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Abstract

In this lecture notes | give an introduction to perturbative QCD, that shemi{d
dress both theoretical and experimental physics students. | illustrategite ba
features of the theory, by discussing few examplesia~ physics, deep-
inelastic scattering, and hard production phenomena in hadron collisions.
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1 STRONG INTERACTIONS

Strong interactions are characterized at moderate energies by theqare$a single dimensionful scale,
of the order of few hundred MeV, a scale that we will call in the followikig. No hint to the presence
of a small parameter, in which to develop a perturbative expansion, ismniresthe strong interaction
world. Thus, typical cross sections are of the order of 10 millibarngésponding roughly td/A%),
the width of hadronic resonances is of ordey, and the size of a baryon is typically of the order of
1/Ag. This is very much different from the case of electromagnetism and df iézraction, where alll
reactions can be viewed as originating from a weakly coupled point-likex;ethe fermion—fermion—
photon vertex in electrodynamics, and the four fermion vertex in weak otters. The development
of a model of strong interactions has therefore followed a rather intricate pside from what can be
inferred from symmetry properties, S-Matrix models were developed indsedince the general feeling
prevailed that it was impossible to describe strong interactions using a fieletioal framework similar
to the one used for QED. Dual models, which eventually gave origin to streayits, were discovered
precisely in this context, but failed to give a consistent explanation ofgirdgaraction dynamics.

2 MOTIVATIONS FOR QCD

Today we have a satisfactory model of the strong interaction, which is giveerms of a non—Abelian
gauge theory. The main motivations for this model are essentially the following.

2.1 Hadron Spectrum
The hadron spectrum can be completely classified from the following assunsp

1. Hadrons are made up of sp}nquarks. The charge and masses of the known quarks are given in
table 1. One usually refers tq d, s, ¢, b andt as “flavours”, and commonly refers tg d ands as
the light flavours, and, b andt as heavy flavours.

2. Each quark flavour comes in 3 colours. Thus, quark fields arerspiaod carry a flavour and a
colour index;@b(f)Hﬂavour

i«—colour

3. The SU(3) symmetry acting on colour is an exact symmetry.



Electric Charge %e up charm top
m= few MeV ~ 1.5 GeV ~170 GeV
Electric Charge- —3e | down strange bottom
m = few MeV | few hundred MeV| =~ 5 GeV

Table 1: Known quarks

4. Observable hadrons are neutral in colour, in the sense that theglaue singlets under the SU(3)
colour group (“singlet” means invariant under the action of the group).

The SU(3) group is the group 8fx 3 complex unitary matrice§ with unit determinant
Ul =1, detU=1, 1)

that act on the quark fields according to
Vi — > Uikthr. 2)
k

Invariants can be easily formed out of quark—antiquark states

D Wi = > Ui Utbr =Y (Z U;iUik> itk =Y Uik, (3)
i % k

ijk kj

which gives us the possibility of forming integer spin color singlet states witleakgand an antiquark.
We can form colour singlet also from three-quark states

SR by — > UG U U opibr = D €7 F by 4)

ijk ijki'§' k! ik
where the last equality is a consequence of the identity

> R U U Uy = det U 7% (5)
ijk

anddet U = 1 for SU(3) matrices. Therefore we have the possibility of forming coloutnad spinl /2
hadrons out of three quarks. The most important hadron multiplets ardeyisipin fig. 1. Multiplets
are classified according their spin, and their transformation properteesr whe flavour group. Each
multiplet contains particles with similar properties. Observe that we need dblwerwant a particle
like the AT, which is made of three up quark with the same flavours and same spin, tsihzlar
properties to the2®, which has three different flavours. In fact, if we didn’t have coldgcause of
the Pauli principle, the spatial wave function of theé* should be antisymmetric, while that of tB
could very well be symmetric. With colour, instead, the colour wave-fundétsedf is antisymmetric, and
so there is no problem to have the particle of the multiplet all in a symmetric spinufiaand spatial
wave-function.

It can be shown that in order to form an SU(3) singlet in a systemayjtluarks anch; antiquark,
we have the constraint
Ng—Mng=mnXxX3 (6)

with n integer. It is a simple exercise to show that because of this condition alidetvadrons must
have integer charges.



Fig. 2: Deep inelastic scattering.

2.2 Scaling

Scaling was first observed in deep inelastic scattering experiments at 8taqford Linear Accelerator
Center, Stanford, California), around 1968. The deep inelastic sogtferocess, depicted in fig. 2, is
the collision of a lepton (an electron in the SLAC case) with a nucleon targéthvitagments into a
high multiplicity, massive final state. The scattering process kinematics cagfined by the following
dimensionless variables

Q2

2p-g

S
iS]

TBj Y= (7)

o
]



whereQ? = —¢?. The valuerg; = 1 corresponds to elastic scattering. In fact
2 _ 2 __ 2 2 _ 2
My = (¢+p)* = -Q° +m, + 2v =2v(1 — xB;) + m,,. (8)

Scaling means that the differential cross section, when expressed inaittmse dimensionless param-
eters, in the limit of high energy with andy fixed, scales like the energy in the process, according to its

canonical dimension
do 1

dr dy x ok (9)
This property is quite remarkable, since the right hand side does natdlepenA s, like most moderate
energy cross sections, and it looks more like the behaviour one may fingimoemalizable field theory
with a dimensionless coupling, like electrodynamics. Even more spectacalargsphenomena are
observed ireTe™ annihilation, where the total hadron production cross section becomasrfiomal to
the muon pair cross section at high energies.

The discovery of scaling phenomena in deep inelastic scattering a#ickin annihilation, has
given a strong evidence that if a field theory was to describe strong dtitarg, it had to be weakly
coupled at high energies, that is to say, it had to be “asymptotically fréed ohly known asymptotically
free four—dimensional field theories are the non—Abelian gauge thetiriscomes therefore natural to
attempt to describe the hadronic forces by using an SU(3) non—Abelisgegaeory, coupled to the
colour quantum number. This is also hinted by the fact that the conditionlo@icoeutrality of the
hadron spectrum must have a dynamical origin.

2.3 The QCD Lagrangian
The QCD Lagrangian reads

r— —7F’"‘”F‘1 + Z S = mp)oi; — gstl Aa) T/’g('f)
Fﬁy = 8 A — 0s Z fabcAb Azc/' (10)

Sum over repeated Lorentz and colour indices is always assumed.ufrhever different flavours is
explicitly indicated. The symbolg; are theSU (3) generators and thg,;. are the structure constant of
the SU(3) algebra. The matrice$ form a complete basis of traceless 3 matrices. There are 8 such
matrices, and therefore there are 8 gluons. The basis is chosen inwagttlzat

1
apb\ _ ~ cab
ﬁ@t)_f (11)
The symbolsf are then defined by (square brackets indicate the commutator)
[t7,17) = ifetere (12)

| also give the important property (which follows from completeness, keasaess and relation (11))

aa _ 1 1
za:tij M= g <5il5kj - 35@'5“) : (13)

Equation 13 is all we need to compute colour factors for feynman graphs.

The colour structure of the Lagrangian may seem complicated at first <igtg.simple way to
look at it, is to think of quarks as objects having 3 colour states. The gluohethought as carrying the
combination of a colour and an anticolour, except that out of the ninélgp@sembinations the “neutral”
one, formed by the sum of all equal colour-anticolour pairs is subtrastey. Figure 3 shows how to
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Fig. 3: Colour Feynman rules for QCD
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compute colour factors by using this intuitive point of view. The Feynmarsfaglethe QCD Lagrangian
are given in fig. 4.

The QCD Lagrangian is very similar to the QED Lagrangian. The Feynmas ankealso very
similar. The most apparent difference is due to the fact that the fermionsacaew quantum number,
the color (the indices, j = 1,2,3 in eq. (10)). Also the gluons carry a colour related quantum number.
Unlike the case of QED, therefore, the gluons are charged, and captheritgluons.

As in the case of electrodynamics, one defines the strong coupling cbnstan

2
ag = 5 . (14)
4

As we shall see in the following, this coupling constant has a strength thahde upon the energy scale
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1 of the process in which enters. In leading order
1

Qg = — (15)
" bylog 4
where 1104 —AT
by = ——A_ 2P (16)
127

whereTr = 1/2 andC4 = N for SU(N) (3 for SU(3)) and: is the number of flavours. Thusis the
parameter that characterizes the QCD coupling constant.

2.4 Symmetries

We know that the strong interaction world has a very good symmetry propleetysospin symmetry.
Particles in the same isospin multiplet, like the proton and the neutron, or theedreard neutral pions,
have nearly the same mass. Furthermore, the Wigner-Eckart theorebe amed to relate decay and
scattering processes which are connected by isospin transformatluasymmetry properties must be
present in some way in the fundamental QCD Lagrangian, whose fermegtiarss given by

Lr =Y 00 (i@ —mp)di; — gtéiAa) w17, (17)
frig
An isospin transformation acts on the quark field as a unitary matrix
) Z ult (18)
f/

where f and f’ are restricted to the up and down flavours, &hé a unitary two dimensional matrix.
By a simple exercise, one can verify that, in order for the fermionic Lag@aang be invariant under
the isospin transformation, we must have eithgr = mq4 or m,,, mqy — 0. The distinction of the two
possibilities is a physical one. It can be phrased as follows: if the up awd chasses are of the order
of the QCD scale\ or larger, then they must be nearly equal in order for the isospin symmaetrgrto
Alternatively, the up and down masses must be much smallerAharhe first possibility is not very
appealing from a theoretical point of view. From what we know from tle®th of weak interactions,
particles belonging to different families have different masses. It woellddoy hard to justify the fact
that two quark flavours have equal masses while all the others areiffergit. In fact, there is a large
body of evidence that favours the second possibility, that is to say, thatptand down quark masses
are very small. This fact has a few remarkable consequences, dueféathieat, for small masses, the
QCD fermionic Lagrangian has a much larger symmetry than isospin alonedénto see this fact, let
us define left and right-handed field components

1

o=, Yr= g1+ 19)

and substituting) = 1, + ¥ in the fermionic Lagrangian we have (suppressing colour indices)

Lo =S {0 @0 - g a ) + 3 9 - g 0}
f

f

Terms that mix left and right components in the kinetic energy, and terms dibgotie left and right
component of the mass terms are absent because of the following elenidatditjes

bo=2( ) v br= (1) vn 21)



U =L %(1 +75)  Yr=1r %(1 —5) (22)

and from the fact thats anticommutes withy,,. If we could neglect the fermion masses the Lagrangian
would have the large symmetry

SUL(N) X SUR(N) X UL(l) X UR(l) (23)
whereNN is the number of flavours. In fact, the transformation

wgf) L Z U{f'wif/)
f/

wg) _ ei¢>R Z U}J;fl¢(Lf ) (24)
f/

whereU, andUp, are (independent) matrices® (N ), leaves the Lagrangian invariant. The phase fac-
tors constitute the tw@/ (1) groups. The isospin symmetry group is a subgroup of the above, alsd calle
the vector subgroup, characterized by equal transformation matricésefteft and right components.
Besides the isospin transformations, there are other independent syrimaretfgrmations, in which the
left and right-handed component transform with matrices that are thesenedéreach other. These are
called axial transformations (they do not form a subgroup by themseliret)e following, | will only
state what happens of all these symmetries, without giving detailed explasatio

e The vector SU(N) subgroup is realized in the spectrum. It is the obsé&wegin symmetry. The
U(1) vector subgroup is a phase symmetry related to baryon numbeircaiice.

e The axial U(1) symmetry does not survive quantization, because obthalked triangle anomaly.
This symmetry is simply not there in the full theory.

e The remaining axial transformations are broken symmetries. The Goldstenadof these bro-
ken symmetries are the pion fields.

Goldstone bosons are massless particles, while the pions are not. Thisiseggence of the fact that
the axial symmetries are only approximate, due to the fact that the quarkswaeseot strictly zero.

Thus, by assuming that the up and down quark masses are small, we explaiegbnce of isospin
symmetry, as well as the lightness of the pions. Other dynamical predictibms, fiike relations among
the low energy scattering properties of the pions and the pion decay obriElte interested reader can
find many good references where to study this subject [1, 2, 3].

2.5 Summary
In summary, by accepting QCD as the fundamental theory of strong intaraetie can

e Explain the low energy symmetry properties, and give a justification of therebd spectrum.
e Explain scaling phenomena at high energies.

e Leave Weak interactions in peace. The QCD colour group commutes with ttteoaleak group
SU(2)xU(1). Since the electroweak interactions are less symmetric (they breigk gyad CP),
this guarantees that there is no mixing between electroweak and strongtiotesdhat enhances
the parity—violating effects (giving rise, for example, to parity violating intéoms of sizeney as
instead ofey, /M7, or flavour changing neutral current effects.

e Give a description of the hadronic forces which is similar to electroweaefithus opening the
possibility of a uniform description of the forces in nature in terms of gaugertes (unification).

9



There are two common points of view among physicists, with regard to QCD.

Many believe that QCD is an extremely well established theory, much bettétisse than the
Electro-Weak theory. In fact, the Lagrangian is fully specified in termgihgle parameter. Remember,
in fact, that quark masses have electroweak origin, and are related takhe& coupling and to the
electroweak symmetry breaking. In Electroweak theories, on the othdr ivarhave lots of parameters
and quite a few alternatives are possible for the symmetry breaking sector.

Others believe that Electro-Weak theories are much better establisheakt,Inve can compute
every accessible phenomenon we like with great accuracy, and saalateccomparisons with experi-
mental results. On the other hand, in QCD, we are unable to explain rigp®uen basic phenomena
like colour confinement, and perturbative calculations rely upon unpragsumptions.

The first point of view can be stated by simply saying that QCD must be riggdlse we cannot
think of anything else that is even plausible as a theory of strong interad@th@nsecond point of view is
more humble, and assumes that in order to establish a physical theory dmaakadestable predictions,
and compare them with experiments.

Thus, we find that essentially no viable alternative to QCD have been faedusa far, and yet
there is a huge ongoing effort in theoretical and experimental physicslatesting the predictions of
QCD.

At low energy, QCD is a strongly interacting theory. Besides the phendgioal results that
follow from its symmetry properties, the only known way to perform calculationthis regime is by
computer simulation of QCD on a lattice, that is to say on a finite and discretized ofatmce-time.
This approach is bound to improve as time goes by, since people become mdom®ee clever, and
computers become more and more powerful.

At high energy, in many cases, standard perturbative methods campledapgn these lectures |
will deal mostly with the perturbative applications of QCD. We will see that, eatemgh energy, the
application of perturbative techniques is not straightforward. In faetwill be able to perform calcula-
tions only when the long distance (low energy) part of the process waiegahas no or little influence
upon the quantity we want to compute. In the following, | will illustrate the badigedurbative QCD
by examining the process of hadrons production via the annihilation ©f an pair at high energy. This
process is particularly simple, since no strongly interacting particles ajppte initial state.

3 AN ILLUSTRATION OF ASYMPTOTIC FREEDOM

We will now introduce the basic features of QCD via the simplest processighitltan be applied, that
is to say the production of hadronsdrie~ annihilation. By studying this process we will illustrate the
remarkable property of asymptotic freedom, and its physical implications.

