x) , (33.17)

we introduce the regularized objects

jµReg = ψ̄(t, x+ ǫ) γµ ψ(t, x) exp

(
i

x+ǫ∫

x

A1 dx

)
,

(33.18)

jµ5
Reg = ψ̄(t, x+ ǫ) γµ γ5 ψ(t, x) exp

(
i

x+ǫ∫

x

A1 dx

)
.

It is implied that ǫ→ 0 in the final answer for the physical quantities. At

the intermediate stages, however, all computations are performed with fixed

ǫ . The exponential factor in (33.18) ensures gauge invariance of the “split”

currents. Without this factor, multiplying ψ(t, x) by an x-dependent phase,
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ψ(t, x)→ exp [ iα(x)]ψ(t, x), yields

ψ†α(t, x+ ǫ)ψβ(t, x) → exp [−iα(x+ ǫ) + iα(x)]

× ψ†α(t, x+ ǫ)ψβ(t, x) . (33.19)

The gauge transformation (33.6) of A1 compensates for the phase factor in

Eq. (33.19) .

Now, there is no difficulty in calculating the electric and axial charges of

the state (33.12) “scientifically.” If

Q =

∫
dx j0Reg(t, x) , Q5 =

∫
dx j05Reg(t, x) , (33.20)

then for the vacuum wave function we, evidently, get

Q = QL +QR , Q5 = −QL +QR, (33.21)

QL =
∑
k

exp
{
−iǫ
[(
k + 1

2

)
2π
L −A1

]}
,

QR =
∑
k′

exp
{
−iǫ
[(
k′ + 1

2

)
2π
L −A1

]}
,

(33.22)

where k and k′ run over all filled levels. In the limit ǫ→ 0 both charges,

QL and QR , turn into the sum of unities, each unity representing one en-

ergy level from the Dirac sea. Equations (33.22) once again demonstrate

the gauge invariance of the Schwinger regularization. Indeed, the cut-off

suppresses the states with | p +A1| & ǫ−1.

If it were not for the phase factor in Eqs. (33.18), the suppressing function

would not contain the desired combination, p+A .

We hasten to add here that although superficially Eqs. (33.22) do not

differ from each other, actually they do not coincide because the summation

runs over different values of k. What the particular values are is easy to

establish from Fig. 33.1.† Let |A1|< π
L . Then in the “left-handed” sea the

filled levels have k = 0, 1 , 2 , . . . . In the “right-handed” sea the filled levels

correspond to k = −1 , −2 , . . . . Thus, if |A1|< π
L we have

QL =
∞∑
k=0

exp
{
i ǫE k(L)

}
,

QR =
−∞∑
k=−1

exp
{
−i ǫE k(R)

}
.

(33.23)

† See also Eq. (33.12) .
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Performing the summation and expanding in ǫ we arrive at

(QL)vac = −(QR)vac =
eiǫ A1

2i sin(ǫπ/L)

=
L

2πiǫ
+

L

2π
A1 + O(ǫ) , (33.24)

We pause here to summarize our results. Equations (33.24) show that

under our choice of the vacuum wave function (33.12) the charge of the

vacuum vanishes, Q=QL +QR =0 . Moreover, there is no time dependence,

the charge is conserved. The axial charge consists of two terms: the first term

represents an infinitely large constant and the second one gives a linear A1

dependence. In the transition (A1≈0)→(A1≈ 2π
L ) the axial charge changes

by (minus) two units (cf. Eq. (33.21)).

These conclusions are not new for us. We have found just the same from

the illustrative picture described in Section 33.2 in which the electric and

axial charges of the Dirac sea are determined intuitively. Now we learned

how to sum up the infinitive series
∑

k 1 , the charges of the “left-handed”

and “right-handed” seas, by virtue of the well-defined procedure which au-

tomatically cuts off the levels with | p+A1| ∼> ǫ−1.

