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Abstract
In this lecture notes I give an introduction to perturbative QCD, that shouldad-
dress both theoretical and experimental physics students. I illustrate the basic
features of the theory, by discussing few examples ine+e− physics, deep-
inelastic scattering, and hard production phenomena in hadron collisions.
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1 STRONG INTERACTIONS

Strong interactions are characterized at moderate energies by the presence of a single dimensionful scale,
of the order of few hundred MeV, a scale that we will call in the followingΛS . No hint to the presence
of a small parameter, in which to develop a perturbative expansion, is present in the strong interaction
world. Thus, typical cross sections are of the order of 10 millibarns (corresponding roughly to1/Λ2

S),
the width of hadronic resonances is of orderΛS , and the size of a baryon is typically of the order of
1/ΛS . This is very much different from the case of electromagnetism and of weak interaction, where all
reactions can be viewed as originating from a weakly coupled point-like vertex, the fermion–fermion–
photon vertex in electrodynamics, and the four fermion vertex in weak interactions. The development
of a model of strong interactions has therefore followed a rather intricate path. Aside from what can be
inferred from symmetry properties, S-Matrix models were developed in the 60’s, since the general feeling
prevailed that it was impossible to describe strong interactions using a field theoretical framework similar
to the one used for QED. Dual models, which eventually gave origin to string theories, were discovered
precisely in this context, but failed to give a consistent explanation of strong interaction dynamics.

2 MOTIVATIONS FOR QCD

Today we have a satisfactory model of the strong interaction, which is given in terms of a non–Abelian
gauge theory. The main motivations for this model are essentially the following.

2.1 Hadron Spectrum

The hadron spectrum can be completely classified from the following assumptions

1. Hadrons are made up of spin12 quarks. The charge and masses of the known quarks are given in
table 1. One usually refers tou, d, s, c, b andt as “flavours”, and commonly refers tou, d ands as
the light flavours, andc, b andt as heavy flavours.

2. Each quark flavour comes in 3 colours. Thus, quark fields are spinors, and carry a flavour and a
colour index:ψ(f)←flavour

i←colour .

3. The SU(3) symmetry acting on colour is an exact symmetry.
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Electric Charge= 2
3e up charm top

m = few MeV ≈ 1.5 GeV ≈170 GeV
Electric Charge= −1

3e down strange bottom
m = few MeV few hundred MeV ≈ 5 GeV

Table 1: Known quarks

4. Observable hadrons are neutral in colour, in the sense that they arecolour singlets under the SU(3)
colour group (“singlet” means invariant under the action of the group).

The SU(3) group is the group of3 × 3 complex unitary matricesU with unit determinant

U †U = 1 , detU = 1 , (1)

that act on the quark fields according to

ψi →
∑

k

Uikψk . (2)

Invariants can be easily formed out of quark–antiquark states

∑

i

ψ∗
i ψi →

∑

ijk

U∗
ijψ

∗
j Uikψk =

∑

kj

(

∑

i

U †
jiUik

)

ψ∗
j ψk =

∑

k

ψ∗
kψk , (3)

which gives us the possibility of forming integer spin color singlet states with a quark and an antiquark.
We can form colour singlet also from three-quark states

∑

ijk

ǫijkψiψjψk →
∑

ijk,i′j′k′

ǫijkUii′Ujj′Ukk′ψi′ψj′ψk′ =
∑

i′j′k′

ǫi′j′k′

ψi′ψj′ψk′ (4)

where the last equality is a consequence of the identity

∑

ijk

ǫijkUii′Ujj′Ukk′ = det U ǫi′j′k′

(5)

anddetU = 1 for SU(3) matrices. Therefore we have the possibility of forming colour neutral, spin1/2
hadrons out of three quarks. The most important hadron multiplets are displayed in fig. 1. Multiplets
are classified according their spin, and their transformation properties under the flavour group. Each
multiplet contains particles with similar properties. Observe that we need colourif we want a particle
like the∆++, which is made of three up quark with the same flavours and same spin, to havesimilar
properties to theΣ0, which has three different flavours. In fact, if we didn’t have colour,because of
the Pauli principle, the spatial wave function of the∆++ should be antisymmetric, while that of theΣ0

could very well be symmetric. With colour, instead, the colour wave-functionitself is antisymmetric, and
so there is no problem to have the particle of the multiplet all in a symmetric spin, flavour, and spatial
wave-function.

It can be shown that in order to form an SU(3) singlet in a system withnq quarks andnq̄ antiquark,
we have the constraint

nq − nq̄ = n × 3 (6)

with n integer. It is a simple exercise to show that because of this condition observable hadrons must
have integer charges.

3



Fig. 1: Hadron spectrum.

Fig. 2: Deep inelastic scattering.

2.2 Scaling

Scaling was first observed in deep inelastic scattering experiments at SLAC(Stanford Linear Accelerator
Center, Stanford, California), around 1968. The deep inelastic scattering process, depicted in fig. 2, is
the collision of a lepton (an electron in the SLAC case) with a nucleon target, which fragments into a
high multiplicity, massive final state. The scattering process kinematics can be defined by the following
dimensionless variables

xBj =
Q2

2 p · q y =
q · p
k · p . (7)
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whereQ2 = −q2. The valuexBj = 1 corresponds to elastic scattering. In fact

M2
X = (q + p)2 = −Q2 + m2

p + 2ν = 2ν(1 − xBj) + m2
p. (8)

Scaling means that the differential cross section, when expressed in termsof these dimensionless param-
eters, in the limit of high energy withx andy fixed, scales like the energy in the process, according to its
canonical dimension

dσ

dx dy
∝ 1

Q2
. (9)

This property is quite remarkable, since the right hand side does not depend uponΛS , like most moderate
energy cross sections, and it looks more like the behaviour one may find in arenormalizable field theory
with a dimensionless coupling, like electrodynamics. Even more spectacular scaling phenomena are
observed ine+e− annihilation, where the total hadron production cross section becomes proportional to
the muon pair cross section at high energies.

The discovery of scaling phenomena in deep inelastic scattering and ine+e− annihilation, has
given a strong evidence that if a field theory was to describe strong interactions, it had to be weakly
coupled at high energies, that is to say, it had to be “asymptotically free”. The only known asymptotically
free four–dimensional field theories are the non–Abelian gauge theories. It becomes therefore natural to
attempt to describe the hadronic forces by using an SU(3) non–Abelian gauge theory, coupled to the
colour quantum number. This is also hinted by the fact that the condition of colour neutrality of the
hadron spectrum must have a dynamical origin.

2.3 The QCD Lagrangian

The QCD Lagrangian reads

L = −1

4
Fµν

a F a
µν +

∑

f

ψ̄
(f)
i

(

(i/∂ − mf )δij − gStaij /Aa

)

ψ
(f)
j

F a
µν = ∂µAa

ν − ∂νA
a
µ − gS

∑

b,c

fabcA
b
µAc

ν . (10)

Sum over repeated Lorentz and colour indices is always assumed. The sum over different flavours is
explicitly indicated. The symbolstaij are theSU(3) generators and thefabc are the structure constant of
theSU(3) algebra. The matricesta form a complete basis of traceless3 × 3 matrices. There are 8 such
matrices, and therefore there are 8 gluons. The basis is chosen in such away that

Tr
(

tatb
)

=
1

2
δab (11)

The symbolsf are then defined by (square brackets indicate the commutator)

[ta, tb] = ifabctc (12)

I also give the important property (which follows from completeness, tracelessness and relation (11))

∑

a

taijt
a
kl =

1

2

(

δilδkj −
1

3
δijδkl

)

. (13)

Equation 13 is all we need to compute colour factors for feynman graphs.