We are considering the process depicted in fig. 5. The production obhsithkes place via the

+

')/*,ZO
Hadrons

Fig. 5: Electron—positron annihilation into hadrons.

production of a virtual photon, or of a real or virtudl boson. From the point of view of QCD, the

10



decay of a virtual photon, or of & or Z boson, are very similar, and in fact strong corrections to these
processes are given by essentially the same formulae. For simplicity, owe¥ can always think
about the decay of a virtual photon. We will begin by attempting to compute thectotss section for
the decay of a virtual photon, with a virtuality?) much larger then typical hadronic scales. Our attempt
will be extremely crude. We will simply use the QCD Lagrangian and the qooreting Feynman rules,
and try to compute the cross section order by order in the strong coupliregacd. The prediction at
zeroth order in the strong coupling comes simply from diagraai fig. 6. It is usually expressed in

a \Mb<§
c d
Fig. 6: Diagrams for the QCD calculation &f(e e~ — Had.) up to the ordefys.

terms of the ratio of the hadronic cross section divided by the cross séatitie production of qu™ .~
pair. It is given by

o(v* — hadrons) 9
Ry = =3)» ¢ 25
" oy — ) 2; ! 29

where f runs over the quark flavour species, ands the electric charge of the quark of flavofiin
units of the electron charge. The factor of 3 accounts for the fact teat #hre three colours for each
quark. The sum extends to all the flavours that can be produced avémeemergy. The formula is valid
in all cases when we can neglect quark masses. Near the threshosdhfgrduark production one must
include a correction factor, which in the general case of a vector bidsoeay, yelds

4m? 2m2
30:32\/1—;<1+;>07 (26)
f

Corrections of orderas to R can be computed in a straightforward way. The relevant contributions
come from the interference of the virtual diagramwith diagrama, plus the square of the real emission
graphsc + d. There are also diagrams with self—energy on the fermion lines, not simothie figure,

that should be included with the appropriate weight. The result turns ot tmimpletely finite. All
ultraviolet divergences that arise in intermediate steps of the calculatieelcmong each other. This

is a consequence of the fact that the electromagnetic current is a wethsenrent, and therefore it is
not renormalized by strong interactions. Other kind of singularities ariseténniediate steps of the
calculation, namely soft and collinear singularities. They all cancel in thé ©keeir meaning will be
discussed further on. The corrected value of R becomes

R=Ry (1+%). 27)
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If we go on, and compute the corrections of ordér something new happens. We find ultraviolet
divergences that do not cancel, and the result is

M? 2
R= Ry <1+O‘S+ {c—ﬂrbologQ] (%) ) (28)
T Q T
whereM is the ultraviolet cutoff (for those who are familiar with dimensional regul&iora the cutoff
scale ind = 4 — 2e dimensions isV = pexp %), and
33 —2nyg
127

andny is the number of light flavours. The divergence is dealt with the usuatpption of renormal-
ization. We define a renormalized charge, function of an arbitrary ggale

bo (29)

M?
as(p) = ag + by log Fas (30)

and express the result in termsf(u) instead ofs. We obtain then

2 2

R = Ry <1+0‘5(“>+ {cﬂbologq (aS(“> )+0(as(ﬂ)3). (31)
s Q T

The formula forR is now finite. The theory of renormalization guarantees that with this proeate

can remove the divergences from all physical quantities. This implies thairtl loop divergence of

any physical quantity which in lowest order has the valise? must have the formAb, log M2a

Observe that, as a consequence of this procedure, we end upsixgi@s results in terms of a coupling

constant which is function of a scale.

3.1 Renormalization group and asymptotic freedom

I will now give a general and abstract description of the renormalizationggand asymptotic freedom.
From the following discussion it should be clear that the existence of tlemeatization group follows
from the property of renormalizability of field theory, and that asymptotiedm is a possible con-
sequence of the renormalization group. | will not give any technicaildeia the computation of the
renormalization group flow (i.e. of the so call@8dunction), which can be found in many good textbooks.

In field theories we encounter ultraviolet divergences, which in renkizaide theories can be
removed by a suitable redefinition of the coupling constants and the field#e Isimplest case of a
theory characterized by a single coupling constant, renormalizability catatesl in the following way.
A physical quantityG will be given in such a theory as a power expansion in the coupliflghich we
will assume to be dimensionless), with possibly UV divergent coefficieneswilV write:

G=G(a,M,s1...8,), (32)

that is to say,G depends upon the coupling, the ultraviolet cutdff and some invariants; ... s,
constructed out of the momenta and masses involved in the process in questionmalizability means
that | can define a renormalized coupling.,

Qren = @ + 102 + 20 + . .. (33)
with
¢ = ci(M/p) (34)
in such a way that .
G(a,M,s1...58,) = G(Qren, [y S1 - - - Sn) - (35)

12



So, the physical quantity can be expressed in term of the renormalizptirgpuhe finite scale: and the
invariants, in terms of a finite function. In other words, all the divergsrave been reabsorbed in the
renormalized coupling. The finite scaléhas to be introduced in order for the dimensionless coefficients
¢; to depend upon the dimensional quanifity We will also write

Qren = Olren(a, M/,LL) s o = a(arenv M/N) . (36)

and

G(a(ayen, M /), M, sy ...55) = G(Qren, fby S1 - - - Sn) - (37)

Therefore, renormalizability means that by a redefinition of the couplingeofidim (36), eq. (37) holds
for all physical quantities. Theameredefinition ofa: makesall physical quantities independent of the
cutoff.

In the redefinition of eq. (36) we are forced to introduce a spal&f we changeu and aye, by
keepinga and M fixed, the physics remains invariant, because physical quantities, to Wwébinare
functions ofa: and M only. Let us study the infinitesimal transformatiafs,.,, du? that leaven and M

fixed. We must have
8CV(arena M/N) dvyen + 804(04ren7 M/M)
Ooven op?
Since physical quantities remain the same under this change, we must aso hav

dp?> =0. (38)

OG (Qyens [y P1 - - - Pn) OG (Qtyens [y P1 - - - Pn)

2 _
Do dOtren + o du®=0. (39)
From equations (38) and (39) we get
o dOtren _ _MZ ai/ﬁa(arena M/ ) _ _,UQ %?(arem [y 81+ .- 5p) (40)
dp? aa‘zna(aren, M/ p) 8a(9ren (Qtrens fty S1 - - - Sn)
from which it follows that p
9 GQren

Tug = B(cten) (41)

where does not depend upen . .. s,,, M or . Observe that does not depend upaW, because\/
does not appear on the right hand side of the second equality of (4@nriot depend uposy . . . s,
because they do not occur on the right hand side of the first equaliglysiih could only depend upon
. But i is dimensionful, while3 is obviously dimensionless, and so it cannot even depend upon

Using the expression

a(aren, M /1) = aren + c1(M/p) g, + .. (42)
we find
Bloren) = 0fen uQaiQ cr(M/p) + ... (43)
Comparing this equation with eq. (30), we immediately get
Blowen) = —bpa’, +... . (44)
and therefore J
W(Ns(ﬂ) = —bpal, +... (45)

which characterizes the evolution of the coupling constant as a functite stale.. Equation (45) can
be also written, at the lowest relevant order
d 1

" 46
dlog 2 as(p) (46)

13



which can be easily solved to give

2
] 1
= by 10g — + . (47)
as () o as(po)
Without loss of generality, the solution can be written
1 ;ﬂ 1
= bolog — = 48
as(n) 0l = W) = g e (49)

whereA plays the role of an integration constant. In Q@pis positive, and eq. (48) makes sense only
for 4 > A. One is tempted to infer that is the value ofu at which the coupling constant becomes
infinite. In fact, this identification is superficial. When the coupling consttantssto be large, we can
no longer trust the perturbative expansion, and the above equatidrebasderived only at the lowest
order in perturbation theory. Itis better therefore to thinkats the scale parameter of the theory which
defines the value af; at large scales. In other words,is defined only through the formula fers (),
and this formula has a meaning only for layge

QED is very similar to QCD in many respects, and one may wander why we takebout a
Aqep analogous to thé in QCD. In fact, the basic difference between QED and QCD is the value of

bo. We have
dng

bt = 49
0 127’ (49)
a negative value. The expression for the running coupling in QED is then
1 u?
= b3  log (50)
QqQED (,u) 0 A2QED

The expression in eq. (50) makes sense onlyfex. A (so that the right hand side is positive), while the
expression in eq. (48) makes sense only i&> A. In other words, QCD is a weakly coupled theory at
high energy, while QED is weakly coupled at low energy. This is the cotfehie statement that QCD
is asymptotically free, while QED is not. The scale at which QED becomes $froogpled is obtained
by solving the equation

1 m?
——— = b log = 51
QQED () 0 & A%ED D
which gives
bQED
Aqep = me exp (—0> . (52)
aqep (MNe)

This formula is valid only if all charged fermions have the same mass, egual,tand the same charge.
However, even if one does a more accurate job, the basic result id ghatis an astronomic scale,
and this is the reason why we never talk about it. Notice that this fact inditeieQED cannot be a

fundamental theory. The existence of a high scale at which the theooyrescstrongly coupled makes
it impossible to measure the basic vertex of QED at short distance, whicmedtat of a contradiction,

since we assume that we know the local Lagrangian of the theory.

We have now discussed the evolution of the coupling constant at the leadiag level. The
content of the theory of renormalization is much deeper. It states that upytorder in perturbation
theory, we can remove all ultraviolet divergences from a physicattifjygust by a redefinition of the
coupling constant. Furthermore, it states that equation (45) generaliaiésitder of perturbation theory,
and the right hand side of the equation is free of ultraviolet divergemeegher words

dovs (1)
dlog p2

= —boaZ(p) — brad(u) — baag(p) + - .. (53)
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wherebg, b1, ba, €tc., are ultraviolet-finite.

From eq. (30), we see that, = as(M), that is to say that the original barg, was in fact the
running coupling evaluated at the cutoff scale. It is not useful to try wess physical quantities in
terms ofa g evaluated at a scale which differs widely from the scales involved in theigdiyquantities
under consideration. In fact, in this case, large logarithms of the ratio gfftysical scale te arise in
the perturbative expansion, as one cannot trust the truncated (foked cesult. In order to get a reliable
result, one should instead uge~ @, so that no large logarithms appear in the perturbative expansion.
Of course, we do not know the precise valug.afie should use. We can uge= Q, u = 2Q, u = Q/2,
without the possibility of arguing what is the best choice. In practice, ardifice in the value of the
scale used makes a difference in the result, but this difference is of diee ofr the neglected terms in
the perturbative expansion. This can be easily verified from formula(§Bddents are encouraged to try
this).

It is now tempting to formulate the first prediction of our theory. From the esgion of the
running coupling, eq. (48), we see that the strong coupling constaritaeder 1 when the scalg
approached. It is tempting to set\ = 300 MeV, the typical hadronic scale, and then predict that

R(Mz) = Ro(Mp) <1 + as(iWZ)> = Ro(Mz)(1 + 0.046) (54)

in reasonable agreement with the value measured at LEP. Of coursexahigple is very sloppy, does
not take into account the heavy flavour thresholds, higher ordestgffand other important facts. It is
however important to remark that, had we measuté®, = 1 + 0.08 at LEP, this would have implied
A = 5GeV, a totally unacceptable value.

3.2 Relation among the couplings with different number of light flavours

Now | will spend a few words concerning the number of light flavoursorigler to make the discussion
clearer, let us assume that there is a top quark of 100 GeV, and that alhgrequarks are massless.
Intuitively, we should then be able to describe the effects of QCD, fdescauch below 100 GeV, but

still much above\, in a perturbative fashion, forgetting about the existence of the tofkguibe formula

for efe~ — hadrons contains therb, evaluated witho; = 5. On the other hand, if the heavy top is
really there, the true description of our phenomenon should be givennis tef the theory with top.
While up to the ordervg a top loop never enters our Feynman graphs, at two loops we do have a top
loop contribution, represented in the graphs of fig. 7. In spite of thetfiatthere is not enough energy

Fig. 7: Top loop contribution tete™ — hadrons.

to produce the top, these graphs do contribute. They are alwaysaiegddo a propagator correction.
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Neglecting terms suppressed by powerd a2, their effect is simply to multiplyrs by a factorl —
as/(67)(d + log(M?/m?)), whered is a number which depends upon the particular renormalization
scheme one uses. This result can also be guessed on the basis of that flae UV divergence coming
from the top loop must have the same form as the UV divergence comingaingrtight fermion. We

have then ,
/ M2 o1 M2 /
R=Ro 1+ 4 ctmbolog or — = (d+log— || (2£]) ). (55)
T Q? 6 m; T

With o/, we indicated the true (bare) coupling, of the theory in which the heavykgaamken into
account properly, instead of the “fake” theory in which the heavykjisaignored. The renormalization
procedure for the theory including the top requires now the substitution

I / / M2 /2
als(p) = g + by log 2% (56)

whereb, = (33 — 2(ny + 1))/(127), and the renormalized formula fét becomes

/

R =R, <1+ O‘i(r“) + [c—i—wbologg; - é <d+log£>] <a/37(r’“‘))2> +0 (as(w)?®). (57)

Equation (31) and (57) must be completely equivalent, at least up the @fdet turns out that in the
commonly usedS renormalization scheme, we have= 0. In this scheme, the equivalence of the two
formulas imply that

as(p) = ag(p)  for p=my. (58)

Therefore, in th&IS scheme the relation between coupling constants defined by ignoring afteeawy,

and the coupling with the heavy flavour included, is simply stated by sayinghé@dtvo running cou-
plings should coincide for = my,, wheremy, is the mass of the heavy flavour. In practice, we have three
useful definitions of the coupling constants. One that ignores the chaank gand heavier flavours),
which has three light flavours, and may be indicated \miﬁ*?, one that ignores bottomy?)) and one

that ignores topc(Ef)).

A plot of the ratios ofa(s3)/a(s5) and a(s4)/a(s5) is given in fig. 8. The couplings are correctly
matched at the heavy flavour thresholds according taMBeprescription. From the plot, it appears
that the couplings for four and five flavours are not very differeritisTs indeed the case. One should
however be careful, because the corresponding valueisfin fact very different. The values used in
the figure have\s = 310 MeV, A4 = 260 MeV andA5; = 170 MeV. A common error is, for example, to
use values of\, whereA; should be used. One should never forget thé nothing but a parameter in
the formula foras. If we change the formula (going for example from one to two loops) theevalih
should be changed. Similarly, if we plug in the same valua of the expression foaz(;‘) anda(54), their
value would be very different, even far = m,, while if we use the appropriate value &% andA4 in
the corresponding formulas, their value will be identical at that scale.

3.3 State of the art in the beta function and R
The expression of the beta function known today has the form

Oag

Tl = —bpa? — biad — boak — b3a® (59)

where the termby, has been computed in ref. [4], and the tdrrhas been very recently computed in
ref. [5]. Here | report below only the values &f andb;, and the corresponding solution of the renor-
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Fig. 8: Ratios of the coupling defined for different valuespf

malization group equation at the two loop level. This is what is commonly used inappbtations.

2
log log &5
(ny) 1 by A2
oy = — L 1R 8 (60)
b(] log Al:bf b% log %
33 — 2nf
— kel 1
bo Ton (61)
153 — 19n;
T (62)

The reader can verify that the eq. (60) satisfies equation (59) up to tdrondera?.