The procedure suggests an alternative language for describing the axial

charge nonconservation in the transition (A1 ≈ 0)→ (A1 ≈ 2π
L ) . Previously

we thought that the nonconservation is due to the level crossing of the

zero-energy point. It is equally correct to say – as we see now – that the

nonconservation is explained by the following: one right-handed level from

the sea leaves the “fiducial domain” via the lower boundary (the cut-off

−ǫ−1) and one new left-handed level appears in the sea through the same

boundary (Fig. 33.1) . Both phenomena – the crossing of the zero-energy

point and the departure (arrival) of the levels via the ultraviolet cut-off –

occur simultaneously though, and represent, actually, two different facets of

one and the same anomaly, which admits both, the infrared and ultraviolet

interpretations.

One last remark concerning the axial charge is in order. Instead of

Gauge invariance
should be

maintained by all
means!Eqs. (33.18) one could regularize the axial charge in a different way, so that

∂µj
µ5 = 0 and ∆Q5 = 0 . (A nice exercise for the reader!) Under such

a regularization, however, the expression for the axial current would not

be gauge invariant. Specifically, the conserved axial current, apart from

Eqs. (33.18) , would include an extra term 1
πε

µνAν , cf. Eqs. (33.16) . As has

already been mentioned, there is no regularization ensuring simultaneously

gauge invariance and conservation of jµ5 .
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33.4 The theta vacuum

Now, we leave the issue of charges and proceed to the calculation of the

fermion-sea energy, the problem which could not be solved at the naiveCompare with
Section 18.2

level, without regularization. Fortunately, all necessary elements are already

prepared.

The fermion part of the Hamiltonian, cf. Eqs. (33.9) ,

H =

L/2∫

−L/2

dxψ†(t, x)σ3

(
i
∂

∂x
+A1

)
ψ(t, x) , (33.25)

reduces after the ǫ splitting to

HReg =

L/2∫

−L/2

dxψ†(t, x+ ǫ)σ3

(
i
∂

∂x
+A1

)
ψ(t, x) exp

(
i

x+ǫ∫

x

A1 dx
)
.

(33.26)

This formula implies, in turn, the following regularized expression for the

energies of the “left-handed” and “right-handed” seas:

EL =

∞∑

k=0

Ek(L) exp {i ǫE k(L)} , ER =

−∞∑

k=−1

Ek(R) exp {−i ǫE k(R)} ,

(33.27)

where the energies of the individual levels Ek(L,R) are given in (33.11) and

summation runs over all levels with the negative energy. The concrete values

of the summation indices in Eqs. (33.27) correspond to |A1|< π
L . Expressions

(33.27) have an absolutely obvious meaning: in the limit ǫ→0 they simply

reduce to the sum of the energies of all filled fermion levels from the Dirac

sea. The additional exponential factors guarantee the convergence of the

sums.

Furthermore, we notice that EL and ER can be obtained by differentiat-

ing the expressions (33.23)and (33.24) for QL,R with respect to ǫ. (Equation

(33.23) presents a geometrical progressions and is trivially summable.) Ex-

panding in ǫ we getDirac sea energy

E sea = EL + ER = L
2π

(
A1

2 − π2

L2

)

+ (a constant independent of A1) .
(33.28)

In the expression above we omit the infinite A1 independent constant term

on the second line and choose the constant term in the braces on the first
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line in such a way that the sea energy vanishes at the points A1 = ± π
L (see

Fig. 33.2).

Two remarks are in order here. First, it is instructive to check that the

Born–Oppenheimer approximation, accepted from the very beginning, is
I promised to do

this check in
Section 33.1indeed justified. In other words, let us verify that the dynamics of the

variable A1 is slow in the scale characteristic of the fermion sector. The

effective Lagrangian determining the quantum mechanics of A1 is

L =
L

2 e20
Ȧ 2

1 −
L

2π
A2

1 . (33.29)

This is the ordinary harmonic oscillator with the ground state wave function

Ψ0(A1) =

(
L

e0π3/2

)1/4

exp

(
− LA2

1

2e0
√
π

)
, (33.30)

and the level splitting

ωA =
e0√
π
. (33.31)

The characteristic frequencies in the fermion sector are ω ferm∼L−1. Hence,

ωA/ω ferm ∼e0L≪1 . (33.32)

The second remark concerns the structure of the total vacuum wave func-

tion. We have convinced ourselves that

Ψvac = Ψferm. vac. Ψ0(A1) (33.33)

is the eigenstate of the Hamiltonian of the Schwinger model on the circle in

the Born–Oppenheimer approximation. The wave function (33.33) is quite

satisfactory from the point of view of the “small” gauge transformations, i.e.

those continuously deformable to the trivial (unit) transformation. (More

exactly, Eq. (33.33) refers to the specific gauge in which the gauge degrees

of freedom associated with A1 are eliminated and A1 is independent of x .)