The colour structure of the Lagrangian may seem complicated at first sight.One simple way to
look at it, is to think of quarks as objects having 3 colour states. The gluon can be thought as carrying the
combination of a colour and an anticolour, except that out of the nine possible combinations the “neutral”
one, formed by the sum of all equal colour-anticolour pairs is subtractedaway. Figure 3 shows how to
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




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Fig. 3: Colour Feynman rules for QCD

compute colour factors by using this intuitive point of view. The Feynman rules for the QCD Lagrangian
are given in fig. 4.

The QCD Lagrangian is very similar to the QED Lagrangian. The Feynman rules are also very
similar. The most apparent difference is due to the fact that the fermions carry a new quantum number,
the color (the indicesi, j = 1, 2, 3 in eq. (10)). Also the gluons carry a colour related quantum number.
Unlike the case of QED, therefore, the gluons are charged, and can emitother gluons.

As in the case of electrodynamics, one defines the strong coupling constant

αS =
g2

S

4π
. (14)

As we shall see in the following, this coupling constant has a strength that depends upon the energy scale
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= δab

[

−gαβ + (1 − λ)
pαpβ

p2 + iǫ

]

i

p2 + iǫ

= δab i

p2 + iǫ

= δik i

/p − m + iǫ

∣

∣

∣

∣

mn

= −gSfabc
[

gαβ(p − q)γ + gβγ(q − r)α + gγα(r − p)β
]

= −ig2
Sfxacfxbd

(

gαβgγδ − gαδgβγ
)

−ig2
Sfxadfxbc

(

gαβgγδ − gαγgβδ
)

−ig2
Sfxabfxcd

(

gαγgβδ − gαδgβγ
)

= gSfabc qα

= −igStaki γα
mn

Fig. 4: Feynman rules for QCD
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µ of the process in which enters. In leading order

αS =
1

b0 log µ2

Λ2

(15)

where

b0 =
11 CA − 4 TF nf

12π
. (16)

whereTF = 1/2 andCA = N for SU(N) (3 for SU(3)) andnf is the number of flavours. ThusΛ is the
parameter that characterizes the QCD coupling constant.

2.4 Symmetries

We know that the strong interaction world has a very good symmetry property, the isospin symmetry.
Particles in the same isospin multiplet, like the proton and the neutron, or the charged and neutral pions,
have nearly the same mass. Furthermore, the Wigner-Eckart theorem canbe used to relate decay and
scattering processes which are connected by isospin transformations. This symmetry properties must be
present in some way in the fundamental QCD Lagrangian, whose fermionic sector is given by

LF =
∑

f,ij

ψ̄
(f)
i

(

(i/∂ − mf )δij − gtaij /Aa

)

ψ
(f)
j . (17)

An isospin transformation acts on the quark field as a unitary matrix

ψ(f) →
∑

f ′

Uff ′

ψ(f ′) (18)

wheref andf ′ are restricted to the up and down flavours, andU is a unitary two dimensional matrix.
By a simple exercise, one can verify that, in order for the fermionic Lagrangian to be invariant under
the isospin transformation, we must have eithermu = md or mu, md → 0. The distinction of the two
possibilities is a physical one. It can be phrased as follows: if the up and down masses are of the order
of the QCD scaleΛ or larger, then they must be nearly equal in order for the isospin symmetry towork.
Alternatively, the up and down masses must be much smaller thanΛ. The first possibility is not very
appealing from a theoretical point of view. From what we know from the theory of weak interactions,
particles belonging to different families have different masses. It would be very hard to justify the fact
that two quark flavours have equal masses while all the others are very different. In fact, there is a large
body of evidence that favours the second possibility, that is to say, that the up and down quark masses
are very small. This fact has a few remarkable consequences, due to thefact that, for small masses, the
QCD fermionic Lagrangian has a much larger symmetry than isospin alone. In order to see this fact, let
us define left and right-handed field components

ψL =
1

2
(1 − γ5)ψ , ψR =

1

2
(1 + γ5)ψ (19)

and substitutingψ = ψL + ψR in the fermionic Lagrangian we have (suppressing colour indices)

LF =
∑

f

{

ψ̄
(f)
L (/∂ − gta /Aa) ψ

(f)
L + ψ̄

(f)
R (/∂ − gta /Aa)ψ

(f)
R

}

−
∑

f

mf

(

ψ̄
(f)
R ψ

(f)
L + ψ̄

(f)
L ψ

(f)
R

)

. (20)

Terms that mix left and right components in the kinetic energy, and terms diagonal in the left and right
component of the mass terms are absent because of the following elementaryidentities

ψL =
1

2
(1 − γ5) ψL ψR =

1

2
(1 + γ5) ψR (21)
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ψ̄L = ψ̄L
1

2
(1 + γ5) ψ̄R = ψ̄R

1

2
(1 − γ5) (22)

and from the fact thatγ5 anticommutes withγµ. If we could neglect the fermion masses the Lagrangian
would have the large symmetry

SUL(N) × SUR(N) × UL(1) × UR(1) (23)

whereN is the number of flavours. In fact, the transformation

ψ
(f)
L → eiφL

∑

f ′

Uff ′

L ψ
(f ′)
L

ψ
(f)
R → eiφR

∑

f ′

Uff ′

R ψ
(f ′)
L (24)

whereUL andUR are (independent) matrices ofSU(N), leaves the Lagrangian invariant. The phase fac-
tors constitute the twoU(1) groups. The isospin symmetry group is a subgroup of the above, also called
the vector subgroup, characterized by equal transformation matrices for the left and right components.
Besides the isospin transformations, there are other independent symmetrytransformations, in which the
left and right-handed component transform with matrices that are the inverse of each other. These are
called axial transformations (they do not form a subgroup by themselves). In the following, I will only
state what happens of all these symmetries, without giving detailed explanations

• The vector SU(N) subgroup is realized in the spectrum. It is the observedisospin symmetry. The
U(1) vector subgroup is a phase symmetry related to baryon number conservation.

• The axial U(1) symmetry does not survive quantization, because of the so-called triangle anomaly.
This symmetry is simply not there in the full theory.

• The remaining axial transformations are broken symmetries. The Goldstone bosons of these bro-
ken symmetries are the pion fields.

Goldstone bosons are massless particles, while the pions are not. This is a consequence of the fact that
the axial symmetries are only approximate, due to the fact that the quark masses are not strictly zero.

Thus, by assuming that the up and down quark masses are small, we explain the presence of isospin
symmetry, as well as the lightness of the pions. Other dynamical predictions follow, like relations among
the low energy scattering properties of the pions and the pion decay constant. The interested reader can
find many good references where to study this subject [1, 2, 3].

2.5 Summary

In summary, by accepting QCD as the fundamental theory of strong interactions we can

• Explain the low energy symmetry properties, and give a justification of the observed spectrum.

• Explain scaling phenomena at high energies.

• Leave Weak interactions in peace. The QCD colour group commutes with the electroweak group
SU(2)×U(1). Since the electroweak interactions are less symmetric (they break parity and CP),
this guarantees that there is no mixing between electroweak and strong interactions that enhances
the parity–violating effects (giving rise, for example, to parity violating interactions of sizeαewαS

instead ofαew/M2
W ) or flavour changing neutral current effects.

• Give a description of the hadronic forces which is similar to electroweak forces, thus opening the
possibility of a uniform description of the forces in nature in terms of gauge theories (unification).
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There are two common points of view among physicists, with regard to QCD.

Many believe that QCD is an extremely well established theory, much better established than the
Electro-Weak theory. In fact, the Lagrangian is fully specified in term of asingle parameter. Remember,
in fact, that quark masses have electroweak origin, and are related to the Yukawa coupling and to the
electroweak symmetry breaking. In Electroweak theories, on the other hand, we have lots of parameters
and quite a few alternatives are possible for the symmetry breaking sector.

Others believe that Electro-Weak theories are much better established. In fact, we can compute
every accessible phenomenon we like with great accuracy, and seek accurate comparisons with experi-
mental results. On the other hand, in QCD, we are unable to explain rigorously even basic phenomena
like colour confinement, and perturbative calculations rely upon unproven assumptions.