The accuracy of the function that is required in phenomenological applications depends upon
the accuracy of the calculations one is using. The rule of thumb is the following

e if only the leading strong interaction effect is included (LO calculation), meeds one-loop evo-
lution;

o if terms subleading by one power af; are included (NLO calculation), one needs two-loop evo-
lution;

o if terms subleading by two powers of; are included (NNLO), one needs two-loop evolution;

Thus, for example, if we use th®@(«a) formula for R, that is to sayR = Ry(1 + ag/7), we need to
include 1-loop evolution. Similarly, if we have a process that starts at argéike four-jet production in
eTe™ annihilation), we need 1-loop evolution. If we include thén?) term in R, we need to use 2-loop
evolution. Notice that the accuracy in tiefunction that we want is always higher than the accuracy
in the calculation by one unit. So, the leading term in ghieinction is of order two, but it is needed to
maintain the accuracy of the result f&; which seems strange: R is known at orders, why should

its derivative needed at orde£? The answer is that for a large evolution span, an error of ergén
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the derivative can become of ordeg, because a large evolution logarithog 1 /1,; can compensate a
power ofas o 1/log u/A. Consider the case when the final evolution scale is suchuthigt ~ ui/A.
From the 1-loop renormalization group equation we get:

ot 2
as(uPdiog i = 0 (a2(0og T ) ~ 0. (69)

i

as(yn) = () =~ [

Hi
consistently with the fact that in this case(uf) ~ as(ui/2).

If the evolution span is small (i.e. if the scale changes by a factor of oragr one does not need
an extra power ofvs in the 8 function to match the accuracy of the calculation.

Evolution must also be properly adjusted when crossing a flavour tHoedlben one uses the 1-
loop 3 function, the conditiom ™) (1) = o) (1) for . = 2m, or » = m,/2 are accurate enough. In
other words, the matching is done at a scale of the order of the flavour esslifference of choosing,
for exampleyu = 2m or u = m/2, is simply

a(211) = (p1/2) - 2bga? log(4) (64)

and is thus a NLO effect. When using a 2—lgégunction in the context of an NLO calculation, one
must use a matching condition which is accurate up to terms of arfldn the MS scheme, this is

oD () = a0 (1) + O(a?) for 1 =m e

where we no longer have the freedom of a factor of order 1. Matclongitons appropriate for a 3—
loop  function in the context of a NNLO calculation are given in ref. [6], andsist in a correction of
ordera? to equation 65.

The radiative corrections t& have been computed up to the orderin ref. [7, 8, 9], a rather

remarkable achievement. The resultfgr= 5, expressed in thBIS scheme reads
R=Ro {1+ (1+044805 —1.3002) | (66)

whereag = a(s5)(Q), Q is the annihilation energy. Besides finding applicationsia~ annihilation
physics, this formula has found recently a very interesting application todtegrdination ofg from
the hadronic decay of thelepton [10]. After what we have learned in this section about the raiib
should be easy for us to compute the ratio between the hadronic and the ldéptnthing ratios of the
T, at zeroth order in the strong coupling constant. This is depicted symbolicdidy 9. From the figure,
it is clear that the top and bottom processes only differ by the number siipp@dinal states. Thus, the
top graph has a factor of 3, because of the three colours. Only antiideavn, or up-antistrange pair
can be produced, since phase space forbids the production of echimalestates. Neglecting the mass
difference between the down and the strange, one can see that thé@abhiye is irrelevant in this
case. Thus, the ratio of the hadronic width to the (for example) electron igi@tht zeroth order in the
coupling constant. As in the case of R, this ratio will receive strong ctiores; and the displacement of
this ratio from 3 can be used to attempt a determination of the strong couplistpodfromr decays.
Observe that the value ofs at the scale of the mass is quite large, around 0.35. At LEP1 energy this
value is around 0.12. In table 2 (taken from ref. [11]) the experimesetathinations ofts coming from
R below theZ peak,R on theZ peak, and tau decays, are reported. All determinations are performed
at the relevant scale of the process (thus, for exampley ttetermination is performed in terms of
as(M;)), and then evolved at th& mass for comparison. Notice the rather remarkable agreements
among the different determinations.

4 JETSIN ete” ANNIHILATION

In the discussion of the previous section, we have left aside a few impatares, that can be summa-
rized in the foloowing questions:
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Fig. 9: The ratio between thehadronic and leptonic width.

Measurements Q (GeV) | as(Q) as(mz)

R, 1777 0.323 £ 0.005(exp.) £ 0.030(th.) | 0.1181 & 0.0007(exp.) = 0.0030(th.)
Rete™(20 < /s < 60 GeV | 42 0.175 £ 0.028 0.126 £ 0.022

Z peak 91.2 0.124 + 0.004 £ 0.002(My, M) 0503 QCD

Table 2: Determinations afs from inclusive hadronic decays, taken from ref. [11]. In #}g.. determination, the error due
to uncertainties in the Higgs and top mass, and the error due to QCD untiestadine separately specified.

1. How can we identify a cross section for producing quarks and gludtiisa cross section for
producing hadrons?

2. Given the fact that free quarks are not observed, why is the dmahBorn cross section so good?

3. Are there any other calculable quantities besides the total cross section?

We will see in the following that question 1 and 2, although unanswerable D, @aply no contradic-
tion. We will also see that, under the same assumptions that make 1 and 2 isorjuastion 3 has an
affirmative answer.

Looking at the lowest order formula, we immediately wonder why a formulard#sg the pro-
duction of quarks in the final state should also be able to describe thegbimdof hadrons, since we
never observe free quarks in the final state. The structure of thelpatite expansion by itself give us
a hint of how this may happen. Consider in fact the corrections of ardeo the total cross section.
They are given by diagrams in which a real gluon is emitted into the final stadadiagrams in which a
virtual gluon is exchanged (interfered with a Born graph) as depicted.id@. In the previous section |
have just stated that the total of the corrections of orderis finite, and equals;s /7. | will now show
that the individual real contributions (those with a gluon in the final stat)rafividually infinite. As
a consequence of the finiteness of the total, also the virtual ones (thosenljtthe quark-antiquark
pair in the final state) must be infinite, with the opposite sign. Let us thereforgute the diagram
of fig. 10. We will perform the calculation under the simplifying assumption thatgluon energy is
much smaller than the total available energy. It turns out that in this approxmthtaccomputation will
require very little effort, and the approximation itself contains all the intere$tiaires of the result. It
is easy to convince oneself that the colour factors for all contributingaliag (after squaring and taking
the colour traces) are one factor@f = 4/3 relative to the Born term (which has a colour factor of 3,
equal to the number of colours that can flow in the loop), a result whch is¢rdbesl in the last equality
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k=q—k—1

Fig. 10: Soft gluon emission (left graph) and virtual gluon exchange’ia~ annihilation.

of fig. 3. The amplitude for the Born process is
M = u(k)ey,v(k') (67)

wherece is the virtual photon polarizatiomn, is the incoming four momentung, is the momentum of the
outgoing fermion and’ = ¢ — k is the momentum of the outgoing antifermion. Defining

N = ey, o(k) (68)

we have
M =u(k)N. (69)

Consider now the diagram of fig. 10, in which the gluon is emitted from the dgermion. The
amplitude is given by
_ N
= (k) (=) Yoi—=N. 70

My =00 (=)0 5N (70)
Actually we should have also substitutédl= ¢ — & — [ in A/, but we are assuming thais small.
Fermion masses are also being neglected, since we assume we are cunsidégh energy process.
Neglectingl in the numerator, and using the identityk)# = 0, and expanding the denominator (recall
that!?> = 0, k2 = 0) we obtain

%?M:fiM. (71)

My = (k) ek K a(h) 5 N =

(k+1)?
Analogously, for the amplitude with the gluon emitted from the outgoing antiquarlghtain

k/

Mo = 7 (72)
and the total is " .

which vanishes when contracted with as gauge invariance requires. Taking the square (with the extra

minus for the gluon projector)
k- K
PR B —V D 74
qug (kl)(k/l)M ( )

From the amplitude square we turn to the cross section by supplying thegpesefactor for the gluon

d3l k-K
_—C 2 Born'/ 2 . 75
Oqqg FY9594q 200(2m)3 " (k- 1) (k' - 1) (75)
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At this stage | have also included the coupling constant and the appropoiate factor. Let us now
consider the process in the rest frame of the incoming virtual photongwittiqg®, 0, 0, 0), andk = —&'.
Let us callf the angle that the gluon makes with the fermion direction. We have then

k- K 4

2(k U)K - 1) - Ip*(1 — cos 0)(1 + cos 0) (78)

so that (usingvs = g2/ (4r))

_ _C % Born/dcosedlo 4 (77)
Tqa9 = “F5 "%gq 19 (1 —cosf)(1+cosh)

The cross section for producing an extra gluon is therefore divengénree regions:

e when the emitted gluon is in the direction of the outgoing quérk (0)
e when the emitted gluon is in the direction of the outgoing antiquérk (r)

e when the emitted gluon is soft’(— 0).

The first two kind of divergences are called collinear divergencéslevthe last one is called a soft
divergence. Both divergences are of infrared (IR from now opgtythat is to say, they involve long
distances. In fact, because of the uncertainty principle, we need aitdrtfine in order to specify
accurately the particle momenta, and therefore their directions. Unlike WAfgénces, there is nothing
like renormalization for the IR divergences. Their meaning is the followingcthss section is sensitive
to the long distance effects, like the fermion masses, the hadronization nsokaand so on. In fact, if
we give a fictitious mass to the gluon, the result becomes convergent, bllifaewensitive to the value
of the gluon mass.

It was stated in the previous section that the total of the corrections of agd® the production
of hadrons in e*e~ annihilation is finite, and equalss. It follows that also the virtual corrections
must have the same kind of infinities, with opposite sign. If we cutoff theserglnces with some
method (like dimensional regularization, or by giving a mass to the gluon)tr@rmsum up real and
virtual contributions, the divergences cancel, and the left-over is findeegual taxs /7 times the Born
cross section, independent of the method we used to regularize thendgagiihis cancellation is a
consequence of the Kinoshita-Lee-Nauenberg theorem [12, 13igHRpspeaking, this theorem deals
with divergences that arise because of degeneracy in the final satex&mple, the final state with
an extra soft gluon is nearly degenerate with the state with no gluons at é@ltharstate with a quark
split up into a quark plus a gluon, with parallel momenta, is degenerate with tieength no radiation
at all. The theorem states that the cross section obtained by summing upegeaedate states are not
divergent.

We are now ready to show, as promised, that point 1 and 2 imply no cortoadig/e have in fact
shown that if we attempt to compute the cross section for the production of afgpuark—antiquark
alone, while the zeroth order term (the Born term) is finite, the term of ardés infinite, being collinear
and soft divergent. This means that a perturbative expansion forubistity does not work, since the
coefficients of the expansion are large (actually infinite). Therefaren ¢he Born term alone cannot
represent the cross section for producing a quark—antiquark gais, The fact that a final state with a
gquark—antiquark pair and nothing else is not observed is not in contitadigith perturbation theory,
since we have shown that there is no valid perturbative expansion fajuaigity. On the contrary, the
cross section for producing strongly interacting particles (no matter how maarks or gluons) remains
finite even after perturbative corrections are added. One can shown tiaat it remains finite order by
order in perturbation theory. Its lowest order approximation is in fact the Bross section. So, the
Born cross section is the lowest order term in a well defined perturbestpansion with infrared finite
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coefficients, which is just the cross section for producing strongly iatieig particles (no matter how
many and which types). This is why the Born cross section representsaquiteately the total hadronic
cross section. We are now also in the position to answer the third questiowilMgbow that there are
quantities which characterize the hadronic final state, that are inframéglifi perturbation theory, and
therefore should be calculable in perturbative QCD.

4.1 Sterman-Weinberg jets

Sterman and Weinberg [14] first realized that one can define a crasmsehich is calculable and finite
in perturbation theory, and characterizes in some way the hadronic fatal SThe definition goes as
follows.

We define the production of a pair of Sterman—-Weinberg jets, dependirtjeoparameters
andJd, in the following way. A hadronic event iate™ annihilation, with centre-of-mass energy,
contributes to the Sterman—Weinberg jets cross section if we can find twe obopening anglé that
contain more than a fractioh — e of the total energy®. In other wordscF is the maximum energy
allowed outside of the cones. An example of Sterman-Weinberg jet eventsgalied in fig. 11. We

Ei+E:+Es< eB

Fig. 11: Sterman—Weinberg jets.

will now show that the computation of the cross section for the productioresfran—\Weinberg jets, in
the approximation introduced in the previous chapter, is infrared finite v@theus contributions to the
cross section (illustrated in fig. 12) are as follows

e All the Born cross section contributes to the Sterman—Weinberg crossrsefttioany e and §
(fig. 12a).

¢ All the virtual cross section contributes to the Sterman—Weinberg crotisrgefor anye andé
(fig. 12b).

e The real cross section, with one gluon emission, when the energy of thedglitte° is limited
by I° < €E (fig. 12c), contributes to the Sterman—Weinberg cross section.

e The real cross section, whéh > ¢E, when the emission angle with respect to the quark (or
antiquark) is less thaf (fig. 12d), contributes to the Sterman—Weinberg cross section.

The various contributions are given formally by

Born = o (78)
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Fig. 12: Contributions to the Sterman—Weinberg cross—section. Bosvirgaial: (b), real emission: (c) and (d).

. 4 0
Virtual = as CF / di / dcosz (79)
p—0 1 —cos? 0
Real (€)= 4asCp / & dl° / _dcosd (80)
— 0 Ton o 19 Jo_o1—cos20
4asCr /E di® /5 dcosf /7r dcosf
Real (d)= — —_— — . 81
eal (d)= o 27 Jogp 19 | Jo—p 1 —cos?6 + o—r_s 1 — cos? 6 (81)

Observe that the expression of the virtual term is fixed by the fact thasitdcancel the total of the real
contribution. Since we are looking only at divergent terms, and sinceittuaMerm is independent of
0 ande, the expression (79) is fully adequate for our purposes. Summing all teenget

4 0
Born + Virtual + Real (a)+ Real (b)= oy — 09 osCr / dl / d cos 0
27 E =5 1— 1—cos26

4
= 09 <1 — O;SfF log e log 52> (82)

which is finite, as long as and¢ are finite. Furthermore, as long asndé are not too small, we find
that the fraction of events with two Sterman-Weinberg jets is 1, up to a comeaftiordera.

Now we are ready to perform a qualitative step: we interpret the Sternsanbéfg cross section,
computed using the language of quarks and gluons, as a cross sectioodocing hadrons. Thanks to
this qualitative step, we make the following prediction: at high energy, mesttewave a large fraction
of the energy contained in opposite cones, that is torsagt events are two jet evenss the energy
becomes largetis becomes smaller. Therefore we can use smaller valuesuod§ to define our jets.
Thus, at higher energies jets become thinner.

It should be clear now to the reader that, by the same reasoning, we tawdlsat the angular
distribution of the jets will be very close, at high energy, to the angular didioilo one computes using
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the Born cross section, that is to say, the typical cos? ¢ distribution. These predictions have been
confirmed experimentally since a long time.

4.2 A comparison with QED

The alert reader will have probably realized that the discussion giveiisisection should also apply to
electrodynamics. In fact, the Feynman diagrams we have considererbaempalso in electrodynamic
processes, likete™ — ptu~, and they differ from the QCD graphs only by the color factor. Thusnfr
the previous discussion, we would infer that Sterman-Weinberg jets in@lgo@mic processes at high
energy do not depend upon long distance features of the theoryx&wmipee, they become independent
from thep mass wher? > . Also in electrodynamics, the cross section for producipg a~ pair plus

a photon is divergent, as is divergent the cross section for prodtreengair without any photon. In many
books on quantum electrodynamics these divergences are discasseitlis shown that a resolution
parameter for the minimum energy of a photon is needed in order to have fiog® $ection order by
order in perturbation theory. In electrodynamics, we can go even faghé prove that by resumming
the whole tower of divergent graphs, the infinite negative virtual ctioe to the production of a* .~
pair with no photons exponentiates, and gives a zero cross sectiothelnveords, as it is well known,
it is impossible to produce charged pairs without producing arbitrarily guftons. What is then the
difference with QCD? Why cannot we prove similar results in QCD? Therdiffee arises because of the
different asymptotic properties of QCD and QED. In QED the coupling Imesosmaller at low energy,
while in QCD it grows. Thus, when the scale of an emission process agmsa few hundred MeV the
coupling constant becomes of order one, and perturbation theorynlesdoapplicable. So, the infrared
problem in QCD is tightly untangled with the confinement problem, and it seems todreswerable
in the context of perturbation theory alone. In this sense perturbatii2 iQ@n incomplete theoretical
framework. In order to make predictions we need to assume that the swibpiena characterized by
scales of the order of few hundred MeV do not spoil completely the coriputaf the high energy part
of the process. This assumption is consistent with perturbation theory;dtniever an assumption, and
it cannot be proven using perturbation theory alone.