This wave function, however, is not invariant under the “large” gauge trans-

formations A1→A1 + 2π
L k , where k = ±1 , ±2 , . . . .

The essence of the situation becomes clear if we return to Fig. 33.1. When

A1 performs small and slow oscillations in the vicinity of zero, the Dirac sea

is filled in such a way as shown in Eq. (33.12) . But A1 can oscillate as well in

the vicinity of the gauge equivalent point A1 = 2π
L . In this case if we do not

restructure the fermion sector and leave it just as in Eq. (33.12) , then the

configuration of Eq. (33.12) is obviously not the vacuum – it corresponds to

one particle plus one hole. This assertion is confirmed, in particular, by the

plot showing the Dirac sea energy as a function of A1 (Fig. 33.2). In order
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to get the configuration with the lowest energy in the vicinity of A1 = 2π
L it

is necessary to fill the fermion levels as follows:
∏

k=1, 2 , 3 , ...

|1L , k〉
∏

k=0,−1 ,−2 , ...

|1R , k〉

(the empty levels are not shown explicitly, cf. Eq. (33.12) ) .

n = −2 n = −1 n = 0 n = 1 n = 2

Esea

−4π
L −2π

L 0 2π
L

4π
L A1

Fig. 33.2. Energy of the Dirac sea in the Schwinger model on a circle. The solid
line corresponds to Eq. (33.12) . Dashed lines reflect restructuring of the Dirac sea
necessary if |A1|> π

L .

Thus, the Hilbert space is naturally split into distinct sectors correspond-

ing to different structure of the fermion sea. The wave function of the ground

state in the nth sector has the formn-th prevacuum

Ψn =

( ∞∏

k=n

|1L , k〉
)( −∞∏

k=n−1

|1R , k〉
)

Ψ0

(
A1 −

2π

L
n

)
,

n = 0 , ±1 , ±2 , . . . . (33.34)

The organization of the fermion sea is correlated with the position of the

“center of oscillation” of A1 . It is quite evident that if n 6= n′ then Ψn and

Ψn′ are strictly orthogonal to each other due to the fermion factors.

Is it possible to construct the vacuum wave function invariant under the

“large” gauge transformations A1 → A1+ 2π
L k (with the simultaneous renum-

bering of the fermion levels) ? The answer is yes. Moreover, such a wave

function is not unique. It depends on a new hidden parameter θ which is

often called the vacuum angle in the literature. Consider the linear combi-

nation

Ψθ vac =
∑

n

ein θΨn. (33.35)
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This linear combination is also the eigenfunction of the Hamiltonian with the

lowest energy, just in the same way as Ψn. But unlike Ψn the “large” gauge

transformations leaves Ψθ vac essentially intact. More exactly, under A1 →
A1 + 2π

L the wave function (33.35) is multiplied by eiθ . This overall phase

of the wave function is unobservable; all physical quantities resulting from

averaging over the θ-vacuum are invariant under the gauge transformations.

Summarizing, we have now become acquainted with another model in

which the notion of the vacuum angle θ , as well as the θ-vacuum, is abso-

lutely transparent: the Schwinger model on the spatial circle. The presence

Previously we
discussed the
θ-vacuum in
Chapter 5of the vacuum angle θ in the wave function is imitated in the Lagrangian

language by adding the so-called topological density to the Lagrangian. In

the Schwinger model the topological density is

∆Lθ =
θ

4π
εµνFµν . (33.36)

This extra term in the action is the integral over the full derivative: it

does not affect the equations of motion and gives a vanishing contribution

for any topologically trivial configuration Aµ(t, x) . The topological density

∆Lθ shows up only if

L/2∫

−L/2

dx
[
A1(t = +∞ , x)−A1(t=−∞ , x)

]
= 2πk , |k| = 1 , 2 , . . . .