The first point of view can be stated by simply saying that QCD must be right because we cannot
think of anything else that is even plausible as a theory of strong interaction.The second point of view is
more humble, and assumes that in order to establish a physical theory one must make testable predictions,
and compare them with experiments.

Thus, we find that essentially no viable alternative to QCD have been formulated so far, and yet
there is a huge ongoing effort in theoretical and experimental physics aimed at testing the predictions of
QCD.

At low energy, QCD is a strongly interacting theory. Besides the phenomenological results that
follow from its symmetry properties, the only known way to perform calculations in this regime is by
computer simulation of QCD on a lattice, that is to say on a finite and discretized model of space-time.
This approach is bound to improve as time goes by, since people become more and more clever, and
computers become more and more powerful.

At high energy, in many cases, standard perturbative methods can be applied. In these lectures I
will deal mostly with the perturbative applications of QCD. We will see that, evenat high energy, the
application of perturbative techniques is not straightforward. In fact, we will be able to perform calcula-
tions only when the long distance (low energy) part of the process we examine has no or little influence
upon the quantity we want to compute. In the following, I will illustrate the basics of perturbative QCD
by examining the process of hadrons production via the annihilation of ane+e− pair at high energy. This
process is particularly simple, since no strongly interacting particles appearin the initial state.

3 AN ILLUSTRATION OF ASYMPTOTIC FREEDOM

We will now introduce the basic features of QCD via the simplest process in which it can be applied, that
is to say the production of hadrons ine+e− annihilation. By studying this process we will illustrate the
remarkable property of asymptotic freedom, and its physical implications.

We are considering the process depicted in fig. 5. The production of hadrons takes place via the

Fig. 5: Electron–positron annihilation into hadrons.

production of a virtual photon, or of a real or virtualZ boson. From the point of view of QCD, the
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decay of a virtual photon, or of aW or Z boson, are very similar, and in fact strong corrections to these
processes are given by essentially the same formulae. For simplicity, however, we can always think
about the decay of a virtual photon. We will begin by attempting to compute the total cross section for
the decay of a virtual photon, with a virtuality (q2) much larger then typical hadronic scales. Our attempt
will be extremely crude. We will simply use the QCD Lagrangian and the corresponding Feynman rules,
and try to compute the cross section order by order in the strong coupling constant. The prediction at
zeroth order in the strong coupling comes simply from diagrama of fig. 6. It is usually expressed in

Fig. 6: Diagrams for the QCD calculation ofR(e+e− → Had.) up to the orderαS .

terms of the ratio of the hadronic cross section divided by the cross sectionfor the production of aµ+µ−

pair. It is given by

R0 =
σ(γ∗ → hadrons)

σ(γ∗ → µ+µ−)
= 3

∑

f

c2
f (25)

wheref runs over the quark flavour species, andcf is the electric charge of the quark of flavourf in
units of the electron charge. The factor of 3 accounts for the fact that there are three colours for each
quark. The sum extends to all the flavours that can be produced at the given energy. The formula is valid
in all cases when we can neglect quark masses. Near the threshold for heavy quark production one must
include a correction factor, which in the general case of a vector bosondecay, yelds

R0 = 3
∑

f

√

1 −
4m2

f

s

(

1 +
2m2

f

s

)

c2
f (26)

Corrections of orderαS to R can be computed in a straightforward way. The relevant contributions
come from the interference of the virtual diagramb with diagrama, plus the square of the real emission
graphsc + d. There are also diagrams with self–energy on the fermion lines, not shownin the figure,
that should be included with the appropriate weight. The result turns out to be completely finite. All
ultraviolet divergences that arise in intermediate steps of the calculation cancel among each other. This
is a consequence of the fact that the electromagnetic current is a conserved current, and therefore it is
not renormalized by strong interactions. Other kind of singularities arise in intermediate steps of the
calculation, namely soft and collinear singularities. They all cancel in the total. Their meaning will be
discussed further on. The corrected value of R becomes

R = R0

(

1 +
αS

π

)

. (27)
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If we go on, and compute the corrections of orderα2
S something new happens. We find ultraviolet

divergences that do not cancel, and the result is

R = R0

(

1 +
αS

π
+

[

c + πb0 log
M2

Q2

]

(αS

π

)2
)

(28)

whereM is the ultraviolet cutoff (for those who are familiar with dimensional regularization, the cutoff
scale ind = 4 − 2ǫ dimensions isM = µ exp 1

ǫ ), and

b0 =
33 − 2nf

12π
(29)

andnf is the number of light flavours. The divergence is dealt with the usual prescription of renormal-
ization. We define a renormalized charge, function of an arbitrary scaleµ,

αS(µ) = αS + b0 log
M2

µ2
α2

S (30)

and express the result in terms ofαS(µ) instead ofαS. We obtain then

R = R0

(

1 +
αS(µ)

π
+

[

c + πb0 log
µ2

Q2

] (

αS(µ

π

)2
)

+ O
(

αS(µ)3
)

. (31)

The formula forR is now finite. The theory of renormalization guarantees that with this procedure we
can remove the divergences from all physical quantities. This implies that the one loop divergence of
any physical quantity which in lowest order has the valueAαn

S must have the formnAb0 log M2αn+1
S .

Observe that, as a consequence of this procedure, we end up expressing our results in terms of a coupling
constant which is function of a scale.

3.1 Renormalization group and asymptotic freedom

I will now give a general and abstract description of the renormalization group and asymptotic freedom.
From the following discussion it should be clear that the existence of the renormalization group follows
from the property of renormalizability of field theory, and that asymptotic freedom is a possible con-
sequence of the renormalization group. I will not give any technical details on the computation of the
renormalization group flow (i.e. of the so calledβ function), which can be found in many good textbooks.

In field theories we encounter ultraviolet divergences, which in renormalizable theories can be
removed by a suitable redefinition of the coupling constants and the fields. Inthe simplest case of a
theory characterized by a single coupling constant, renormalizability can bestated in the following way.
A physical quantityG will be given in such a theory as a power expansion in the couplingα (which we
will assume to be dimensionless), with possibly UV divergent coefficients. We will write:

G = G(α, M, s1 . . . sn) , (32)

that is to say,G depends upon the coupling, the ultraviolet cutoffM , and some invariantss1 . . . sn

constructed out of the momenta and masses involved in the process in question.Renormalizability means
that I can define a renormalized couplingαren

αren = α + c1α
2 + c2α

2 + . . . (33)

with
ci = ci(M/µ) (34)

in such a way that
G(α, M, s1 . . . sn) = G̃(αren, µ, s1 . . . sn) . (35)
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So, the physical quantity can be expressed in term of the renormalized coupling, the finite scaleµ and the
invariants, in terms of a finite function. In other words, all the divergences have been reabsorbed in the
renormalized coupling. The finite scaleµ has to be introduced in order for the dimensionless coefficients
ci to depend upon the dimensional quantityM . We will also write

αren = αren(α, M/µ) , α = α(αren, M/µ) . (36)

and
G(α(αren, M/µ), M, s1 . . . sn) = G̃(αren, µ, s1 . . . sn) . (37)

Therefore, renormalizability means that by a redefinition of the coupling of the form (36), eq. (37) holds
for all physical quantities. Thesameredefinition ofα makesall physical quantities independent of the
cutoff.