4.3 Shower Monte Carlo programs

Perturbation theory can be used to compute radiation processes as ltimgexsergies involved are
safely above the typical hadronic scales. It is then possible to constrent generator programs that
implement the properties of QCD Feynman diagrams for the splitting of partonsimte partons, as
long as the splitting involves large transverse momentum, and then use somiblglenadel for last
step of the splitting process, in which the partons become hadrons. Ttoggams are generally called
shower Monte Carlo event generators [15, 16, 17], and are an ablaltool for experimental physicists.
They essentially sum a large class of Feynman graphs, precisely the giimsgtar and (in some cases)
soft-singular ones. In the attempt to describe the full final state, theyugitbe accuracy that can be
obtained in perturbation theory. They are (until now) compatible with QCD antiie leading order in
the strong coupling. While the QCD part is quite similar in all of them, for the laptait¢he final state
formation, that is to say the hadronization, they differ widely, since theg bavely on models, like
the so called Lund string model or the Herwig cluster model. Hadronization Ismadetuned to data.
Nevertheless, one should not forget that there is very little predictivityésehmodels, since they are
only qualitatively based upon the theory. One can expect in generdhthhtidronization properties for
which the Monte Carlo has been tuned for will be well reproduced by ithbuimuch more than this.

4.4 More jet definitions and shape variables

The key property of the Sterman-Weinberg jets, that makes them calculgigetimbation theory, is the
insensitivity of the jet definition to radiation of soft particles, and to the collisgditting of an particle
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into two particles that share its momentum. This insensitivity is necessary tongethe cancellation
of effects that depend strongly upon long distance phenomena, thahig thase effects that are infrared
divergent when computed in perturbation theory.

After the paper of Sterman and Weinberg, it was soon realized that it idifficult to build a
whole class of final state observables that do have the same propediff ahd collinear insensitivity,
and can thus be computed in perturbation theory, and compared with exp&imeasurements: thrust,
oblateness, the C parameter, jet clusters, the mass of the heaviest heesispetre. The important thing
which is assumed in these definitions is tthet same definition must be applied to the final state hadrons
by the experimenter that measures this quantity, and by the theorist timpites this quantity in terms
of quark and gluons Only if this condition is satisfied, one can assume that in the high energy limit
the computed quantity will agree with the measured one, up to correctiongé¢hsu@pressed by some
inverse power of the energy.

One of the first of these infrared safe shape variables is thrust. Ifiredeby the equation

t = max M (83)
v > Ipil

In words, one takes an arbitrary vector (in the centre-of-mass frartteeafolliding electron-positron
pair) and sums the absolute values of the projection of the momenta of all fiteapaidicles onto that
vector, normalized to the sum of all absolute values of the hadron momergaecttor is rotated until a
maximum is found. The maximum direction is called the thrust axis, and the valbie ataximum the
thrust of the event. The maximum value of thrust is one, for a final statemirtassless particles in the
back-to-back direction. It is easy to check that thrust is an infrarBedstepe variables. In fact, a soft
emission does not alter the thrust abruptly, since all emitted particles entdrtacbigy their momenta.
Also collinear splitting does not alter the thrust of an event, as one can gasily. An example of a
guantity which is not infrared safe is the total number of particles in the fiast swhich changes by
one unit in case of soft emission. Examples of a quantities which are serisitbollinear splitting are
the axis of the tensor

§9=> int (84)
l

which were actually used in the past to classify the “jettiness” of an event.

A modern, and very clever way to define jets is by clustering [18]. Fovergévents, one forms
the invariant mass of all pairs of particles in the final state. The pair with thieshimass is merged into
a single pseudoparticles, and then the procedure is continued with thaopseticles, and it is stopped
when the smallest mass of a pair exceeds a given cuteffS. One ends up with a definite number of
clusters, and one can thus define the cross section for producing tee, tbur or more clusters for a
giveny cut. It is easy to convince oneself that these cross section definitiondrared safe. Since the
computation of these cross sections (in terms of partons) should in firsbamption give the correct
answer, we see that in perturbative QCD we roughly expect (for mogxtreme values af) that most
events will be made up by two clusters, a fraction of ordgwill be made up by three clusters, and a
fraction of ordera? will be made by four clusters. Analogously, we expect thrust to be neay and
its departure from one to be of order. We also expect that a fraction of events of ordgrwill have
thrust well below one.

Because of the obvious interest in the determinationofrom jet shape variables, a lot of effort
has gone in the study of jet and shape variables that are directly pro@driooy s, which we may call
“three-jet sensitive”, like the thrust distribution, and the fraction of ¢vevith three clusters. There are
tens of variables of these kind that have been studiedat machines.

The present state of the art for jet studies:ire™ machines mainly relies on the calculation of
Ellis, Ross and Terrano (ERT) [19, 20], which allows to compute anyriedtaafe3—jet shape variable
up to the orden?. Various computer programs for the computations of these quantities dedoévzand

25



many of these quantities have been tabulated [21]. Heavy quark mass éffwe also been included in
the3—jets calculation [22, 23, 24]. Three-jet quantities have been intensittedjes! atet e~ machines,
The results of LEP1 and SLD have given a quite remarkable contributionettetits of QCD, and
considerably reinforced our confidence in perturbative QCD.

Recently, the NLO correction to 4-jet partons production have been dechpps, 26, 27, 28],
allowing thus the computation of ady-jets shape variable in the fora (12)C + a2 (1) D(1? /Q?) +
.... Phenomenological applications have begun to appear recently [39] [30

Fixed order calculations of shape variables distributions are sometimekesgmed with all-
order resummation of effects that are enhanced in the limit of thin jets. An dgashthese effects is
visible in eq. 82; whed ande become small, th€ag correction becomes large, because of the large
collinear and soft logarithms. These logarithms, called “Sudakov logaritrans’a general phenomenon
that happens in QCD and QED when we force a process into a regiorasé [@pace where radiation
is inhibited. Since soft radiation is infrared divergent, and its divergarancels againts virtual con-
tributions, when we suppress soft radiation the cancellation becomelnoéd, and large logarithms
appear at all orders in the perturbative expansion. In some casss |digarithms can be organized and
resummed [31, 32, 33]

Hadronization and power corrections are believed to be suppres3¢d@abut they are still im-
portant at LEP energies. They are usually estimated using Monte Carntortieation models. The
renormalon inspired model of ref. [34] provides an alternative methbH [3

4.5 Thrust as an example
Let us focus upon the case of thrust as an example. The thrust distnilbaische perturbative expansion
1 do as(,u)A(t) N (as(,u)

851 —
oo dt J b+ 27 27

2 2
) [A(t) 27 by log% + B(t)| +0O (04?5’) . (85)

The first term, proportional to a delta function, is the Born contribution, vkimresponds to the pro-
duction of two back-to-back massless partons. The functiting and B(t) can be computed from the
ERT results (they are tabulated in ref. [21]). The renormalization gcédeexplicitly indicated in the
formula. As in the total cross section formula, the explicit scale dependsribe term of orden? is
related to the coefficient of the term of ordes. Again, using the renormalization group equation at

1 loop (i.e.,0as/0log u> = —bya?), one can prove that the scale dependence of the above equation
cancels up to the order?. Of course, if the whole perturbative expansion was included in the igyhd

side, no scale dependence would survive, since the left hand sidalésisdependent. However, only
terms up to the ordex? are included, and thus one expects a residual scale dependenderat’or

Radiative corrections are generally quite large. For example

1'7?5%(@)(1 +3as)

(0) = 1.29a5(Q)(1 — 4.3c5)

1'7?5@5(@)(1 — 0.0250) (86)

(1-1)

<M127,t> =

where the second quantity is oblateness (for a precise definition, s¢21¢f and the third quantity is
the difference of the square of the masses of the heavy hemisphere spttréo the light hemisphere,
with the hemisphere defined according to the thrust axis. Thus, correctimmbe as large as 40% even
at LEP1 energies. Because of this, it is mandatory that correctiongnfrégher orderso® and higher)
should be at least estimated and included in the theoretical error. Theraméversal method to estimate
the theoretical error in this case. Acommonly used method is to look at the sgmrdEnce of the result.
Since the remaining terms of the perturbative expansion should compersatath dependence, they

26



Table 3: A summary of measurementsef from shape variables.

Q Aas(Mzo)
Process [GeV] | as(Q) as(Myo) exp. theor.
ete” 22 1016110018 | 0.124 75002 | 0.005 508
ete 35 | 0.145 70012 | 012370008 | 0,002 *0-008
ete” 44 | 0.132+0.008 | 0.123 +0.007 | 0.003 0.007
A 91.2 | 0.121 £0.006 | 0.121 4+ 0.006 | 0.001  0.006
ete 133 | 0.113 +0.008 | 0.120 & 0.007 | 0.003  0.006
ete 161 | 0.109 +0.007 | 0.118 4 0.008 | 0.005 0.006
ete” 172 | 0.104 +0.007 | 0.114 4 0.008 | 0.005 0.006
ete” 183 | 0.109 +0.005 | 0.121 4 0.006 | 0.002  0.005
ete” 189 | 0.110+0.004 | 0.123 +0.005 | 0.001  0.005

must be at least as large as the scale variation of the truncated resultcaléelsould be varied in a
range around the typical scale of the process. It should not berthe#ber much higher of this typical
scale, nor much smaller, since in these cases the perturbative expamsibwedl behaved. A common
choice ism /4 < 1 < my, which accounts for the fact that the typical scale of the process is Soatew
below theZ mass.

Hadronization effects should also be estimated, and included in the thebestima For the
observabld1 — t), for example, we can make a naive estimate in the following way. Let us agbame
the emission of an extra soft pion in the final state has a probability of order Dhis emission takes
away from the thrust a value of few hundred MeV (the transverse niassadt pion) divided by the total
available energy. To fix the numbers, let us say that at LEP we have).5/90 ~ 0.0055, assuming a
500 MeV average transverse mass for the pion. The perturbativeafalie- t) is roughlyas /7 ~ .04,
increased by the? correction to roughly 0.055. Thug/(1 — t) = 0.1. This means that we can expect
that hadronization effects may have a 10% effect in the determination fsbm (1 — ¢).

An instructive example of a QCD study at LEP can be found in ref. [36}inkates of hadroniza-
tion corrections are used there to correct the raw data. Theyr typica issaround 10%. Hadronization
corrections are estimated by running a shower Monte Carlo with or withohtthenization stage. The
corrections are determined by looking at the difference between the twpand are then applied to the
data. The error on the hadronization corrections are estimated by udiergdifMonte Carlo programs
with different hadronization models. It is quite clear that this proceduraite gisky. The QCD stage is
in fact similar in all shower Monte Carlo. The hadronization step is diffeftaurtjt is in all cases tuned
to fit the data. This may generate a bias towards determining the same valyaiséd in the Monte
Carlo. The size of the radiative correction is reported in ref. [36], tAnd, the pessimistic reader may
use the whole hadronization correction as an error on the determinati@ewwithes to do so.

Table 3 (from ref. [11]) summarizes the determinationsgffrom event shape variables. In all
determinations, NLO calculations are used, together with resummation oflaofi gffects. Power
corrections are estimated using Monte Carlo programs.

Alternative models for the power suppressed corrections have re@apbared, and have been
introduced in phenomenological analysis. In ref. [35], several eslvapiables have been examined in
the energy range of/S = 14 to 189 GeV. QCD NLO prediction, together with the power correction
model of ref. [34] are used to fit the data. | will not try to describe heesféatures of the model; it is
enough to know that power corrections to shape variables dependauppaversal parameter; in this
model. A summary of the results of this analysis is displayed in figs. 13 and tdhle ¥We observe
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Fig. 13: Simultaneous fits tas anday using mean values of shape variables (left) and distributions (right).

\ \ | fit | syst. | Th. |
means| ag | 0.1187 | £0.0014 | +£0.0001 | FJ0528

ap | 0485 | +£0.013 | 4+0.001 | *35

distr. | ag | 0.1111 | £0.0004 | £0.0020 | F79037

—0.0031

ap | 0.579 | +0.005 | +0.011 | F9-0%
0.0032
Comb.| as | 0.1171 00050
ao | 0.513 o 0as

Table 4: Results of the fits tos (Mz) andao (2 GeV) from ref. [35].
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that the final value is well in agreement with other determinations [11]. Alseptoe extent the data
supports the universality of the non-perturbative parameter. On thelathd, the value determined from
distributions is considerably lower than the value obtained with standard nsethed hadronization
corrections with Monte Carlo models). Furthermore, for some shape igsiftie consistency of the
determination is quite poor. Thus, as far as power suppressed canseataconcerned, we can certainly
say that they are very poorly understood.

Even if we assume a pessimistic attitude with regard to power corrections, astereoagnize
that LEP results do show a remarkable consistency with perturbative @§iilts. In figure 14 | try to
give an unbias illustration of the comparison of LEP data with perturbativ® @GSults. In the figure,

O(S<MZ) L O(s<MZ) NL
03 |- :Il !‘ B - é
i
0.2 .,,,n il """"“"I“I"I' i i 3
A s i |i |

i i E;.Mﬁlpnnrllhiq lh“i;h

0.1 -'ligi'

I .I
‘|

0.0

Fig. 14: Bin-by-bin determination afs for several different shape variables.

a determination ofvs is performed for several shape variables. The determination wasmeddirst
using a leading order formula (left plot), and then the @(la?) formula. No hadronization correction
was applied to the data. Three values of the renormalization scale wemndioogach variabley =
my/4, m,/2, andm. In the figure, parallel bands correspond to these three choicesriidrs on the
various point are experimental errors. If we had a perfect QCD [zdloun, e.g. all orders in perturbation
theory, and hadronization corrections were truly negligible, we shoyddaxhat all experimental point
lie (within errors) on a constant line. If we only have a leading order taticm, we expect instead
large differences among the various points, that should become smallemafidr as we include higher
order corrections. In the plot, of course, we can only represent #unig and next-to-leading result,
since anO(a?) calculation has never been performed. It is quite striking to see how, hyding the
next-to-leading corrections, the various determinations become much taessarh other. Itis left to our
fantasy to imagine what would happen if we could include{es?) effects.
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5 PROCESSES WITH HADRONS IN THE INITIAL STATE

We will now turn to describe the application of perturbative QCD to processavhich hadrons are
present also in the initial state, like Deep-Inelastic Scattering (DIS), orribauption of some objects
of high invariant mass in hadronic collisions. It turns out that cross secfir these processes can be
computed and related to each other. In general the cross section faothepon of some final state
with high invariant mass (which could be made of a heavy weak vector badepton-antilepton pair,
heavy quarks, jets, and the like) will be expressed by the so dalleved parton model formula

OH,,Hy (P1,P2) = Z/dm drs £ (21, ) fj(HQ)(szau) Gij(v1p1, T2p2, s (), 1) - (87)
i,

A pictorial representation of formula 87 is given in fig. 15.