(33.37)

33.5 Topological aspect

The topological properties are mentioned here not by chance. It is very in-

structive to discuss the topological aspect of the theoretical construction

under consideration in more detail, in parallel with a similar discussion

in Chapter 5, where we exploited the path integral formulation of Yang–

Mills theory based on the Lagrangian formalism. At the same time, in the

Schwinger model, so far, (Section 33.4) we used the Hamiltonian language

to establish the existence of the θ vacuum.

The Schwinger model possesses the U(1) gauge invariance. An element of

the U(1) group, as it is well-known, can be written as eiα . Using the gauge

freedom one can reduce the fields A1(t, x) or ψ(t, x) at a given moment of

time to a standard form by choosing an appropriate gauge function α(t, x) .

The standard form of A1 is A1 = const., which varies between, say, zero and

2π/L. Gauge-equivalent points A1 = 0, ±2π/L, ±4π/L, , ... are connected

by “large” (topologically nontrivial) gauge transformations.
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Moreover, under our boundary conditions the variable x represents a circle

of length L , and, consequently, we deal here with the (continuous) mappings

of the circle in the configuration space into the gauge group U(1) . The

set of the mappings can be divided in classes. The mathematical formula

expressing the fact that the mappings are decomposed into classes is
Same topology as

in the case of
ANO strings

π1 (U(1)) = Z . (33.38)

The meaning of Eq. (33.38) is very simple. Inside each class, all mappings,

by definition, can be reduced to each other by continuous deformations. On

the other hand, no continuous deformations transform mappings from one

class into those belonging to another class.

When the mappings of a circle onto U(1) are considered, the difference

between the classes is especially transparent (see Fig. 33.3) . Assume that

we started from a certain point, went around the circle a once, and returned

a

b

eiα

Fig. 33.3. Mapping of a circle in the coordinate space into U(1). The dashed contour
near the circle b shows a topologically trivial mapping.

to the starting point. In doing so, we simultaneously went around the circle

b 0 , ±1 , ±2 , etc. times. (The negative sign corresponds to circulation

in the opposite direction.) The number of windings around the circle b is

just a class of the mapping. It is quite clear that all mappings with a given

winding number are continuously deformable into each other. On the con-

trary, different winding numbers guarantee that a continuous deformation

is impossible. The letter Z in Eq. (33.38) denotes the set of integers and

shows that the set of different mapping classes is isomorphic to the set of

integers; each class is characterized by an integer having the meaning of the

winding number. The mappings corresponding to the zero winding number

are called topologically trivial, the others are topologically non-trivial.

This information is sufficient to establish the existence of the vacuum sec-

tors labeled by n (n = 0 , ±1 , ±2 , . . . ), for which (Aµ)vac ∼ ∂µα(n) , without

any explicit construction like (33.34) (α(n) belongs to the nth class). The

necessity of introducing the vacuum angle θ also stems from this information.
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33.6 The necessity of the θ vacuum

Finally, the last issue to be discussed in connection with the Schwinger

model is as follows. Sometimes the question is raised as to why the vacuum

wave function cannot be chosen in the form (33.34) with fixed n . The gauge

invariance under “small” (topologically trivial) transformations is preserved

which automatically implies the electric charge conservation. What is lost is

only the invariance under the “large” (topologically non-trivial) transforma-

tions; it seems that there is nothing bad in that.† Then, why is it necessary

to pass to Ψθ vac =
∑

n e
in θΨn?