In the redefinition of eq. (36) we are forced to introduce a scaleµ. If we changeµ andαren by
keepingα andM fixed, the physics remains invariant, because physical quantities, to beginwith, are
functions ofα andM only. Let us study the infinitesimal transformationsdαren dµ2 that leaveα andM
fixed. We must have

∂α(αren, M/µ)

∂αren
dαren +

∂α(αren, M/µ)

∂µ2
dµ2 = 0 . (38)

Since physical quantities remain the same under this change, we must also have

∂G̃(αren, µ, p1 . . . pn)

∂αren
dαren +

∂G̃(αren, µ, p1 . . . pn)

∂µ2
dµ2 = 0 . (39)

From equations (38) and (39) we get

µ2 dαren

dµ2
= −

µ2 ∂
∂µ2 α(αren, M/µ)

∂
∂αren

α(αren, M/µ)
= −

µ2 ∂
∂µ2 G̃(αren, µ, s1 . . . sn)

∂
∂αren

G̃(αren, µ, s1 . . . sn)
(40)

from which it follows that

µ2 dαren

dµ2
= β(αren) (41)

whereβ does not depend upons1 . . . sn, M or µ. Observe thatβ does not depend uponM , becauseM
does not appear on the right hand side of the second equality of (40), itcannot depend upons1 . . . sn

because they do not occur on the right hand side of the first equality. Finally, it could only depend upon
µ. But µ is dimensionful, whileβ is obviously dimensionless, and so it cannot even depend uponµ.

Using the expression

α(αren, M/µ) = αren + c1(M/µ)α2
ren + . . . (42)

we find

β(αren) = α2
ren µ2 ∂

∂µ2
c1(M/µ) + . . . (43)

Comparing this equation with eq. (30), we immediately get

β(αren) = −b0 α2
ren + . . . . (44)

and therefore
d

d log µ2
αS(µ) = −b0 α2

ren + . . . (45)

which characterizes the evolution of the coupling constant as a function ofthe scaleµ. Equation (45) can
be also written, at the lowest relevant order

d

d log µ2

1

αS(µ)
= b0 (46)
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which can be easily solved to give

1

αS(µ)
= b0 log

µ2

µ2
0

+
1

αS(µ0)
. (47)

Without loss of generality, the solution can be written

1

αS(µ)
= b0 log

µ2

Λ2
⇒ αS(µ) =

1

b0 log µ2/Λ2
(48)

whereΛ plays the role of an integration constant. In QCD,b0 is positive, and eq. (48) makes sense only
for µ > Λ. One is tempted to infer thatΛ is the value ofµ at which the coupling constant becomes
infinite. In fact, this identification is superficial. When the coupling constant starts to be large, we can
no longer trust the perturbative expansion, and the above equation hasbeen derived only at the lowest
order in perturbation theory. It is better therefore to think ofΛ as the scale parameter of the theory which
defines the value ofαS at large scales. In other words,Λ is defined only through the formula forαS(µ),
and this formula has a meaning only for largeµ.

QED is very similar to QCD in many respects, and one may wander why we nevertalk about a
ΛQED analogous to theΛ in QCD. In fact, the basic difference between QED and QCD is the value of
b0. We have

bQED

0 = −4nf

12π
, (49)

a negative value. The expression for the running coupling in QED is then

1

αQED(µ)
= bQED

0 log
µ2

Λ2
QED

. (50)

The expression in eq. (50) makes sense only forµ ≪ Λ (so that the right hand side is positive), while the
expression in eq. (48) makes sense only ifµ ≫ Λ. In other words, QCD is a weakly coupled theory at
high energy, while QED is weakly coupled at low energy. This is the contentof the statement that QCD
is asymptotically free, while QED is not. The scale at which QED becomes strongly coupled is obtained
by solving the equation

1

αQED(me)
= bQED

0 log
m2

e

Λ2
QED

. (51)

which gives

ΛQED = me exp

(

− bQED

0

αQED(me)

)

. (52)

This formula is valid only if all charged fermions have the same mass, equal tome, and the same charge.
However, even if one does a more accurate job, the basic result is thatΛQED is an astronomic scale,
and this is the reason why we never talk about it. Notice that this fact indicatesthat QED cannot be a
fundamental theory. The existence of a high scale at which the theory becomes strongly coupled makes
it impossible to measure the basic vertex of QED at short distance, which is somewhat of a contradiction,
since we assume that we know the local Lagrangian of the theory.

We have now discussed the evolution of the coupling constant at the leadingorder level. The
content of the theory of renormalization is much deeper. It states that up to any order in perturbation
theory, we can remove all ultraviolet divergences from a physical quantity just by a redefinition of the
coupling constant. Furthermore, it states that equation (45) generalizes toall order of perturbation theory,
and the right hand side of the equation is free of ultraviolet divergences. In other words

dαS(µ)

d log µ2
= −b0α

2
S(µ) − b1α

3
S(µ) − b2α

4
S(µ) + . . . . (53)
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whereb0, b1, b2, etc., are ultraviolet-finite.

From eq. (30), we see thatαS = αS(M), that is to say that the original bareαS was in fact the
running coupling evaluated at the cutoff scale. It is not useful to try to express physical quantities in
terms ofαS evaluated at a scale which differs widely from the scales involved in the physical quantities
under consideration. In fact, in this case, large logarithms of the ratio of thephysical scale toµ arise in
the perturbative expansion, as one cannot trust the truncated (fixed order) result. In order to get a reliable
result, one should instead useµ ≈ Q, so that no large logarithms appear in the perturbative expansion.
Of course, we do not know the precise value ofµ we should use. We can useµ = Q, µ = 2Q, µ = Q/2,
without the possibility of arguing what is the best choice. In practice, a difference in the value of the
scale used makes a difference in the result, but this difference is of the order of the neglected terms in
the perturbative expansion. This can be easily verified from formula (31) (students are encouraged to try
this).

It is now tempting to formulate the first prediction of our theory. From the expression of the
running coupling, eq. (48), we see that the strong coupling constant is of order 1 when the scaleµ
approachesΛ. It is tempting to setΛ = 300 MeV, the typical hadronic scale, and then predict that

R(MZ) = R0(MZ)

(

1 +
αS(MZ)

π

)

= R0(MZ)(1 + 0.046) (54)

in reasonable agreement with the value measured at LEP. Of course, this example is very sloppy, does
not take into account the heavy flavour thresholds, higher order effects, and other important facts. It is
however important to remark that, had we measuredR/R0 = 1 + 0.08 at LEP, this would have implied
Λ = 5 GeV, a totally unacceptable value.

3.2 Relation among the couplings with different number of light flavours

Now I will spend a few words concerning the number of light flavours. Inorder to make the discussion
clearer, let us assume that there is a top quark of 100 GeV, and that all theother quarks are massless.
Intuitively, we should then be able to describe the effects of QCD, for scales much below 100 GeV, but
still much aboveΛ, in a perturbative fashion, forgetting about the existence of the top quark. The formula
for e+e− → hadrons contains thenb0 evaluated withnf = 5. On the other hand, if the heavy top is
really there, the true description of our phenomenon should be given in terms of the theory with top.
While up to the orderαS a top loop never enters our Feynman graphs, at two loops we do have a top
loop contribution, represented in the graphs of fig. 7. In spite of the factthat there is not enough energy

Fig. 7: Top loop contribution toe+e− → hadrons.

to produce the top, these graphs do contribute. They are always associated to a propagator correction.
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Neglecting terms suppressed by powers of1/m2
t , their effect is simply to multiplyαS by a factor1 −

αS/(6π)(d + log(M2/m2
t )), whered is a number which depends upon the particular renormalization

scheme one uses. This result can also be guessed on the basis of the fact that the UV divergence coming
from the top loop must have the same form as the UV divergence coming fromany light fermion. We
have then

R = R0

(

1 +
α′

S

π
+

[

c + πb0 log
M2

Q2
− 1

6

(

d + log
M2

m2
t

)] (

α′
S

π

)2
)

. (55)

With α′
S we indicated the true (bare) coupling, of the theory in which the heavy quark is taken into

account properly, instead of the “fake” theory in which the heavy quark is ignored. The renormalization
procedure for the theory including the top requires now the substitution