Fig. 15: A graphic representation of the improved parton model formula

For processes with a single incoming the improved parton model formula issavexter. For
example, in DIS

onp) =3 [ dosarp) diten) . 8)

Formulae (87) and (88) are applicable to inclusive hard processascBgive, we mean that no detailed

/ 1% >> A®

Neg

Y
H, p

Fig. 16: The improved parton model formula for DIS.

guestion on the distribution of the final state hadrons is asked in order taureehe cross section. The
generic concept of a hard process is better illustrated by examples. Wéamayample, require that a
very large invariant-mass lepton-antilepton pair (the so called Drell-Yacepg) is present in the final
state. Or that jets (for example, of the Sterman-Weinberg kind) with largeviease momentum are
observed. In the case of DIS, we simply requirg to be very large.

The recipe for the improved parton model formulae can be summarized inlkwif points:
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e Anincoming beam made of hadrons of tyfleis equivalent to a beam of constituents (also called
partong, that is to say of quark and gluons, with a longitudinal momentum distributiarecker-

ized by the parton density functions (pdf's from now (fgﬂf[) (x, ). More specifically, given the
hadronHd with momentunnp, the probability to find ind the partoni with momentum between

xp and(z + dx)p is preciselydz fi(H) (z, ). The pdf’s are universal, that is to say, they do not
depend upon the particular process considered.

e The short distance cross sectidiis calculable as a perturbative expansiomin
. (1
i (x1p1, T2p2, as(p), 1) = ZUZ-(]-) (@1p1, wapa, 1) s () - (89)
!

The lowest order term of this expansion is precisely the cross sectiowauld compute naively
at lowest order. For the computation of higher order, a more complegn#sn is specified.

e The pdf’s have a mild dependence upon the sgatietermined by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation [37]

0
0log 2

1 z
) = [E S Pyl P w2 (90)
* J

Using the above equations, given the pdf’s at a specified valpewé can compute them at any
other value. The function® are called splitting function, and have a perturbative expansion in
powers ofa (1)

2
Pastih2) = S0 + (1) PP + 0 o)
s 27 J

The functionsP(“) are given in [37], and the functiol®™) are given in [38, 39]. The scaleis
arbitrary. Theu dependence in the pdf’s is compensate by;tltependence in the short distance
cross section. As in the case @fe~ — hadrons, the scale is taken to be of the order of the
typical scales in the process, in order to avoid the appearance of lgaéthons to all orders in
the short distance cross section. In this way, a truncated expressithrefehort distance cross
section may be used safely.

The approach described above gives the cross section in terms ofea eepansion invg(u). Since
as(p) =~ 1/log /A, this means that by increasing the perturbative order at which the compuiatio
performed, one adds corrections which are suppressed by one merseipower ofog 1i/A. Correc-
tions which are suppressed by powers\gf. are not included in this approach. Thus, for example, the
pdf's describe the longitudinal momentum distribution of the partons. Singeattiens are confined in

a hadron, one knows that they must also have a transverse momentumoodi¢h®f the inverse of a
typical hadron size, that is to sdy A. This transverse momentum is neglected, since it would give rise
to power suppressed corrections.

In the following | will try to illustrate and justify the improved parton model apmfoal will do
this in three steps.

| will first give a naive argument to show that a somewhat simplified versiéormula (87), called
the (naive) parton model formula (i.e., not yet improved), should wothke 3implifications consist in
the absence of the scalan the pdf's and ing. Such formula can be used to compute, for example, DIS
cross section, or Drell-Yan pair production cross section. The partateihfiormula predicts correctly
the existence of scaling in DIS.

In the second step will try to compute QCD corrections in the context of therparodel formula.
I will show that this approach does not survive when radiative ctimeg are included.
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In the third step we will find a modification of the parton model formula that is isterst with
radiative corrections. The main consequence of this improved appiedbb appearance of a scale
depedence in the pdf's. This scale dependence is at the origin of seallation phenomena in DIS.

5.1 The naive parton model formula

The basic parton model ideas are based upon a very commonly used irpigtives of inclusive high
energy scattering of composite systems, when we require a very large muomtgansfer. Suppose, for
example, that we collide to hydrogen beams, and require that in the finah&tdied a pair of electrons
with large transverse momenta. It is clear that the most likely mechanism fduging such an event is
the collision of two electron from the two incoming hydrogen atoms. If the trenisgvmomenta of the
electrons are much higher than the hydrogen binding energy, we may thinkath good approximation,
the cross section may be computed from the elementary electron-electssrseation, applied to a beam
of incoming free electron. The fact that we want to observe a high teassvumomentum scattering
implies that the binding of the electrons to the nuclei cannot have an impoftact i this case. In
other words, the electrons behave as free particles in the collision. @likat the inclusive character of
the reaction, and the presence of high momentum transfer, are botsagosanditions for this approach
to be valid. Inclusiveness is needed, because after the two electrorectiidremaining constituent of
the original atoms (i.e., the protons in the case of hydrogen) are also fiodhd final state. The high
momentum transfer is instead needed for the reaction to take place in a vertrahsverse distance. If
this was not the case, like, for example, in the case when we look for snggdl acattering, the atoms
may interact coherently. Or, more simply, if the momentum transfer was of the size as the typical
momentum of the electron in the atom, the binding properties of the system coolcges be neglected.

Assuming now that we have ultra-relativistic monochromatic beams of hydratgens of energy
E, in order to compute the above cross section we would assume that these &eaequivalent to
electron beams with energy,. = E x m./m,. In reality, even if the atom beams were perfectly
monochromatic, the electron beam would not be perfectly monochromaticel@btons are moving
inside the atom, with a typical velocity of the order of the electromagnetic coupliagy.,,. A simple
exercise in relativistic transformations would show that its energy spreattie of the ordevE.. In
fact, the electron energy could be characterized by afpdf), peaked around the value= m./m,,
and a width of ordevz. Also the transverse momentum of the electron would be of ander However,
while the transverse momentum remains invariant under boost, and thumdeetraly negligible at high
energy, the spread in longitudinal momentum is amplified by the boost, and g¢ales with the energy.
This discussion applies to a boosted, non-relativistic system. We can ntwgness what happens for
a relativistic system, in which all constituents have velocities of otdand comparable energies. The
transverse momenta still remain fixed at high energies. Their pdf’s, leayweill no longer be peaked
around a particular value. Their spread would be of order 1.

Knowing that the basic building blocks of our hadronic world are quarid gluons, we thus
expect that for a proton projectile, we will have structure functions tarks, antiquarks and gluons.
We also naively expect the momentum sum rule

/ 1 dey o fP(z) =1, (92)
0 -

2

because the total momentum of the incoming projectile must be conserved. &expksct that the
proton flavour is conserved. Thus, for example

/ o (1P(@) - 1P @) =2. (93)

0

Since we know that the proton is a relativistic system, we expect that a gaxith of its energy should
be carried by the binding force, that is to say, by the gluons. Thus, tloa gidf should be sizeable.
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Based upon these assumptions, we can now compute various high enecggses involving
hadrons in the initial state. The rules are simple: compute the cross secticarg@onsidering for
colliding partons, and then assume that your hadron beam is a beantarfgavith momenta distributed
according to the pdf's. Always neglect the transverse momenta of thengaand their masses.

Let us now apply this model to Deep-Inelastic electron scattering. Therllde an electron
with a proton. The kinematical variables of the process are usually defed
Q* P-q

a=k—kK, Q'==q", S=(k+p)', wn=g5I, Y= (%4)

3

Experimentally, one measurés y andzg;. One only needs to observe the outgoing electron to obtain
these quantities. The process is an inclusive one, that is to say, no cogditeimposed on the hadronic
final state. The variablg has a simple interpretation in the laboratory frame of a fixed target experiment:
it is the fractional energy loss of the electron.

The corresponding partonic process is the scattering of a chargth ptrat is to say a quark
or an antiquark, with the electron. The cross section for this processilg eeamputed, by using the

e

Fig. 17: DIS in the parton model.

standard Feynman rules of electrodynamics

401 _ 2 54 2ral, (14 (1 —9)?) (95)

wherel runs over all quarks and antiquarks, ands the corresponding electric charge. The kinematics
is given by

>
3>
Q

A~

p=xp §:(/€+]§)2:2k-p, )=

P P9t =2q-Q"=0. (96)
P

Observe that eq. 95 is a full cross section, properly normalized, diage¢he appropriate flux factors.
Now we write, according to the parton model, the hadronic cross section

do day
e / dle: fi(z) R (97)

In order to obtain formula (97) we have only used the composition of piliftedy and the fact that cross
sections are invariant for longitudinal boosts. We now observe that
Pq D-g Q* Q*

21 _ — = — — 98
y i ya mBJ 2pq x2]3q z, ( )
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and thus we have

do dé;  2ma?, Swg
dy dzs, = ; filz) d:l]l = T (1 + (1 - 9)2) ;C? fi(zy;) - (99)

Observe that has a simple interpretation also in the centre-of-mass of the electron-gséekns where
itis given byy = (1 — cos 6,1)/2, andé,, is the scattering angle of the electron in this frame.

In its simplicity, the parton model makes rather striking predictions. First of ahadtvs that the
DIS cross section scales with energy at fixag andy. Furthermore, thg dependence of the cross
section is fully predicted. As we will discuss further on, thidependence is typical of vector interaction
with fermions, and is thus direct evidence of the fact that charged gaat@nfermions (this is formally
expressed by the so called Callan-Gross relation, as we will see in sidmsetapters).

The same type of reasoning can be applied also to other processesxafple in a collision
of two hadrons, a quark from one hadron may annihilate with an antiquamk the other hadron, and
produce a lepton-antilepton pair, provided there are enough antigumatke projectile, like in pion-
nucleon collisions, or in proton-antiproton collisions. This is the so-calledl-lYan process. Its parton

P

Fig. 18: Drell-Yan pair production in the parton model.

model interpretation is illustrated in fig. 18. As before, we define the part@miables:
pr=a1p1, Pr=m2p2, S=@1+p) =2pip2, Q°=¢ =221255. (100)
The partonic cross section is given by

a_(DY) _ 9 4T ey

l ZQQQ’

(101)

which is very similar to the cross section fofe~ — p*u~, except for en extra factor af/3'. Accord-
ing to the parton model interpretation, the hadronic cross section is

oY) — Z/ day dao (fl(Hl)(xl)fl_(H2)(m2) +(l Z)) 01247;:;2“1 : (102)
I

for Q% = 5 = 1 22 S. The validity of the above formula is restricted to the range widgrés large. It
is therefore usually written as

9 4maem

(DY) -
dZQz = Z/ dxy dzy (fl(Hl)(m) fl-(HQ)(xz) + (< l)) §(z1228 — Q%)c (103)
l

1This comes from the colour average for the initial state quark. Its pHysieaning is that, in the average, the probability
for the colour of the initial quark to match that of the antiquark /8.
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Pushing further our parton model interpretation of hard scattering ggesewe can go on and compute
the cross section for producing high transverse momentum jets, of heaayrs, oftt pairs, and so on.
In these processes, also gluons could enter in the initial state.

Not all hadronic processes can be computed in this way. For exampligYBrecross sections,
for Q? approaching typical hadronic scales, cannot be computed. The rtheiob for deciding if a
process is a hard process or not, in the context of the parton model, ik tehasher it is insensitive
to the initial transverse momentum of the partons, which is of the order of typackonic scales. The
parton densities do not carry any information about this quantity.

5.2 Does the Parton Model survive radiative corrections?

We will now try to add perturbative QCD corrections to the Parton Model. Akéncase okt e~ —
hadrons, we will find soft and collinear singularities associated to radiafighuons from final state
partons, which we expect to cancel for appropriately defined finedsstd his is the case, for example,
in fully inclusive hadronic final states, like in DIS or in Drell-Yan pair pratian, or in the production
of Sterman-Weinberg jets.

A new element that can arise in the case of reactions initiated by hadrons, applearance of
initial state soft and collinear singularities. We will show that initial state collirsgzgularities cannot
possibly cancel, and thus spoil the Parton Model interpretation of hambgses. Let us thus consider a
generic hard process initiated by a hadron, and its parton cross sedtich, we assume for simplicity
to be initiated by a quark

= M(P)u(p) - (104)

Here M indicates the amplitude for the process, ani$ the Dirac spinor. All the complexity of the
process is hidden iM, and we don’t care about it for the moment. The cross section is obtained b
squaring the amplitude, averaging over the initial state spin and colors,haduhg by the appropriate

flux factors N ) N p
o (p) = M) > upap)Mi(p) = S ME)
whereN is whatever normalization factor arises from the rest of the amplitude.

M1 (p) (105)

We want to focus upon the initial state corrections

(z]f — f) YHu(p) eu(l) (106)

wheree, (1) is the polarization vector of the final gluon. We also observe that this mapentite only

35



correction of ordetvs. One may also have a process in which an initial gluon splits into a quark-arkiqu
pair, and the generated quark gives rise to the reaction

We will assume that this complication does not occur. For example, we mayeadbat the hard cross
section measures some effect due to the difference of the quark ctortemo different flavours. Since
the gluon produces equal number of quarks for all flavours, it coatdcontribute in this case. In
these cases, one says that the cross section is only sensitivenintséngletcomponent of the parton
densities. We thus concentrate on the non-singlet case now. Further will\describe how to treat the
general case.

Experience with theTe~ case tells us that dsbecomes parallel tp we will have a collinear
singularity. It is convenient thus to writan the following way

I=(1—-2)p+1 +&n (107)

wherer) is an arbitrary vector such that = 0 andn - p # 0. For example, in the centre-of-mass frame
of the collision process we can choose

p= (" 01, 0°) .n= (1,05, -1). (108)
The phase space for the emission of the gluon is

a3 A p-ndedzd?l,

prd 2 2 —_— 2 * - -
502~ oot 00 = a0 020 72])
A2, dz
S 2@2n)31 -z (109)
which yields, from the on-shell condition for the gluon,
2 2
€= ’ | and (p—1)* = ‘ ‘ (110)

2p-n(1—2)

The most singular part of this cross section can be obtained similarly withwadmtone in the case
of eTe™ annihilation. It does not make much sense, in this case, to assumkishsiall, and thus
the derivation is a little bit more involved. It is nevertheless instructive, sdllreport it in the next
subsection. People who are willing to accept the result without discussiarskip it.

5.3 Derivation of the singular part of the cross section
The amplitude in eq. (106), using our kinematic definitions, can be written as

, p—7
gM(p — l)—\l‘T
When squared, it seems to give rise to terms of oigét . We will see that these terms, however,

cancel. The trick is to make careful use the relatt i)(l) = 0. The singular region is the one whén
is collinear top, that is to say wheh, vanishes. In this regioh~ (1 — z)p, and thup ~ /(1 — z), up

Vu(p)ea(l) (112)
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to small corrections. Inserting this expressionjan eq. (111) will lead to simple Dirac algebra, since
by anticommuting with v* we geti#, which vanishes when dotted into the polarization. We thus write

=1 =&
1—2z

and replace itin eq. (111). The termdikills the singularity, and we drop it, since we are only interested
in the singular part. We obtain

(112)

.05~ L utpe ) (113)

which becomes

o, M(p )= )

= . M(p— 2l _”f 7 ‘“ e, 1) (114)

-2z — (1 =2 1
— ||

u(Peu(l) , (115)

where the first step is obtained by anticommutir@nd~*, which we can do as explained before. Then
we rewritel in terms ofp. Next, we drop the term, since it is in front of the spinar(p), and thus gives
zero, according to the Dirac equation. Finally, we use the anticommutation rejafio = —yj_’y#-i-%i‘

In this last form, the singularity appears to be at most of otdet, |, so that the amplitude squared will
give at most /12 singularity. The rest is simple algebra. We square eq. (115), replaggiuitie spin
sum with the transverse prOJectergW,, replace the fermion spin averaged produ@t)u(p) with p/2,

and obtain

(_QZZi - (1 - Z) VyJ-) ( gul/ MT( - l)

NN N

7 éM(ﬁ 1) (=228 — (1= )] 14")
=g’ %M(ﬁ — l)g (422 1| +42(1 — 2) |13 | +2(1 — 2)2 |12 ]) MT(p—1)
1

=g’ +z2)M(ﬁ—l)}2§MT(ﬁ—l) . (116)

2
= (1

A
To get the cross section, we should multiply the above expressidvypy, and integrate over the phase
space. We obtain

asCr 22 dl2
0'(1) = 2;}/0’(0)(2’2}) 11—};2 12 d (117)
where
o) = N - DL M0 = vm -t M-

where we have made use of the relatign= 4ra . The factorCy, = 4/3 arises from the colour algebra.
It can be obtained according to the colour Feynman rules of fig. 3, asétadtin the graphic equation

woon
= \ . (119)
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There we see a factor of 3 arising in the first term, because of the suntheveolour entering the Born
amplitude, and a factor of 3 in the second because of the colour loop,tte#ew being(3 + 1/3)/2 =
4/3.