The point is that Ψn taken as the vacuum wave function violates clusteri-

Cluster
decomposition

and stability with
regards to e.g.

mass
deformations

zation – one of the basic properties in the field theory which can be traced

back to causality and unitarity of the theory. The following is understood by

clusterization: the vacuum expectation value of the product of several local

operators at causally independent points must be reducible to the product

of vacuum expectation values for each operator, for example,

〈O1O2〉 = 〈O1〉 〈O2〉 . (33.39)

The violation of the clusterization can be demonstrated explicitly. Consider

the two-point function

A(t) = 〈Ψn|T {O†(t) , O(0)} |Ψn〉 ,

O(t) =

∫
ψ̄(t, x)(1 + γ5)ψ(t, x) dx . (33.40)

The operator O changes the axial charge of the state by two units (adds a

particle and a hole to the Dirac sea), O† returns it back, and, as a result,

A(t) 6= 0 . Moreover, if t→∞ in the Euclidean domain A(t)→ const . (For

a concrete calculation, see, e.g., [2] based on the bosonization method. In

this work the limit L→∞ is considered but all relevant expressions can be

readily rewritten for finite L .) The fact that A(t) tends to a non-vanishing

constant at t → ∞ means, according to clusterization, that the operators

ψ̄(1± γ5)ψ acquire a nonvanishing vacuum expectation value.

On the other hand, if |vac〉 = |Ψn〉 then 〈ψ̄(1 ± γ5)ψ〉 = 0 for a trivial

reason. Indeed, the operator ψ̄(1± γ5)ψ acting on Ψn produces an electron

and a hole, and the corresponding state is obviously orthogonal to Ψn itself.

The clusterization property restores itself if one passes to the θ-vacuum

† The contents of this section should be compared to Section 18.2. For a discussion of subtle and
contrived modifications which are possible, but will not concern us here, see [5, 6].
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(33.35) . In this case there emerges a nondiagonal expectation value

〈Ψn+1| ψ̄ (1± γ5)ψ |Ψn〉 ∼ L−1 exp
(
− π3/2

e0L

)
. (33.41)

If the line of reasoning based on clusterization seems too academic to

the reader, it might be instructive to consider another argument (connected

with Eqs. (33.40) and the subsequent discussion). Let us ask the question:

what will happen if instead of the massless Schwinger model we consider the

model with a small mass, i.e. introduce an extra mass term ∆Lm=−mψ̄ ψ

in the Lagrangian (33.1) ? Naturally, all physical quantities obtained in the

massless model will be shifted. It is equally natural to require, however,

the shifts to be small for small m, so that there would be no change in the

limit m→0 . Otherwise, we would encounter an unstable situation while we

would like to have the mass term as a small perturbation.

But in the presence of the degenerate states (and the states Ψn with

different n are degenerate) any perturbation is potentially dangerous and

can lead to large effects. Just such a disaster occurs, in particular, if ∆Lm ,
acting on the vacuum, is nondiagonal.

If we prescribe the states like Ψn to be the vacuum, then ∆Lm will by no

means be diagonal, as follows from the discussion after Eqs. (33.40) . This we

cannot accept. On the other hand, the mass term is certainly diagonalized

in the basis of the wave functions (33.35) ,

〈Ψθ′ vac|∆Lm|Ψθ vac〉 = 0 if θ′ 6= θ . (33.42)

33.7 Two faces of the anomaly

In conclusion, it will be extremely useful to discuss the connection between

the picture presented above and the more standard derivation of the chiral

anomaly in the Schwinger model. This discussion will represent a bridge

between the physical picture described above and the standard approach to

anomalies.

We have already emphasized the double nature of the anomaly which

shows up as the infrared effect in the current and the ultraviolet effect in the

divergence of the current. The line of reasoning accepted thus far put more

emphasis on the infrared aspect of the problem – the finite “box” served as a

natural infrared regularization. The same result for ∂µj
µ5 as in Eqs. (33.16)

could be obtained with no reference to the infrared regularization.

A conventional treatment of the issue is based on the standard Feyn-

man diagram technique. The usual explanation one can find in numerous

textbooks connects the anomalies to the ultraviolet divergence of certain



33 Chiral Anomaly in the Schwinger Model 393

Feynman graphs. The assertion of the ultraviolet divergence is valid if one

deals directly with ∂µj
µ5. Thus, the emphasis is shifted to the ultraviolet

aspect of the anomaly.