α′
S(µ) = α′

S + b′0 log
M2

µ2
α′

S

2 (56)

whereb′0 = (33 − 2(nf + 1))/(12π), and the renormalized formula forR becomes

R = R0

(

1 +
α′

S(µ)

π
+

[

c + πb0 log
µ2

Q2
− 1

6

(

d + log
µ2

m2
t

)] (

α′
S(µ)

π

)2
)

+ O
(

αS(µ)3
)

. (57)

Equation (31) and (57) must be completely equivalent, at least up the order α2
S. It turns out that in the

commonly usedMS renormalization scheme, we haved = 0. In this scheme, the equivalence of the two
formulas imply that

αS(µ) = α′
S(µ) for µ = mt. (58)

Therefore, in theMS scheme the relation between coupling constants defined by ignoring a heavyflavour,
and the coupling with the heavy flavour included, is simply stated by saying thatthe two running cou-
plings should coincide forµ = mh, wheremh is the mass of the heavy flavour. In practice, we have three
useful definitions of the coupling constants. One that ignores the charm quark (and heavier flavours),
which has three light flavours, and may be indicated withα

(3)
S , one that ignores bottom (α

(4)
S ) and one

that ignores top (α(5)
S ).

A plot of the ratios ofα(3)
S /α

(5)
S andα

(4)
S /α

(5)
S is given in fig. 8. The couplings are correctly

matched at the heavy flavour thresholds according to theMS prescription. From the plot, it appears
that the couplings for four and five flavours are not very different. This is indeed the case. One should
however be careful, because the corresponding value ofΛ is in fact very different. The values used in
the figure haveΛ3 = 310 MeV, Λ4 = 260 MeV andΛ5 = 170 MeV. A common error is, for example, to
use values ofΛ4 whereΛ5 should be used. One should never forget thatΛ is nothing but a parameter in
the formula forαS. If we change the formula (going for example from one to two loops) the value ofΛ
should be changed. Similarly, if we plug in the same value ofΛ in the expression forα(3)

S andα
(4)
S , their

value would be very different, even forµ = mb, while if we use the appropriate value ofΛ3 andΛ4 in
the corresponding formulas, their value will be identical at that scale.

3.3 State of the art in the beta function and R

The expression of the beta function known today has the form

∂αS

∂ log µ2
= −b0α

2
S − b1α

3
S − b2α

4
S − b3α

5
S (59)

where the termb2 has been computed in ref. [4], and the termb3 has been very recently computed in
ref. [5]. Here I report below only the values ofb0 andb1, and the corresponding solution of the renor-
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Fig. 8: Ratios of the coupling defined for different values ofnf .

malization group equation at the two loop level. This is what is commonly used in mostapplications.

α
(nf )
S (µ) =

1

b0 log µ
Λnf



1 − b1

b2
0

log log µ2

Λ2
5

log µ2

Λ2
5



 (60)

b0 =
33 − 2nf

12π
(61)

b1 =
153 − 19nf

24π2
. (62)

The reader can verify that the eq. (60) satisfies equation (59) up to termsof orderα3
S.

The accuracy of theβ function that is required in phenomenological applications depends upon
the accuracy of the calculations one is using. The rule of thumb is the following:

• if only the leading strong interaction effect is included (LO calculation), oneneeds one-loop evo-
lution;

• if terms subleading by one power ofαS are included (NLO calculation), one needs two-loop evo-
lution;

• if terms subleading by two powers ofαS are included (NNLO), one needs two-loop evolution;

• . . .

Thus, for example, if we use theO(αS) formula forR, that is to sayR = R0(1 + αS/π), we need to
include 1-loop evolution. Similarly, if we have a process that starts at orderα2

S (like four-jet production in
e+e− annihilation), we need 1-loop evolution. If we include theO(α2

S) term inR, we need to use 2-loop
evolution. Notice that the accuracy in theβ function that we want is always higher than the accuracy
in the calculation by one unit. So, the leading term in theβ function is of order two, but it is needed to
maintain the accuracy of the result forR, which seems strange: ifR is known at orderαS, why should
its derivative needed at orderα2

S? The answer is that for a large evolution span, an error of orderα2
S in
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the derivative can become of orderαS, because a large evolution logarithmlog µf/µi can compensate a
power ofαS ∝ 1/ log µ/Λ. Consider the case when the final evolution scale is such thatµf/µi ≈ µi/Λ.
From the 1-loop renormalization group equation we get:

αS(µf) − αS(µi) = −b0

∫ µf

µi

αS(µ)2d log µ2 ≈ O
(

α2
S(µ) log

µ2
f

µ2
i

)

≈ O(αS) , (63)

consistently with the fact that in this caseαS(µf) ≈ αS(µi/2).

If the evolution span is small (i.e. if the scale changes by a factor of order one), one does not need
an extra power ofαS in theβ function to match the accuracy of the calculation.

Evolution must also be properly adjusted when crossing a flavour threshold. When one uses the 1-
loopβ function, the conditionα(nf+1)(µ) = α(nf)(µ) for µ = 2m, or µ = m/2 are accurate enough. In
other words, the matching is done at a scale of the order of the flavour mass. The difference of choosing,
for example,µ = 2m or µ = m/2, is simply

α(2µ) = α(µ/2) − 2b0α
2
S log(4) (64)

and is thus a NLO effect. When using a 2–loopβ function in the context of an NLO calculation, one
must use a matching condition which is accurate up to terms of orderα3

S. In theMS scheme, this is

α(nf+1)(µ) = α(nf)(µ) + O(α3
S) for µ = m (65)

where we no longer have the freedom of a factor of order 1. Matching conditions appropriate for a 3–
loopβ function in the context of a NNLO calculation are given in ref. [6], and consist in a correction of
orderα3

S to equation 65.

The radiative corrections toR have been computed up to the orderα3
S in ref. [7, 8, 9], a rather

remarkable achievement. The result fornf = 5, expressed in theMS scheme reads

R = R0

{

1 +
αS

π

(

1 + 0.448αS − 1.30α2
S

)

}

(66)

whereαS = α
(5)
S (Q), Q is the annihilation energy. Besides finding applications ine+e− annihilation

physics, this formula has found recently a very interesting application to the determination ofαS from
the hadronic decay of theτ lepton [10]. After what we have learned in this section about the ratioR, it
should be easy for us to compute the ratio between the hadronic and the leptonicbranching ratios of the
τ , at zeroth order in the strong coupling constant. This is depicted symbolicallyin fig. 9. From the figure,
it is clear that the top and bottom processes only differ by the number of possible final states. Thus, the
top graph has a factor of 3, because of the three colours. Only an up-anti-down, or up-antistrange pair
can be produced, since phase space forbids the production of charmed final states. Neglecting the mass
difference between the down and the strange, one can see that the Cabibbo angle is irrelevant in this
case. Thus, the ratio of the hadronic width to the (for example) electron widthis 3 at zeroth order in the
coupling constant. As in the case of R, this ratio will receive strong corrections, and the displacement of
this ratio from 3 can be used to attempt a determination of the strong coupling constant fromτ decays.
Observe that the value ofαS at the scale of theτ mass is quite large, around 0.35. At LEP1 energy this
value is around 0.12. In table 2 (taken from ref. [11]) the experimental determinations ofαS coming from
R below theZ peak,R on theZ peak, and tau decays, are reported. All determinations are performed
at the relevant scale of the process (thus, for example, theτ determination is performed in terms of
αS(Mτ )), and then evolved at theZ mass for comparison. Notice the rather remarkable agreements
among the different determinations.

4 JETS IN e+e− ANNIHILATION

In the discussion of the previous section, we have left aside a few important issues, that can be summa-
rized in the foloowing questions:
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Fig. 9: The ratio between theτ hadronic and leptonic width.