The result obtained so far arises from the real emission of a gluon. Matugections are also
present, i.e. a gluon can be emitted and reabsorbed by the same line.

5.4 Effects due to the emission of a collinear gluon
The final result is

C 1+ 22d?
oV =22 [ (a0 ep) - o0)] TG s (120)

T
where the second term in squared parenthesis is due to the virtualtmrsecWe see that there is a
singularity atz = 1 which cancels between real and virtual corrections. The regien1 corresponds
to soft gluon emission. Thus, soft singularities cancel. There are alliween singularities, associated
to the small; region. These do not cancel.

We first make the following remark. In the initial amplitudes, the presence ehardinator of
the form1/i2 may seem to give rise to divergences liké, /i1 . The singularity we find at the end is
instead weaker, of ordef’l, /i?, because of ait we find from the numerator algebra. We can easily
convince ourselves that this is a consequence of angular momentunmatitse Vector interaction,
in fact, do not change the helicity of a particle. Thus the helicity of the incomirgglkgmust be equal
to the that of the outgoing quark. On the other hand, physical gluons-haveelicity. Thus, in the
collinear limit, the total angular momentum contributed by spin is not conservgd.gives rise to the
extral2L suppression in the cross section. Also, by dimensional analysis, weatageltannot expect
divergences stronger thahl, /I3 in theories with dimensionless coupling constants.

In the case ot e~ — hadrons, we made the approximation that 1, for simplicity. If we had
been more careful, instead of formula (75), we would have obtainedraifarsimilar to eq. (120). There
would be, however, a very important difference: in the Born crossmetor the real emission, under
the integral sign, we would have? (p) instead ofo(?) (zp). This property is characteristic of splitting
processes taking place in the final state, rather than in the initial state. E@ilhastrate this fact. This

c(®) - o R)
® b 2
(7.7 =
2) 5 (7\2)20

Fig. 19: Collinear processes in the final and in the initial state.

is the reason why collinear singularities cancel in ¢fie~ — hadrons case, and do not cancel in this
case.

Equation (120) exhibit a rather intuitive property of collinear emission. &the singularities are
due to the fact that the intermediate propagator goes near its mass shell, tinedidéde particle travels
for a relatively long time and distance. Thus, when it initiates the interactiorghil®es essentially
like an on-shell particle, and the phenomenon can be described in disti@berms. In other words,
the total amplitude squared for the splitting process and the hard scattexoames the product of the
square of the amplitude for the splitting process, times the square of the amfditule hard scattering
(i.e., the cross section).

Thel? integral is divergent in the lower limit. Its upper limit is instead some scale, of ittero
of the typical momenta involved in the hard process, which we now(gakEquation (120) can then be
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interpreted intuitively in the following way. In a hard process, taking place time of orderl /@ (by

the Heisenberg indeterminacy principle), an incoming parton is also probedtime of orden /Q. In

a short period of time, a quantum state may fluctuate into states to which it coepdesif they have
energies that differ by an amount of ordgror less. This is what happens to our incoming quark. This
also explain why the larger 19, the more likely is the splitting to take place.

5.5 Failure of the parton model

The presence of collinear divergences tells us that there must be sogn&thimg with the parton model.
Of course, we know that divergences, in the real physical woridnaver there. In our case, for example,
if we introduce the mass of the quark, the divergence goes away. Qnayeause the known fact that
at low scale confinement effects take place, and thus put a lower ctitoffler A in the transverse
momentum integral. Or again, we may remember that the parton is off-shell incitriimg nucleon, by
an amount of ordeA. This also would act as a cut-off. However, neither of these remediekiweally
solve the problem. Our cross section would become strongly dependemtiayp energy details, like
the quark mass, the off-shellness in the nucleon, or confinement effétks the Parton Model assumes
that these details do not count. Furthermore, the physics of these detailssisdl® physics, and is thus
uncalculable in perturbative QCD.

We will now show that, in spite of the collinear divergences, the Parton Mmatebe rescued,
provided we accept to make some modifications to the original concept.

We begin by introducing some notation. First of all we define

«%9@>=c;(“+§) (121)
+

1—2

where the notation with the- suffix is called theplus prescription It specifies that the expression in
parenthesis is to be interpreted as a distribution, and its integral againsbéhdionactionf(z) is given

by
/01 (11+—f> f(z)dz = /01 1141222 (f(2) = f(1)) . (122)

We then introduce an infrared cutoff and rewrite formula 120 as

o) = —1 0g 17 /dzPO O (zp), (123)

where() is a characteristic scale in the process. Since The corrected partosgcseiion can be written
as

a@zwwwww>/ww@Q><m (124)
where
Ty(2,Q%) =6(1 —2) + g—;l %PO (2) . (125)

The form of equation (124) hints to a possible way to resque the partonlrappeach. In fact, it
has the form of the parton model cross section, except fof)hdependence. It is telling us that we
should consider a parton as having a structure, that depends uparatb@swhich we are probing it.
This becomes even more apparent if we insert the corrected formula iattos pnodel formula for the
hadronic cross section. We just replace: yp, multiply by the parton density, (y) and integrate iny:

dmz/@wﬁ@wwayw@mm. (126)

This formula represents the probablity to find par¢dn the hadron, with a fractiop of its momentum,
times the probability to find partoq in partong with a fractionz of its momentum times the cross

39



section for the final parton, with momentugmap. It is natural to think that if we have an object that
can be represented as a beam of constituents, and the constituents regmelsented as a beam of
subconstituents, the same object can be represented as a beam obttimas. Mathematically this
works as follows. We insert the identiffydz 6 (z — yz) in equation 126, and obtain

o(p) = / d fy(x, Q%) o (ap) | (127)
where we have defined
Fo(.Q?) = / dydz f4(y) Tag(z Q%) 8 — 21) . (128)

We are getting closer and closer to the improved parton model formula. tinffatstead of using the
process scal€) we introduce an intermediate scalethe connection becomes even clearer. We can
write

7(0) = [ dad o 12) o, i®). (129)
where

5(5) = O (p )+f10gQ /dzPO 0 () . (130)

Equation (129) is easily verified by expanding the producf @nd &, neglecting terms of ordes?,
and combining the logarithms according to the equatigy:?/A\? + log Q?/u? = log Q%/\%. Itis
the QCD-improved parton model formula we were seeking, and it forms tie foa the application of
perturbative QCD to phenomena initiated by hadrons. A considerableatiffe with the “naive” Parton
Model formula is the appearance of a scal@ the parton densities.

Let us summarize we have done so far. We have attempted to compute radiataéetions to
a parton process. We have found that these corrections are lacgdepend upon unknown low scale
dynamics, which is represented here by the cutofiowever, we have found that these large corrections
can be absorbed into a redefinition of the parton densities. The partsiieemedefinition does not
depend upon the hard process in question: it is universal. The phg=isa section can then be defined
in terms of these new parton densities. Instead of the partonic cross sectlmQCD-improved parton
model formula we have a so callstiort distancecross sectiord. This is obtained by subtracting the
infrared sensitive (olong distancg part from the partonic cross section. Thus, the short-distance cross
section is controlled by high momenta, and is thus calculable in perturbatiorytHea important to
choose the scalg of the order of the scal@ of the hard process, in order to avoid the appearance of
large logarithms in the perturbative expansion.

Of course, our argument was only carried out at leading order innbetian theory. There is a
variety of more complex arguments that show that formula (87) actually holdkdader in perturbation
theory. This is called th€actorization Theorend0]. We will comment later on its present status. For
now, we will assume that the procedure outlined above can in fact bedamt to all orders in the
coupling constant. Thus, the short-distance cross section can beagveepower expansion ig. If
the scale at whiclg is evaluated is near the typical scale of the hard process, no large logaddn
appear in the coefficients of the expansion, since all the scales entetiveggdoefficients are of the same
order. Thus, one can improve the accuracy of the short distance ssoson by computing higher and
higher orders in perturbation theory. The scaletroduced in this context is called the factorization
scale. The scale at whiehy is evaluated is the renormalization scale, and should be of the same order as
the factorization scale. In principle, they can be taken to be differene,Harsimplicity, | will always
assume that the renormalization and factorization scales are taken equal.

The new pdff(u) contains uncalculable long distance effects. It has to be measuredingy us
formula (87) with some reference hard process, which is typically chimsba DIS. One then extracts
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f(u) atagiven scalg. Its u dependence is however calculable. In fact, taking the derivative. ¢128)
we get

dFQQ(Z’ ,U,2) 5

dlog,uz (.T - Zy)

Sz hiles) = [ dvdz 1, 0)

- ;TS;- / dydz f(y) Pg(2)(x = zy)

= ;Sr/dydz faly, 1) PO (2)0(z — zy) + O(a2) | (131)

where we have used eq. 125, and dropped higher order termsimorder to identify f with f in the
last step.

Equation (131) is the Altarelli-Parisi (AP) equation (or Dokshitzer—Grithdpatov—Altarelli—
Parisi equation) for the non-singlet case. Itis also commonly written in time fo

1
0wy = / dyyfq(y,uz)f’fq(ﬂf/y% (132)

0 log 1 2T

where we have dropped the tilde sign, since the “naive” parton denségpiars in the improved parton
model approach.

The AP equation allows us to compute the parton densities at any scale, er@vameasured
them at an initial scale. Thus, in the improved parton model, predictivity is rsvt l&s before, the
measurement of the pdf’s in one process (at one scale) allows one twdkte computation to any
scale.

5.6 The evolution equations in the general case
We introduce the following symbolic notation for the AP equation

T a 5/ ZPW ® fi(p (133)
where thex product is defined as

1
L& L®. . f (x):/o day dzs ... dan f1 (1) fo(@) - falan) 0(z — 2129+ 70) . (134)

We have

2
Pij(y) = 2s(1) po (y) + (aS(m) PO y) + ... (135)

2r Y 2w K

where thePi(jO) (y) are given in ref. [37], and thé’i(jl)(y) in [38, 39]. The terms of ordex? are not yet
known exactly, although recently approximate expressions have becaitebie [41], based upon some
partial results [42] [43]. Work on an exact calculation is under way.[44

We report below the formulae for tH%(jQ) (y). Its only non-vanishing components are

PO(z) = PQ(x) = Cs <11t3;2> , (136)
+

PO (z) = P (2) =Tt (+* + (1 - 2)?) |, (137)

PO (@) = PO (@) - CFH(lx—@? | (138)

P(O)( ) =2C, [z<112>++ 1;Z +2(1—2)+ <E_6n(i> 5(1—36)] (139)



For a derivation of the above formulae similar to the one given in subsecothe reader can look in
Appendix B of ref. [45]. For a more intuitive (although less conventiodaljvation, the reader can look
directly in the original Altarelli-Parisi paper [37].

We do not report here the higher ord@P) functions. Observe, however, that at higher orders
the component$’,,,. for i # j and P, (for anyi andj) do arise. Here we limit our discussion, for
simplicity, to leading order evolution only.

We begin by taking the difference of eq. (133) with itself, for two différgonark or antiquark
flavour labels and;j. We find

W 2 i) - Fi() =" (P ® fulp) — P ® fi()) - (140)
k

As discussed earlier, ifis a quark (or antiquark), thelncan only be the same quark (or antiquark) or a
gluon. The gluon contribution cancels among the two terms in parenthesisnargkts

T 8 =5 filw) = fi(1)) = Pyg @ (fi(w) = (1)) - (141)

Thus, if we haver light flavours, there arén; — 1 independent combinations of the parton densities
that evolve independently from each others. They are called non-soagigonents. Next, we take the
sum of eq. (133) for all quark flavours and antiflavours. We get

282fz = Pu® filn) =YD P ® fr(i) + Y Pig @ fy1s)

i#g i#g i#g k#g i#g

= qq®2fi(ﬂ>+2nfpig®fg(ﬂ) . (142)
i#g

On the other hand, eq. (133) for the gluon reads

92 Oty Z Py ® fi(i) = > Py ® fi(i) + Pag @ folp) . (143)
i#g
Thus, defining
= filw), (144)
i#£g

we get the system of equations

0
,UQ(TUQfg(ﬂ) = Py ® S(p) + Pyy ® fg(:u)
M2832 (1) = qu®S(M)+2anz‘g®fg(ﬂ) ) (145)

which define the evolution of the so callsthgletcomponentS and the gluon. Thus, while the non-
singlet components evolve independently, the singlet component mixes witfiubie density in its
evolution.

5.7 Sum rules
We said earlier that we expect our parton densities to satisfy certain $esn Tinus, for example

[z [19@ - 1P @] =2 (146)
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We must make sure that evolution equations do not spoil the sum rules.tBindiéference of the quark
and antiquark parton densities is a non-singlet component, we have

M2822/dm [fqu)(x) - fép)(x)] = /dxg;qu(y) {fﬁp)(z) _ fép)(z) §(x —yz) dyd>

=5 | [ Putwa] [ ez [0 - 1) =0 (147)

because| Py, (y)dy = 0. Similarly, one can show that the momentum sum rule is also preserved by
evolution.

5.8 Scheme dependence

There is some ambiguity in the way one defines the parton densities, This amlgdugist seen as an
ambiguity in the type of infrared cutoff one uses. For example, one coutdaggmass to the quark, or
assume it is slightly off-shell. By doing this, the large logarithm does notgdabut different finite
pieces can arise in the calculation. In the present context we have oklyd@d the divergent parts.
When doing next-to-leading QCD calculation, however, one would like to coenprecisely the finite
pieces. The reader can find interesting examples in ref. [46, 47] &)dThere the same processes are
computed (the Deep-Inelastic and the Drell-Yan cross section), but widretit infrared cutoffs. Thus,
the finite terms in the various cross sections turn out to be different. Howeken expressing the DY
cross section in terms of the DI cross section, both approaches yieldnteefeemula. Thus, to some
extent, the definition of the parton density is a matter of convention, like theitoeiiof «5. It has to
be specified together with a procedure for the computation of short distaioss section. Today, the so
calledMS scheme is widely used, and most parton densities are given M$hecheme.

5.9 Summary
We summarize what we have learned in this chapter.

First of all, by intuitive reasoning, we derived cross sections for higgrgy inclusive processes,
assuming that the transverse momentum of constituents in hadrons was limiteidabhgplronic scales.

We tried to compute radiative corrections to these formulae, and we foundsistencies, i.e.
uncancelling collinear divergences.