Below, first of all, we will sketch the standard derivation. Then we will

show that the diagrammatic language used, as a rule, for the analysis of

∂µj
µ5 from the point of view of the ultraviolet regularization, can be suc-

cessfully used for the “infrared” derivation of the anomaly. The fact that

the anomalies reveal themselves in the infrared behavior of Feynman graphs

is rarely mentioned in the literature, and, hence, deserves a more detailed

discussion. The pragmatically oriented reader can omit this subsection in

the first reading.

Thus, we would like to demonstrate that

∂µj
µ5 = − 1

2π
εµνFµν , (33.43)

by considering directly ∂µj
µ5, not jµ5 as previously. Then we need to bother

only about the ultraviolet regularization, and, in particular, the theory can

be considered in the infinite space since the finiteness of L does not affect

the result coming from the short distances.

One of the convenient methods of the ultraviolet regularization is due

to Pauli and Villars. In the model at hand it reduces to the following. In

addition to the original massless fermions in the Lagrangian, heavy regulator

fermions are introduced with the mass M0 (M0 → ∞) and the opposite

metric. The latter means that each loop of the regulator fermions is supplied

by an extra minus sign relatively to the normal fermion loop. The interaction

of the regulator fermions with the photons is assumed to be just the same

as for the original fermions, and the only difference is the mass. Then the

role of the Pauli–Villars fermions in the low-energy processes (E≪M0) is

to provide the ultraviolet cut-off in the formally divergent integrals with

the fermion loops. Such a regularization procedure, clearly, automatically

guarantees gauge invariance and the electromagnetic current conservation.

In the model regularized according to Pauli and Villars the axial current

has the form

jµ5 = ψ̄γµγ5ψ + R̄γµγ5R , (33.44)

where R is the fermion regulator. In calculating the divergence of the regu-

larized current the naive equations of motion can be used. Then

∂µj
µ5 = 2iM0R̄γ

5R .

The divergence does not vanish (the axial current is not conserved!) , but,

as was expected, ∂µj
µ5 contains only the regulator anomalous term.
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The last step is contracting the regulator fields in the loop in order to

convert M0R̄γ
5R in the “normal” light fields in the limit M0 → ∞ . The

relevant diagrams are displayed in Fig. 33.4 where the solid line denotes

the standard heavy fermion propagator i(6p −M0)−1 . The graph (a) does

γ

(b) (c)(a)

+ +

2iM0γ
5

R

2iM0γ
5 2iM0γ

5

R R

γγ

(d)

kµ

γµγ5

ψ

Fig. 33.4. Diagrammatic representation of the anomaly in the axial current in the
Schwinger model. (a), (b), (c): Heavy regulator fields in the divergence of the
current. (d): Infrared anomalous contribution in ψ̄γµγ5ψ .

not depend on the external field. The corresponding contribution to ∂µj
µ5

represents a number which can be set equal to zero. The graph (c) , with

two photon legs, and all others having more legs die off in the limit M0→∞ .

The only surviving is the graph (b) . Calculation of this diagram is trivial,

2iM0R̄γ
5R→ − 1

2π
εµνFµν . (33.45)

(Do not forget an extra minus sign in Pauli–Villars fermion loop.) As a

result, we reproduce the anomalous relation (33.43) obtained previously by

a different method.

The easiest method allowing one to check Eq. (33.45) in another way is,

probably, the so-called background field technique. I will not dwell here on

its detail because the corresponding explanation would lead us far astray.

The interested reader is referred to the review [7] where all relevant nuances

are fully discussed. I will limit myself to intuitively obvious features and use

self-evident notation. Then
Background field

formula

2iM0R̄γ
5R = −2M0Tr

[
γ5 (6P −M0)−1

]
, (33.46)

where Pµ = iDµ = i∂µ + Aµ is the generalized momentum operator, and
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we have taken into account the fact that the minus sign in the fermion loop

does not appear for the regulator fields.