Measurements Q (GeV) αs(Q) αs(mZ)
Rτ 1.777 0.323 ± 0.005(exp.) ± 0.030(th.) 0.1181 ± 0.0007(exp.) ± 0.0030(th.)
Re+e−(20 <

√
s < 60 GeV 42 0.175 ± 0.028 0.126 ± 0.022

Z peak 91.2 0.124 ± 0.004 ± 0.002(Mt, MH) +0.003
−0.001 QCD

Table 2: Determinations ofαS from inclusive hadronic decays, taken from ref. [11]. In theZpeak determination, the error due

to uncertainties in the Higgs and top mass, and the error due to QCD uncertainties, are separately specified.

1. How can we identify a cross section for producing quarks and gluonswith a cross section for
producing hadrons?

2. Given the fact that free quarks are not observed, why is the computed Born cross section so good?

3. Are there any other calculable quantities besides the total cross section?

We will see in the following that question 1 and 2, although unanswerable in QCD, imply no contradic-
tion. We will also see that, under the same assumptions that make 1 and 2 work, also question 3 has an
affirmative answer.

Looking at the lowest order formula, we immediately wonder why a formula describing the pro-
duction of quarks in the final state should also be able to describe the production of hadrons, since we
never observe free quarks in the final state. The structure of the perturbative expansion by itself give us
a hint of how this may happen. Consider in fact the corrections of orderαS to the total cross section.
They are given by diagrams in which a real gluon is emitted into the final state, and diagrams in which a
virtual gluon is exchanged (interfered with a Born graph) as depicted in fig. 10. In the previous section I
have just stated that the total of the corrections of orderαS is finite, and equalsαS/π. I will now show
that the individual real contributions (those with a gluon in the final state) are individually infinite. As
a consequence of the finiteness of the total, also the virtual ones (those withonly the quark-antiquark
pair in the final state) must be infinite, with the opposite sign. Let us thereforecompute the diagram
of fig. 10. We will perform the calculation under the simplifying assumption thatthe gluon energy is
much smaller than the total available energy. It turns out that in this approximation the computation will
require very little effort, and the approximation itself contains all the interestingfeatures of the result. It
is easy to convince oneself that the colour factors for all contributing diagrams (after squaring and taking
the colour traces) are one factor ofCF = 4/3 relative to the Born term (which has a colour factor of 3,
equal to the number of colours that can flow in the loop), a result whch is illustrated in the last equality
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Fig. 10: Soft gluon emission (left graph) and virtual gluon exchange ine+e− annihilation.

of fig. 3. The amplitude for the Born process is

M = u(k)ǫµγµv(k′) (67)

whereǫ is the virtual photon polarization,q is the incoming four momentum,k is the momentum of the
outgoing fermion andk′ = q − k is the momentum of the outgoing antifermion. Defining

N = ǫµγµv(k′) (68)

we have
M = u(k)N . (69)

Consider now the diagram of fig. 10, in which the gluon is emitted from the outgoing fermion. The
amplitude is given by

M1 = u(k)(−i)γαi
/k + /l

(k + l)2
N . (70)

Actually we should have also substitutedk′ = q − k − l in N , but we are assuming thatl is small.
Fermion masses are also being neglected, since we assume we are considering a high energy process.
Neglectingl in the numerator, and using the identityu(k)/k = 0, and expanding the denominator (recall
thatl2 = 0, k2 = 0) we obtain

M1 = u(k)
γα/k + /kγα

(k + l)2
N = u(k)

2kα

2k · lN =
kα

k · lM. (71)

Analogously, for the amplitude with the gluon emitted from the outgoing antiquark, we obtain

M2 = − k′
α

k′ · lM (72)

and the total is

Mqqg = M1 + M2 =

(

kα

k · l −
k′

α

k′ · l

)

M (73)

which vanishes when contracted withlα, as gauge invariance requires. Taking the square (with the extra
minus for the gluon projector)

M2
qqg = 2

k · k′

(k · l)(k′ · l)M
2. (74)

From the amplitude square we turn to the cross section by supplying the phasespace factor for the gluon

σqqg = CF g2
SσBorn

qq .

∫

d3l

2l0(2π)3
2

k · k′

(k · l)(k′ · l) . (75)
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At this stage I have also included the coupling constant and the appropriatecolour factor. Let us now
consider the process in the rest frame of the incoming virtual photon, withq = (q0, 0, 0, 0), and~k = −~k′.
Let us callθ the angle that the gluon makes with the fermion direction. We have then

2
k · k′

(k · l)(k′ · l) =
4

l0
2(1 − cos θ)(1 + cos θ)

(76)

so that (usingαS = g2
S/(4π))

σqqg = CF
αS

2π
σBorn

qq

∫

d cos θ
dl0

l0
4

(1 − cos θ)(1 + cos θ)
. (77)

The cross section for producing an extra gluon is therefore divergent in three regions:

• when the emitted gluon is in the direction of the outgoing quark (θ = 0)

• when the emitted gluon is in the direction of the outgoing antiquark (θ = π)

• when the emitted gluon is soft (l0 → 0).

The first two kind of divergences are called collinear divergences, while the last one is called a soft
divergence. Both divergences are of infrared (IR from now on) type, that is to say, they involve long
distances. In fact, because of the uncertainty principle, we need an infinite time in order to specify
accurately the particle momenta, and therefore their directions. Unlike UV divergences, there is nothing
like renormalization for the IR divergences. Their meaning is the following: the cross section is sensitive
to the long distance effects, like the fermion masses, the hadronization mechanisms, and so on. In fact, if
we give a fictitious mass to the gluon, the result becomes convergent, but it will be sensitive to the value
of the gluon mass.

It was stated in the previous section that the total of the corrections of order αS to the production
of hadrons in e+e− annihilation is finite, and equalsαS

π . It follows that also the virtual corrections
must have the same kind of infinities, with opposite sign. If we cutoff these divergences with some
method (like dimensional regularization, or by giving a mass to the gluon), andthen sum up real and
virtual contributions, the divergences cancel, and the left-over is finite and equal toαS/π times the Born
cross section, independent of the method we used to regularize the diagrams. This cancellation is a
consequence of the Kinoshita-Lee-Nauenberg theorem [12, 13]. Roughly speaking, this theorem deals
with divergences that arise because of degeneracy in the final state. For example, the final state with
an extra soft gluon is nearly degenerate with the state with no gluons at all, and the state with a quark
split up into a quark plus a gluon, with parallel momenta, is degenerate with the state with no radiation
at all. The theorem states that the cross section obtained by summing up over degenerate states are not
divergent.

We are now ready to show, as promised, that point 1 and 2 imply no contradiction. We have in fact
shown that if we attempt to compute the cross section for the production of a pair of quark–antiquark
alone, while the zeroth order term (the Born term) is finite, the term of orderαS is infinite, being collinear
and soft divergent. This means that a perturbative expansion for this quantity does not work, since the
coefficients of the expansion are large (actually infinite). Therefore, even the Born term alone cannot
represent the cross section for producing a quark–antiquark pair. Thus, the fact that a final state with a
quark–antiquark pair and nothing else is not observed is not in contradiction with perturbation theory,
since we have shown that there is no valid perturbative expansion for thisquantity. On the contrary, the
cross section for producing strongly interacting particles (no matter how many quarks or gluons) remains
finite even after perturbative corrections are added. One can show that in fact it remains finite order by
order in perturbation theory. Its lowest order approximation is in fact the Born cross section. So, the
Born cross section is the lowest order term in a well defined perturbativeexpansion with infrared finite
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coefficients, which is just the cross section for producing strongly interacting particles (no matter how
many and which types). This is why the Born cross section represents quiteaccurately the total hadronic
cross section. We are now also in the position to answer the third question. Wewill show that there are
quantities which characterize the hadronic final state, that are infrared finite in perturbation theory, and
therefore should be calculable in perturbative QCD.