With a procedure very similar to renormalization, we showed that the collinesnggnces can be
factorized into the parton densities.

Let us discuss how is the procedure of factorization similar to renormalizatisanormalization,
we hide our ignorance of UV effects into a redefinition of the strong cogpmlonstant. Here, we hide
our inability to compute IR effects into a redefinition of the parton densities.

As a result of this procedure, we find that the parton densities are actually dependent. We
may think of a hard process as a probe of transverse dimensions and tmaeof /(). When we probe
a constituent at higher and higher valueg)fthat is to say for shorter and shorted time, because of the
uncertainty principle, we may find it fluctuating into a virtual pair of constituefftthe energy shell by
an amount of ordef). The larger i) the larger is the phase space for virtual particles. This is why
parton densities evolve with the scale at which they are measured.

The original assumption of limited transverse momenta fails in the parton modelavéesken,
in fact, that because of initial state radiation, integrals of the fétin /l2L arise. Roughly, we expect

d’l,
<li> ~ g / ?li ~as@? . (148)
Thus the transverse momentum is not limited, but it is “perturbatively” small, iis.siippressed by a
coupling constant factor.
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5.10 How solid is the Factorization Theorem?

The argument given in this chapter does not certainly pretend to be fulljiramng. Thus, we would
like to have a more solid proof of this theorem.

In the case of the DIS process, such proof exists. It relies upon arcalytic continuation
property of the DIS cross section, that can be used to apply the pdveerfuage of the operator-product
expansion (O.P.E.) to the problem.

For production processes in hadronic collisions, things are much moruttiffiEven in the sim-
plest case, the Drell-Yan process, the factorization theorem has adot@wersial history, which was
finally settled by the calculation of Lindsay, Ross and Sachrajda [49,130,4l-order arguments for
factorization have been given in ref. [52]. Today, the factorizatioords® is widely accepted in the high
energy physics community.

6 DEEP INELASTIC SCATTERING

Deep-Inelastic Scattering (DIS) is the next-to-simplest QCD processafterannihilation into hadrons.
It is experimentally quite simple, since in order to define the DIS cross secat@daes not need to intro-
duce jet definitions. It is enough to measure the momentum of the outgoing lepicaer characterize
the final state.

Deep-Inelastic scattering is also the best place where to measure stfuntiiens, as can be seen
from eq. (99). Thus, QCD predictions for hadronic collisions rely ugimnexperimental determination
of structure functions performed at DIS experiments.

From a theoretical point of view, DIS (lik&,.+.-) has also a privileged status. There are in fact
good reasons to believe that power corrections in DIS processegebiiteal /Q2. This is unlike (for
example) jets ire e~ annihilation, where one expects corrections of the orddr/¢f. Thus, DIS is a
good place where to measurg.

The most general form of the DIS cross section for electromagnetiegses is given by

do  4ma2, (S — M)? [(1_y_ ryM?

dedy Q! S M2> Fy(z, Q%) +y* o Fa(2, Q)| (149)

whereF; and F; are called the structure functions for Diggorresponds to the variables defined previ-
ously, M is the mass of the target nucleon ane- zg;. | will not illustrate the derivation of this formula,
which is found in many textbooks. It is a simple consequence of electratgaaat the lowest order
in aem, and of Lorentz invariance. It does not, therefore, contain anyrdice consequence of strong
interactions, aside from its symmetry properties. From formula (99), aed what we have said in
the previous chapter with regard to the factorization theorem, we can nibgvdemwn the leading order,
QCD-improved parton model formula for DIS

do 2w

dydr Q4

L1+ 1=y G Q). (150)

l

In order to have leading order accuracy, it is sufficient to chgose ). For simplicity, | have chosen
u = Q. From egs. (149) and (150), neglecting mass effects, we find

Fy(z,Q) = 2zFi(x,Q), (151)

which is the so-called Callan-Gross relation, and

Fy(z,Q) =z i fiz,Q) . (152)
l
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The Callan—-Gross relation is a prediction of the parton model, and it is a@qomsee of the fact that
the only charged partons are fermions. It is however only a leading prddiction. When radiative
corrections are included, it is violated. One defihgs= 5 — 2z F}.

It is useful to focus now upon thedependence of the parton model formula. We have

_pq p-k  1—cosf
Wik pk 2

(153)

and thusy is related to the electron scattering anglm the CM frame of the electron-parton collision
(sometimes called the partonic CM frame).

The scattering of the lepton on a quark of the same helicity, gives risg ttependence propor-
tional to 1, while in the case of a quark of different helicity, thelependence il — 3)2. Thus, in
the case of spin-averaged cross sections in electromagnetism déigendence i$ + (1 — y)2. The
verification of these properties is a simple exercise with Feynman graphs.

The vanishing of the cross section in the backward limit (ye= 1) for the quarks and lepton
with opposite helicity has a simple intuitive explanation. The spins of the leptorttendquark are
aligned, since their helicities are opposite, and their momenta are opposite, thby have a total
angular momentum 1 in the collision direction. Vector interactions conservatieslicThus, the quark
and lepton will have the same helicity after the interaction. In the case of laadlsgattering, however,
they have opposite momentum, and thus they have opposite total spin. Thasrwaiion of angular
momentum imposes the vanishing of the backward cross section, which isheliat- ;)? dependence
predicts.

Parity violating processes contribute anti-symmetrically in the exchange ofeliety of the
incoming lepton. We expect@ — (1 —y)?) = 2(y —y?/2) dependence to be present in this case. Thus,
a third structure function appears. For example, in neutrino chargeentwIS (i.e.v, N — p~ X or
N — ptX) we have

do G%(S — M? M2 zyM?
— F( ) w 5 1_y_ Y - F2CC<I‘,Q2)
dx dy 2m (Q? + M32) S—M

+y2 x FY¢(x, QQ) + (y — y2/2) xF5°| (154)

where the sign in front of3 is chosen positive for, and negative fop interactions. The parton cross
section is given by

(155)

do G253 M2 1 same helicities
dy 7 (Q2 + M2)? { (1 — y)? opposite helicities
The neutrino is left handed, and charged current interactions invdivbdaded quarks and their an-
tiparticles, which are right-handed. Thus, when the neutrino scatteasopfrks, we get the constant
dependence; when it scatters off an antiquarks, we gdtithey)? dependece. Because of charge con-
servation (i.e., the neutrino goes into an electron, and thus gives ond poditive charge to the quark)
only negatively charged quarks or antiquarks can be involved. Tbugxample, forv,p — p~X,
neglecting for the moment a possible charm or bottom parton density in thexpvetbave

do  GiSuz M2,

dx dy - T (Q2 + Mgv)Q [(d(xa Q) + S(IE, Q)) + (1 - y)2 TL(CE, Q)] ) (156)
Here we introduce the notation
u(z,Q) = fP(2,Q), d(x.Q) = f(x,Q), etc. (157)
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for the quark densities in the proton. The corresponding densities in thi®nere obtain from isospin
symmetry

f@, Q) = d,Q), f{"(@.Q) =u(.Q), et. (158)
Thus

Fy¥(z, Q) = 22F7°(x, Q) = 22(d(z, Q) + s(z, Q) + u(x, Q)) (159)
F3¥(z,Q) = 2(d(z,Q) + s(z, Q) — u(x,Q)) . (160)

Similarly, forp — et X
F5(2, Q) = 2(u(x, Q) + s(z, Q) + d(z,Q)) (161)
Fgc(waQ) = 2(-(;(1’,@) —5(1-7@) —|—U($,Q)) . (162)

One gets the sum rule

1

/0 dr [FyP(z,Q) + FyP(z,Q)] = (163)

1
2 /0 dz [u(z,Q) —u(z,Q) + d(z,Q) — d(z,Q) + s(z,Q) — 5(z,Q) +...] =6

which is called Gross—Llewellyn Smith sum rule, and expresses the fadhtratare three quarks in a
proton.

The phenomenology of DIS scattering is quite complex, and it is really impogsibdeiew it in a
satisfactory way in the context of these lectures. Several complicatiangefimental nature arise, and
have to be dealt with properly. When extracting the structure functigrex £ from data, it is usually
assumed thak; and F, are related on the basis of the Callan—Gross relation

1+ 4M?22%/Q?
1+ R(z,Q?)

where, if the Callan—Gross relation was satisfied exactly, one wouldRavd. Different experiments
are performed on different targets. The structure functions for &eancembedded in a nucleus are
distorted (EMC effect). Finally, the size of power suppressed efféutsso calledhigher twist effecis
should be assessed, especially for IQ# experiments. In the present context | will not try to explain
how to deal with these complications. | will instead try to give a rough idea wfthe strong coupling
constant and the parton densities are extracted from data.

The strong coupling constant can be extracted from DIS data using des) flike the Gross—
Llewellyn Smith sum rule. Sum rules are in fact calculable in perturbative Q@D the difference from
their parton model value can be used to extractFor the Gross—Lewellyn Smith sum rule

20F (x,Q) = Fa(z,Q) X (164)

1 _
/0 dzx [F;p(x, Q)+ F;p(:c,Q)] =

2
6 [1 _ sy <1 +3.5855 419 (ﬁ) > + O — Ayr| (165)
s 7T T
A recent CCFR determination [53] obtains
as(1.73GeV) = 0.28070 068 — as(My) = 0.114700% . (166)

These determinations have the advantage that these quantities haverbeeredoat very high order in
perturbation theory [54] , and thus the theoretical error are redu&iade, however, they are performed
at a rather low scale, some estimate of higher twist effectsAth@ are necessary.
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AOAs(Mz)
Measurementy (GeV) | as(Q) as(mz) exp. theor. | Theory
0.070 0.009 0.008
DIS, GLS-sr | 1.73 | 0.28070:079 | 0.114 70099 0% £0.005 | NNLO
DIS,v; zF3 5 0.214 £0.021 | 0.118 £ 0.006 +0.005  +0.003 | NNLO
DIS,e/p; F» 2.96 0.252 +0.011 | 0.1172 £0.0024 | +£0.0017 +0.0017 | NNLO

Table 5: Determinations afs from DIS data, taken from ref. [11]. GLS-sr stands for Gross-leiéym Smith sum rule.

The standard method to measurg in DIS is based upon the fact that the speed of evolution is
proportional tocs. The logarithmic derivative of the structure functions with respeaptcare found
therefore to have a strong sensitivity to the valuexgf It is convenient to use a non-singlet structure
function, in order to avoid uncertainties due to the poor knowledge of thengiiensity. Thus, for
example, one can udg in neutrino scattering [55]. Alternatively, one can use structure funstibrery
largex. Since gluons are not valence patrticles, their density is quite soft, thatay,toancentrated at
small values ofc. In general, there is little gluon content in the hadronsifor 0.2. Using this fact, one
can also use muon data to determine A summary oig measurements from DIS is reported in table 5
from ref. [11]. The table deserves some comments. First of all, noticalhhiese determinations are
performed at the NNLO level. This has become possible because ot progness in the computation
of moments of the splitting functions at ordet [42] [43]. This has allowed NNLO analysis of DIS data
[56] [57]. The heoretical precision of these analysis matches thR{ of-. Comparing tables 5 and 2
we see a remarkable consistency in two different determinations, pedomitie completely different
experimental setups, and at very different scales.

Neutrino scattering allows independent access to the quark and antmpradnt of nucleons. It
is generally carried out on heavy, approximately isosinglet targétmeasurements in electromagnetic
and charged current experiments give access to the combinationtecepothe table 6. In principle,

FPJo | s(utu)+g5(d+d+s+5)
F§'z | s(ut+u+d+d) + 2(s+5)
Fyd 2(u+u+d+d+2s)
Frd 2(u+1u+d+d+25)
Frd 2(u —u+d—d+2s)
Frd 2(u—u+d—d— 25)

Table 6: F> in various experimental configurations of interest.

strange and antistrange content could be extracted from neutrino &éndudrino data on isosinglet
targets. Or, assuming= 3, we can use the combinatiari6 Fy? — 3Fs? = x2s. In practice, the strange
content is better constrained by looking at charm production in neutrigo THe corresponding signal,
in the case of/, scattering, is given by an unlike sign muon pair, one arising from the edargrrent
scattering, and the other from charm decay.

Assuming that we have measured the strange content, we have accessoimlingations: + u,
d+d, u+d andz+d. These quantities are not independent, since the sum of the first twis dugiaum
of the last two. Thus, one more input is needed. It was usually assunted thal. This assumption,
supplemented with sum-rule restrictions, is however in conflict with data.cindaing the flavour sum
rules

/da: [u(z, Q) —u(z,Q)] =2, /dx [d(a:,Q) — J(x,Q)] =1, , (167)

we obtain

T

/ 0.0 - F6.0)
0
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1
_ é +2 /0 dz [a(z, Q) — d(z, Q)] (168)

which, if & = d gives the so called Gottfried sum rule. Experimental measurements of thei€bstim
favour a negative contribution from the— d difference.

In order to access the — d difference as a function of, one has to use different experiments.
Drell-Yan pair production in proton-proton collisions is one example.

Thez integrals ofF; are proportional to a combination of the momentum fraction carried by the
quarks and antiquarks. In particular, for example, the integraléfgives the total momentum fraction
carried by quarks. This quantity is measured to be roughly 0.5. Thuspgrexts that a large fraction
of the hadron momentum is carried by gluons. This poses a valuable ¢onstrahe gluon density
g(z, Q). From DIS, the traditional way to determigéx, @) is from its influence upon the evolution of
the singlet structure functions. This is viable at relatively small values afhere the gluon density is
not small. At larger, however, one needs to rely upon direct methods, since the gluon dentity
small there to influence evolution. Direct photon production is one suaepso

Today’s tendency for structure function studies is to perform globalditslarge variety of data
samples. One recent description of structure functions fits is given.ifb&f where many aspects are
discussed in detail. The result of these fits is shown in fig. 20.

MRST partons A= 20 GeV}

Lol R LT ~ ‘
10” 10° 107 x 10" 1

Fig. 20: Parton distributions by the MRST group.

7 QCD IN HADRONIC COLLISIONS

Perturbative QCD applications in hadronic collisions is extremely importantiodihe impact it has had
in the recent past for the discovery of new particles, and the impact itirig go have in the future for
the search of new physics at the LHC. Thus there are essentially two maiis pbstudy for QCD at
hadron colliders, and they clearly go hand in hand

e QCD tests in hard processes
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e Modeling of particle production processes (computing cross section®forhiggs, etc.) and
computing backgrounds.

Unlike the case ot*e~ annihilation into hadrons, where each event is a hard process, inrfi@adro
collisions most events are soft, even if the CM energy is very high. Thiscsuse, even if the colliding
energy is high, the momentum transfer involved is not large. However, jprdteiction of very massive
particles, or in processes in which particles at high transverse momenpmarappard momenta are
actually present, and we can apply perturbative QCD. As a rule of thurnén we try to compute a
process using the parton model formula, and find that it is dominated by smakna, this means that
we can no longer neglect low energy details, like the off-shellness ofahtens inside the colliding
hadrons, or their mass. In this case, the process is controlled by longadistgnamics, and cannot be
computed using perturbative QCD.

7.1 The kinematic variables for hadronic collisions

Given the two colliding hadron beams, one defines the kinematical variabtes/ @utgoing particles
according to the figure below

ker) k

Beam 1 19.’] Beam 2

Thus, the transverse momentum is the projection of the particle momentum into the transverse plane
(the plane orthogonal to the collision axis). The azimuthal angsedefined with respect to the collision
axis. One usually defines

Transverse energy Er = sinfF

Transverse mass myp = /k2 + m?