Moreover,

(6P −M0)−1 = (6P +M0)

(
P 2 +

1

2
i εµνFµνγ

5 −M 2
0

)−1

. (33.47)

Now, since M0→∞ the trace in Eq. (33.46), can be expanded in the inverse

powers of M0 ,

Tr
[
γ5 (6P −M0)−1

]
= (33.48)

Tr

[
γ5 (6P +M0)

(
1

P 2−M2
0

− 1

P 2−M2
0

1

2
i εµνFµνγ

5 1

P 2−M2
0

+ . . .

)]
.

The first term in the expansion vanishes after taking the trace of the γ

matrices. The third and all other terms are irrelevant because they vanish

in the limit M0 → ∞ . The only relevant term is the second one where

we can substitute the operator Pµ by the momentum pµ since the result is

explicitly proportional to the background field Fµν , and the chiral anomaly

in the Schwinger model is linear in Fµν . Then

2 iM0R̄γ5R = −2M2
0

∫
d2p

(2π)2
i

(p2 −M2
0 )2

εµνFµν .

Upon performing the Wick rotation and integrating over p we arrive at

Eq. (33.45) .

This computation completes the standard derivation of the anomaly. One

should have a very rich imagination to be able to see in these formal ma-

nipulations the simple physical nature of the phenomenon which has been

described above (restructuring of the Fermion sea and the level crossing).

Nevertheless, this is the same phenomenon viewed from a different angle –

less transparent but more economic since we can get the final result very

quickly using the well-developed machinery of the diagram technique, fami-

liar to everybody.

Let us ask the following question: “What is the infrared connection (or

infrared face, if you wish) of the anomaly in the diagram language?” To

extract the infrared aspect from the Feynman graphs it is necessary to turn

back to consideration of the current jµ5 . Our aim is to calculate the matrix

element of the current jµ5 in the background photon field. Unlike ∂µj
µ5

the matrix element 〈jµ5〉 contains an infrared contribution. Because of this

it is impossible to consider 〈jµ5〉 for the on-mass-shell photon, with the

momentum k2 = 0 . We are forced to introduce “off-shellness” to ensure the
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infrared regularization (a substitute for finite L, see above). Thus, we will

consider the photon field Aµ which does not obey the equations of motion.

General arguments (such as gauge invariance) imply the following ex-

pression for the matrix element 〈jµ5〉 stemming from the diagram (d) of

Fig. 33.4 :

〈jµ5〉 = const
k µ

k2
εαβFαβ , (33.49)

where the constant in the right-hand side can be determined by an explicit

computation of the graph. In principle, there is one more structure with the

appropriate dimension and quantum numbers, namely εµνAν , but it cannot

appear by itself if gauge invariance is maintained. In other words, one can

say that the local structure εµνAν can always be eliminated by subtraction

of an ultraviolet counterterm.

It is worth noting that, purely kinematically,

k µεαβFαβ = −2i εµν [k2Aν − kν(k ρAρ)] . (33.50)

It is seen that in order to distinguish an infrared singular term proportional

to k−2 from the local term depending on the ultraviolet regularization it

is necessary to assume that kρAρ 6= 0 . The infrared singular term is fixed

unambiguously by the diagram (d) of Fig. 33.4 . The easiest way to get it

is just to compute this graph in a straightforward way,

〈jµ5〉 = (−1)

∫
d2p

(2π)2
Tr

[
γµγ5 i6p

p2
i γρ

i(6p+ 6 k)

(p + k)2

]
Aρ . (33.51)

Performing the p integration and disregarding terms non-singular in k2 we

get
∫
pα

p2

(p + k)β

(p + k)2
d2p

(2π)2
→ i

4π

kαkβ

k2
,

which implies, in turn,

〈jµ5〉sing.= −
1

4πk2
Tr
[
γµγ56 k γρ6 k

]
Aρ →

1

πk2
εµνkν(kρAρ) .

Now, inserting the local term in order to restore the gauge invariance and

using Eq. (33.50) we arrive atAnomaly from the
IR side

〈jµ5〉 = − i

2π

k µ

k2
εαβFαβ . (33.52)

Taking the divergence is equivalent to multiplication of the right-hand side

by −ikµ , and we reproduce, now for the third time, the anomalous relations

(33.43) .
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