4.1 Sterman–Weinberg jets

Sterman and Weinberg [14] first realized that one can define a cross section which is calculable and finite
in perturbation theory, and characterizes in some way the hadronic final state. The definition goes as
follows.

We define the production of a pair of Sterman–Weinberg jets, depending onthe parametersǫ
and δ, in the following way. A hadronic event ine+e− annihilation, with centre-of-mass energyE,
contributes to the Sterman–Weinberg jets cross section if we can find two cones of opening angleδ that
contain more than a fraction1 − ǫ of the total energyE. In other wordsǫE is the maximum energy
allowed outside of the cones. An example of Sterman-Weinberg jet event is illustrated in fig. 11. We

Fig. 11: Sterman–Weinberg jets.

will now show that the computation of the cross section for the production of Sterman–Weinberg jets, in
the approximation introduced in the previous chapter, is infrared finite. Thevarious contributions to the
cross section (illustrated in fig. 12) are as follows

• All the Born cross section contributes to the Sterman–Weinberg cross section, for anyǫ and δ
(fig. 12a).

• All the virtual cross section contributes to the Sterman–Weinberg cross section, for anyǫ andδ
(fig. 12b).

• The real cross section, with one gluon emission, when the energy of the emitted gluonl0 is limited
by l0 < ǫE (fig. 12c), contributes to the Sterman–Weinberg cross section.

• The real cross section, whenl0 > ǫE, when the emission angle with respect to the quark (or
antiquark) is less thanδ (fig. 12d), contributes to the Sterman–Weinberg cross section.

The various contributions are given formally by

Born = σ0 (78)
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Fig. 12: Contributions to the Sterman–Weinberg cross–section. Born: (a), virtual: (b), real emission: (c) and (d).

Virtual = −σ0
4αSCF

2π

∫ E

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(79)

Real (c)= σ0
4αSCF

2π

∫ ǫE

0

dl0

l0

∫ π

θ=0

d cos θ

1 − cos2 θ
(80)

Real (d)= σ0
4αSCF

2π

∫ E

ǫE

dl0

l0

[∫ δ

θ=0

d cos θ

1 − cos2 θ
+

∫ π

θ=π−δ

d cos θ

1 − cos2 θ

]

. (81)

Observe that the expression of the virtual term is fixed by the fact that it has to cancel the total of the real
contribution. Since we are looking only at divergent terms, and since the virtual term is independent of
δ andǫ, the expression (79) is fully adequate for our purposes. Summing all termswe get

Born+ Virtual + Real (a)+ Real (b)= σ0 − σ0
4αSCF

2π

∫ E

ǫE

dl0

l0

∫ π−δ

θ=δ

d cos θ

1 − cos2 θ

= σ0

(

1 − 4αSCF

2π
log ǫ log δ2

)

(82)

which is finite, as long asǫ andδ are finite. Furthermore, as long asǫ andδ are not too small, we find
that the fraction of events with two Sterman-Weinberg jets is 1, up to a correction of orderαS.

Now we are ready to perform a qualitative step: we interpret the Sterman-Weinberg cross section,
computed using the language of quarks and gluons, as a cross section for producing hadrons. Thanks to
this qualitative step, we make the following prediction: at high energy, most events have a large fraction
of the energy contained in opposite cones, that is to say,most events are two jet events. As the energy
becomes largerαS becomes smaller. Therefore we can use smaller values ofǫ andδ to define our jets.
Thus, at higher energies jets become thinner.

It should be clear now to the reader that, by the same reasoning, we could show that the angular
distribution of the jets will be very close, at high energy, to the angular distribution one computes using
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the Born cross section, that is to say, the typical1 + cos2 θ distribution. These predictions have been
confirmed experimentally since a long time.

4.2 A comparison with QED

The alert reader will have probably realized that the discussion given inthis section should also apply to
electrodynamics. In fact, the Feynman diagrams we have considered are present also in electrodynamic
processes, likee+e− → µ+µ−, and they differ from the QCD graphs only by the color factor. Thus, from
the previous discussion, we would infer that Sterman-Weinberg jets in electrodynamic processes at high
energy do not depend upon long distance features of the theory. For example, they become independent
from theµ mass whenE ≫ µ. Also in electrodynamics, the cross section for producing aµ+µ− pair plus
a photon is divergent, as is divergent the cross section for producingthe pair without any photon. In many
books on quantum electrodynamics these divergences are discussed,and it is shown that a resolution
parameter for the minimum energy of a photon is needed in order to have finite cross section order by
order in perturbation theory. In electrodynamics, we can go even farther, and prove that by resumming
the whole tower of divergent graphs, the infinite negative virtual correction to the production of aµ+µ−

pair with no photons exponentiates, and gives a zero cross section. In other words, as it is well known,
it is impossible to produce charged pairs without producing arbitrarily softphotons. What is then the
difference with QCD? Why cannot we prove similar results in QCD? The difference arises because of the
different asymptotic properties of QCD and QED. In QED the coupling becomes smaller at low energy,
while in QCD it grows. Thus, when the scale of an emission process approaches a few hundred MeV the
coupling constant becomes of order one, and perturbation theory becomes inapplicable. So, the infrared
problem in QCD is tightly untangled with the confinement problem, and it seems to beunanswerable
in the context of perturbation theory alone. In this sense perturbative QCD is an incomplete theoretical
framework. In order to make predictions we need to assume that the soft phenomena characterized by
scales of the order of few hundred MeV do not spoil completely the computation of the high energy part
of the process. This assumption is consistent with perturbation theory; it is however an assumption, and
it cannot be proven using perturbation theory alone.

4.3 Shower Monte Carlo programs

Perturbation theory can be used to compute radiation processes as long asthe energies involved are
safely above the typical hadronic scales. It is then possible to constructevent generator programs that
implement the properties of QCD Feynman diagrams for the splitting of partons intomore partons, as
long as the splitting involves large transverse momentum, and then use some plausible model for last
step of the splitting process, in which the partons become hadrons. These programs are generally called
shower Monte Carlo event generators [15, 16, 17], and are an invaluable tool for experimental physicists.
They essentially sum a large class of Feynman graphs, precisely the most collinear and (in some cases)
soft-singular ones. In the attempt to describe the full final state, they giveup the accuracy that can be
obtained in perturbation theory. They are (until now) compatible with QCD onlyat the leading order in
the strong coupling. While the QCD part is quite similar in all of them, for the last step of the final state
formation, that is to say the hadronization, they differ widely, since they have to rely on models, like
the so called Lund string model or the Herwig cluster model. Hadronization models are tuned to data.
Nevertheless, one should not forget that there is very little predictivity in these models, since they are
only qualitatively based upon the theory. One can expect in general thatthe hadronization properties for
which the Monte Carlo has been tuned for will be well reproduced by it, butnot much more than this.

4.4 More jet definitions and shape variables

The key property of the Sterman-Weinberg jets, that makes them calculable inperturbation theory, is the
insensitivity of the jet definition to radiation of soft particles, and to the collinear splitting of an particle
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into two particles that share its momentum. This insensitivity is necessary to guarantee the cancellation
of effects that depend strongly upon long distance phenomena, that is to say, those effects that are infrared
divergent when computed in perturbation theory.

After the paper of Sterman and Weinberg, it was soon realized that it is notdifficult to build a
whole class of final state observables that do have the same property of soft and collinear insensitivity,
and can thus be computed in perturbation theory, and compared with experimental measurements: thrust,
oblateness, the C parameter, jet clusters, the mass of the heaviest hemispheres, etc.. The important thing
which is assumed in these definitions is thatthe same definition must be applied to the final state hadrons
by the experimenter that measures this quantity, and by the theorist that computes this quantity in terms
of quark and gluons. Only if this condition is satisfied, one can assume that in the high energy limit
the computed quantity will agree with the measured one, up to corrections that are suppressed by some
inverse power of the energy.