. 1. KO+l
Rapidity = y = 3 log o
The rapidity has the nice property that under a longitudinal boost it is simptglaged by the boost
angle:y — y + log~. The transverse momentum, and thus the transverse mass, are simply tnvarian
under longitudinal boosts. Thus, these variables are particularlyluseftudy hard processes, since in
general the parton centre-of-mass system for the process will béatethsvith respect to the hadron
CM. For particles of small mass, we have

1 1+ cosf 0
~ —log—— = —logtan = 169
Y% " osh cgtally (169)
and thus one defines the pseudorapidity
0
n = —logtan 3 (170)

It is useful to remember the following formula for the single particle phaseespa

&1
2k0(27m)3  2(2nm)3

dkrdy . (171)

Thus, the single particle phase space is uniform in transverse momentuiaipgatitl;.
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7.2 Total cross section

The total hadronic cross section is in the range of several 10mb rardjie grows logarithmically with S.
This is roughly the inverse of few hundred MeV squared, the chaistitescale of strong interactions.
We cannot compute the total cross section using perturbative QCD. keaontogical models based
upon Regge theory are usually employed to describe the data.

If we attempted to estimate the total cross section using parton model concepbuleeend up
computing a parton production cross section integrated over the tra@smersentum of the parton. On
dimensional ground, this cross section would be divergent at small/gesgsmomenta

do 1 dk2 1
—_— ~ | L= 172
a2 ST / KT A (172)

where the last step follows from the fact that some non-perturbativeohiadscale (for example, the
off-shellness of the incoming partons) should act as a lower cutoff ointiegral. Thus, perturbation
theory, although incapable to give a definite answer, fails precisely gdimé when the cross section
becomes of the order of the total cross section.

7.3 Typical inelastic processes

The typical inelastic events in hadronic collisions are quite complex. Sdvadabns are produced, the
average charged multiplicityn.,) being typically of the order of 30 to 40 per event B, = 600

to 1800 GeV, and it grows logarithmically with energy. Fluctuations in multiplicity are largethe
order of 100%, a typical feature of cascade processes. The éraesmomentum distribution of the
produced hadrons are characterized by an average transverseiths order of few hundred MeV,
growing slowly with energy. The produced particles are distributed unifoin rapidity, the distribution
dropping smoothly to zero when approaching the maximum rapidity.

7.4 Looking for hard processes in hadronic collisions

Hadron collider physics is complicated by the fact that interesting eventsasrenith respect to the
common lowp. inelastic events. This is immediately understood if we estimate the cross section for
the production of a 100 GeV object to be of the ordet@f* GeV—2, while the typical inelastic cross
section is of the order of0~* MeV~2. We expect roughly 1 hard event every®$bft ones, and this
estimate ignores eventual suppression due to the coupling constant.

Furthermore, soft events may look like hard ones, because of fluctaafibos, with a multiplicity
of 30 and an average. of few hundred MeV, the average total transverse energy can v@hpwof the
order of tens of GeV. Fluctuations may favour occasionally even larges¥erse momenta.

7.5 Jets at Hadron Colliders

Thus, unlike theeTe™ case, where above a certain energy all events look like jet events, iiartiad
collisions establishing the existence of jets has required the use of arpapfedrigger. In fact, one
has to look only at events with a large total transverse energy. If the tatesMerse energy is larger than
the typical value for a soft event, the events show the presence of [esswais the method followed by
the UA2 and UAL experiments at the CERNpSpcollider, to establish the existence of jets in hadronic
collisions. It was found there that requiring a transverse energyrldrge 70 GeV, most events look like
jet events.

The description of jet production in QCD follows the lines of the QCD-imprgvarton model.
At the leading order level, in order to compute jet cross section we onlythedslorn cross sections for
parton parton scattering, reported in table 7. The 2-jet inclusive cext®s can then be obtained from
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Process @ }
aq — q¢ ol
aq — qq |35 {% (§22;“2 £48) %fﬂ
a7 — q¢'7 %%f‘;ﬁ
94 — 47 | 5= [% (sZ?éﬁz + t2§2ﬂ2> = 287%3]
97— g9| o |BEEE - %P?f‘z}

72 ~2 72 ~2
99 — qq % |3 EE - 35
g9—g9| 1%S(3-4-8-%)

Table 7: Cross sections for light parton scattering. The notatipngs — k1, 8 = (p1 +p2)?, £ = (p1 — k)%, @ = (p1 — 1)°.

the formula A
dGij—k+i

dd 173
bt o, (173)

do =" dwy dus £ (w1, 1) 1) (@2, 1)
ijkl
that has to be expressed in term of the rapidity and transverse momentuemoftks (or jets), in order
to make contact with physical reality. The two particle phase space is given b

d®k

20 (2n)? 21 6((p1 +p2 — k)?), (174)

ddy =
and using eq. (171), in the CM of the colliding partons, we get

ddy = Plpdy 26(5 — 4(k°)?) . (175)

1
2(2m)?

Herey is the rapidity of the produced parton in the parton CM frame. It is given by

_n ;yz (176)

wherey; andy, are the rapidities of the produced partons in the laboratory frame (in faatyiframe).
One also introduces

1 .
y0:y1+y2:flogﬂ, T:f:mlxg. a77)
2 2 x9 S
We have
dxi dxo = dyo dr . (178)
We obtain 4 1
do =S dyo = (H2) Tij—ktl 2 dy d2k 179

ijkl

which can also be written as

do (H1 (H dGij—k+i
— 180
dyl dyQ koT 2 27‘(‘ P} %f 7/’L f ( 27/”') d(pg ( )
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The variables:{, x5 can be obtained fromy, y» andp. from the equations

+
Yo = 1 5 Y2 (181)
y = Y1 ; Y2 (182)
2
or = % (183)
x1 = xre? coshy (184)
T9 = xre % coshy . (185)

For the partonic variables, we negé- s x; 2 and the scattering angle in the parton CM frafmeince
tz—%(l—cos@), u:—§(1+0080). (186)

Since we are neglecting parton masses, rapidity and pseudorapidity mtieatleso that the equation
y = —log tang (187)

gives ud.

The Born cross section formulae given here predict the productionak-to-back jets, with op-
posite transverse momenta. Details of the jet distributions depend upon tivelge of the structure
functions. However, it has been observed that, to a good approximatiattering processes with gluon
exchange in the channel dominate, and that they are roughly proportional to each dftoee specif-
ically, thegg — gg, q9 — qg andqq’ — qq¢’ processes are in the ratiox 3, 3 x 4/3 and4/3 x 4/3
respectively. This property is exact in the small angle scattering limit, but magood approximation
also at large angles. It can be obtained from Table 7, by keeping onindise enhanced terms when
t — 0 (andu — —s) or whenu — 0 (andt — —s). The processes with identical particles in the
final state have an extra factor bf2, but on he other hand have enhanced terms when0 and when
u — 0, while those with different particles in the final state have onlyttemgularity. Thus, at the end,
theqq — qq process at small angle gives the same contribution agthe: qq’ process.

Using this property the jet cross section simplifies

do 1

ddgg—
dyr dya 2k ~ 22 FED (g 1) FE) (g, ) 22992099 (188)

ddo

with
F () = £ @, 0) + =5 £, ). (189)
) i#g
Equation (188) gives a definite prediction for the angular dependdrje¢ mroduction. It can also be
written, more explicitly, in terms of, x5 andcos 6, wheref is the scattering angle in the rest frame of
the partons.

do do
— p(H) (Hz2) 99—99 1
dxzq dxo dcos (1, 1) (w2, 1) dcosd (190)

Early studies of the UA1 and UA2 experiments have confirmed this behd&®lr

Modern studies of jet physics at colliders are performed at the nextthAg level in QCD.
Calculations of jets cross sections at next-to-leading level have bedalbdedor quite a long time.
Comparisons between data and calculation require agreement on a jet detmitie used. Such a
definition should be of the Sterman-Weinberg type, that is to say, it shouldraeed and collinear safe.
Several algorithms have been proposed to define jets. For the puifpbselectures, it will be enough
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Fig. 21: The reach of the DO inclusive jet analysis in @& = plane for the parton densities (left plot), and the Inclusive jet
cross section as a function &fr, in various rapidity bins, versus theoretical predictions (right plot).

to know that the most commonly used definitions make use of a circle of a gidarsi? in the ¢ plane.
The circle is moved in the plane until one finds a maximum of the transversgyeteposition inside
the circle, and a jet of the givesyw and E. values is associated with this point. The single inclusive
distribution of jets found in this way, as a function Bf, is compared with QCD NLO calculation.

An example of a recent measurement of the inclusive jet cross sectiaersigiref. [60], from the
DO collaboration. The inclusive jet cross section is measured in a widetsagadge. By exploring the
high rapidity region, one extends toward smaller values tife region in the)?, = plane where parton
densities are probed, as shown in the left plot of fig. 21. Jets are defiitle then¢ cone algorithm,
with a radiusk = 0.7. The DO results, together with a NLO QCD predictions, are shown in the right
plot of fig. 21, showing a remarkable agreement. A more detailed compasisbown in fig. 22, where
the ratio(data— theory)/theory is plotted. Theoretical results are obtained with the program JETRAD
[61], using the CTEQ4 [62] (left figure) and MRST [58] (right figlirgtructure functions. The shaded
band corresponds to one standard deviation on the systematic erroex@etts a comparable band for
the theoretical error. The data is therefore in good agreement with tleabreredictions, showing a
preference for the CTEQ4 sets.

Double-inclusive jet cross section (i.e., dijet production) studies at the Nve also become to
appear. CDF has performed a study of dijet production [63]. They &idke E of one central jet
(0.1 < m < 0.7), while the second jet lies in several different pseudorapidity intertalthis way, the
sensitivity to the parton densities at largés enhanced. Qualitatively the theory gives a good description
of data, as can be seen from fig 23. A closer look reveals problems quémditative level. Looking at
the (data— theory) /theory ratio in the right plot of fig. 23, one sees that no parton densittifurs set
fits the data satisfactorily, especially in the high region.

We recall that jet studies at the Tevatron is at the frontier of our knowledgthe parton density
functions. In fact, the single inclusive jet cross section [64] was fdnitilly to be higher than QCD
predictions. Further studies have shown that the excess over pékteneedictions is within the cur-
rent flexibility in our parametrization of the parton density. It is however eg#ng to recall the value
of studies of this kind. Since the QCD jets parton cross sections drop withsgtizee of the transverse
energy, a contact, 4-fermion interaction (similar, therefore, to weak ttters at low energies) would
stick out at sufficiently highE;. In particular, a 4-fermion interaction with a coupling constantvould
give rise to corrections to the cross section due to the interference termtheristandard QCD ampli-
tude. On purely dimensional ground, such corrections would be of ¢fgend would thus overcome the
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Fig. 22: Comparison of experimental measurements versus thebpatcictions: CTEQ4HJ«) and CTEQ4M 6) (left
figure); MRST( (o) and MRST 6) (right figure).
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Fig. 23: Dijet cross sections from CDE distribution of one central jet, for the recoiling jet in different rapidity bireft(
plot). A comparison if the dijet cross section to theoretical predictionswshim the rigth plot. The error bars represent the
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strong interaction at somg;. Thus, high transverse momentum jets studies can be used to put bounds
on these kind of interactions. Sometimes, these bounds are called, sonrapfugterly, compositeness
bounds, since these kinds of 4-fermion interactions would naturally arisenposite models, due to

the exchange of heavy composite particles.

7.6 Production of W, Z, and Drell-Yan pairs

From the point of view of perturbative QCD, the productioi®df Z and Drell-Yan pairs are very similar
processes. Some graphs contributing at leading, next-to-leadingeanitbmext-to-leading order in the
strong coupling are shown in fig. 24. The corrections of ordghave been given a long time ago in

D= q
P
0(1) O(as) 0(o3)
Fig. 24: Some graphs contributing to the Drell-Yan partonic cross sectiQiCiD.
refs. [46, 47, 48], while the? corrections have been computed in ref. [65, 66]. In order to geteactd

with the kinematics, let us compute the parton cross section for the produétiohypothetic massive
vector meson. The amplitude is

M = g v(p2) Y'u(p1) (191)
and the partonic cross section is
. 111 2
6= 2349/@1 Sp;(ﬂ M, (192)

where we have included a factor bf4 for the initial spin averagel /9 for the initial colour average,
1/25 to go from an amplitude squared to a cross section, and the one-partiske gpece®;. We have

S IMP =362 Telph (—ph) vl = 120% , (193)
spin,col.
and -
q 4 ¢4 2 2
o = [ ——L —q) = _
av, = [ 5oy (27001 +p2 =) =27 8(pr 4 o) M) (194)
so that at the end we get
2
& = 4% @ d(3 — M2) (195)

with a = ¢%/(47). For W+ production, the coupling i8 = gem/(Vv/2 sinfy ), and only left handed
quarks, and right handed antiquarks, can contribute. We get

7T2 Qlem

Uw— 3

sin ™2 Oy 6(5 — M2)) . (196)

The full hadronic cross section is then

oy = / dxq dxo [(fl(LHl)(:zl) féHQ)(.’EQ) + fJHl)(xl) fl(LH2)(g;2)> cos® e + ...

7r2aem

s — M? 197
X 3sin? By (5122 w) ( )
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where one should not forget the appropriate CKM factors. A receminsary of17/Z cross section
studies at the Tevatron is given in ref. [67].

From the measured ratio
ow - B(W — ev)

oyB(Z —ee) ’

assuming that the ratio of the production cross section is accurately caécwdab can extradB (W —
ev), and from itl'y,,

R = (198)

(W — ep)
 B(W —epn)’
assuming that thev width is correctly given by the standard model.

Ty (199)

7.7 Heavy Flavour production

The production of heavy flavour in hadronic collisions involves strongaatéons directly. Furthermore,
in many cases of interest, the gluon densities play an important role. This i tinékcase ofl//Z
production, in which the main production mechanism does not involve thegstaupling constant. The
search and discovery of the top quark has therefore relied on the wiaaleinery of perturbative QCD,
factorization, and structure function physics.

The leading order process is proportional to the square of the strammjirmg constant. Next-to-
leading (order?) calculations for the production of heavy flavour production have leailable for a
long time. Furthermore, a large amount of work has been performed emneation of effects enhanced
in particular kinematic regions [68].

Since the top is very heavy, one expects that perturbative QCD shouldwall in this case.
In fig. 25, taken from ref. [69], | show a comparison of theoretic&dctions with the CDF and DO
measurements.

CDF data for bottom production has always shown a tendency to be hiwgnethe theoretical
predictions, as one can see from fig. 26, a problem that is being adtivelstigated. A large body of
data is available for charm production. Theoretical calculations aregvewnot very reliable in these
cases, since the charm mass is only moderately heavy, and thus onesadatyorely upon perturbation
theory. Some results are shown in fig. 27. A recent review of heawyudtgwoduction is given in [68].

8 CONCLUSIONS

In these lectures | have given an overview of perturbative QCD. Ahawe seen, the application of
perturbation theory in strong interactions is not straightforward, unlikedlse of weak interactions and
electrodynamics. Nevertheless, a consistent and testable framewdhie fapplication of perturbation
theory in strong interactions can be defined. This framework has beereletested ir*e™, ep, and
hadron-collision physics. It is perhaps true that, after the very exiengrk performed at LEP1 and
at the SLD, our confidence in perturbative QCD has become quite soBtinge€)CD remains however
an important activity, due to the large number of applications that heavilyndepgon it. The near
future in particle physics research is in hadron collider physics, wheragplication of QCD is more
complex. We should not forget, for example, that Higgs production atomézcolliders is essentially
a stong-interaction phenomenon, driven by gluons. Thus, it is importdntilich more confidence upon
our ability to compute hadronic processes.
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