One of the first of these infrared safe shape variables is thrust. It is defined by the equation

t = max
~v

∑

i |~pi · ~v|
∑

i |~pi|
. (83)

In words, one takes an arbitrary vector (in the centre-of-mass frame ofthe colliding electron-positron
pair) and sums the absolute values of the projection of the momenta of all final state particles onto that
vector, normalized to the sum of all absolute values of the hadron momenta. The vector is rotated until a
maximum is found. The maximum direction is called the thrust axis, and the value atthe maximum the
thrust of the event. The maximum value of thrust is one, for a final state of two massless particles in the
back-to-back direction. It is easy to check that thrust is an infrared safe shape variables. In fact, a soft
emission does not alter the thrust abruptly, since all emitted particles enter weighted by their momenta.
Also collinear splitting does not alter the thrust of an event, as one can easilyverify. An example of a
quantity which is not infrared safe is the total number of particles in the final state, which changes by
one unit in case of soft emission. Examples of a quantities which are sensitive to collinear splitting are
the axis of the tensor

Sij =
∑

l

pi
lp

j
l (84)

which were actually used in the past to classify the “jettiness” of an event.

A modern, and very clever way to define jets is by clustering [18]. For a given events, one forms
the invariant mass of all pairs of particles in the final state. The pair with the smallest mass is merged into
a single pseudoparticles, and then the procedure is continued with the pseudoparticles, and it is stopped
when the smallest mass of a pair exceeds a given cutoffy × S. One ends up with a definite number of
clusters, and one can thus define the cross section for producing two, three, four or more clusters for a
giveny cut. It is easy to convince oneself that these cross section definitions areinfrared safe. Since the
computation of these cross sections (in terms of partons) should in first approximation give the correct
answer, we see that in perturbative QCD we roughly expect (for not too extreme values ofy) that most
events will be made up by two clusters, a fraction of orderαS will be made up by three clusters, and a
fraction of orderα2

S will be made by four clusters. Analogously, we expect thrust to be near one, and
its departure from one to be of orderαS. We also expect that a fraction of events of orderαS will have
thrust well below one.

Because of the obvious interest in the determination ofαS from jet shape variables, a lot of effort
has gone in the study of jet and shape variables that are directly proportional toαS, which we may call
“three-jet sensitive”, like the thrust distribution, and the fraction of events with three clusters. There are
tens of variables of these kind that have been studied ate+e− machines.

The present state of the art for jet studies ine+e− machines mainly relies on the calculation of
Ellis, Ross and Terrano (ERT) [19, 20], which allows to compute any infrared safe3−jet shape variable
up to the orderα2

S. Various computer programs for the computations of these quantities are available, and
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many of these quantities have been tabulated [21]. Heavy quark mass effects have also been included in
the3−jets calculation [22, 23, 24]. Three-jet quantities have been intensively studied ate+e− machines,
The results of LEP1 and SLD have given a quite remarkable contribution to the tests of QCD, and
considerably reinforced our confidence in perturbative QCD.

Recently, the NLO correction to 4-jet partons production have been computed [25, 26, 27, 28],
allowing thus the computation of any4−jets shape variable in the formα2

S(µ2)C +α3
S(µ2)D(µ2/Q2)+

. . .. Phenomenological applications have begun to appear recently [29] [30].

Fixed order calculations of shape variables distributions are sometimes supplemented with all-
order resummation of effects that are enhanced in the limit of thin jets. An example of these effects is
visible in eq. 82; whenδ andǫ become small, theOαS correction becomes large, because of the large
collinear and soft logarithms. These logarithms, called “Sudakov logarithms”, are a general phenomenon
that happens in QCD and QED when we force a process into a region of phase space where radiation
is inhibited. Since soft radiation is infrared divergent, and its divergence cancels againts virtual con-
tributions, when we suppress soft radiation the cancellation becomes unbalanced, and large logarithms
appear at all orders in the perturbative expansion. In some cases, these logarithms can be organized and
resummed [31, 32, 33]

Hadronization and power corrections are believed to be suppressed as1/Q, but they are still im-
portant at LEP energies. They are usually estimated using Monte Carlo hadronization models. The
renormalon inspired model of ref. [34] provides an alternative method [35].

4.5 Thrust as an example

Let us focus upon the case of thrust as an example. The thrust distribution has the perturbative expansion

1

σ0

dσ

dt
= δ(1 − t) +

αS(µ)

2π
A(t) +

(

αS(µ)

2π

)2 [

A(t) 2π b0 log
µ2

Q2
+ B(t)

]

+ O
(

α3
S

)

. (85)

The first term, proportional to a delta function, is the Born contribution, which corresponds to the pro-
duction of two back-to-back massless partons. The functionsA(t) andB(t) can be computed from the
ERT results (they are tabulated in ref. [21]). The renormalization scaleµ is explicitly indicated in the
formula. As in the total cross section formula, the explicit scale dependenceof the term of orderα2

S is
related to the coefficient of the term of orderαS. Again, using the renormalization group equation at
1 loop (i.e.,∂αS/∂ log µ2 = −b0α

2
S), one can prove that the scale dependence of the above equation

cancels up to the orderα2
S. Of course, if the whole perturbative expansion was included in the righthand

side, no scale dependence would survive, since the left hand side is scale independent. However, only
terms up to the orderα2

S are included, and thus one expects a residual scale dependence at orderα3
S.

Radiative corrections are generally quite large. For example

〈1 − t〉 =
1.05

π
αS(Q)(1 + 3αS)

〈o〉 = 1.29αS(Q)(1 − 4.3αS)

〈M2
D,t〉 =

1.05

π
αS(Q)(1 − 0.025αS) (86)

where the second quantity is oblateness (for a precise definition, see ref. [21]), and the third quantity is
the difference of the square of the masses of the heavy hemisphere with respect to the light hemisphere,
with the hemisphere defined according to the thrust axis. Thus, corrections can be as large as 40% even
at LEP1 energies. Because of this, it is mandatory that corrections of even higher orders (α3

S and higher)
should be at least estimated and included in the theoretical error. There is no universal method to estimate
the theoretical error in this case. A commonly used method is to look at the scale dependence of the result.
Since the remaining terms of the perturbative expansion should compensate the scale dependence, they
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Table 3: A summary of measurements ofαS from shape variables.

Q ∆αs(MZ0)
Process [GeV] αs(Q) αs(MZ0) exp. theor.

e+e− 22 0.161 +0.016
−0.011 0.124 +0.009

−0.006 0.005 +0.008
−0.003

e+e− 35 0.145 +0.012
−0.007 0.123+0.008

−0.006 0.002 +0.008
−0.005

e+e− 44 0.132 ± 0.008 0.123 ± 0.007 0.003 0.007
Z0 91.2 0.121 ± 0.006 0.121 ± 0.006 0.001 0.006
e+e− 133 0.113 ± 0.008 0.120 ± 0.007 0.003 0.006
e+e− 161 0.109 ± 0.007 0.118 ± 0.008 0.005 0.006
e+e− 172 0.104 ± 0.007 0.114 ± 0.008 0.005 0.006
e+e− 183 0.109 ± 0.005 0.121 ± 0.006 0.002 0.005
e+e− 189 0.110 ± 0.004 0.123 ± 0.005 0.001 0.005

must be at least as large as the scale variation of the truncated result. The scale should be varied in a
range around the typical scale of the process. It should not be chosen neither much higher of this typical
scale, nor much smaller, since in these cases the perturbative expansion isnot well behaved. A common
choice ismZ/4 < µ < mZ , which accounts for the fact that the typical scale of the process is somewhat
below theZ mass.

Hadronization effects should also be estimated, and included in the theoretical error. For the
observable〈1 − t〉, for example, we can make a naive estimate in the following way. Let us assumethat
the emission of an extra soft pion in the final state has a probability of order one. This emission takes
away from the thrust a value of few hundred MeV (the transverse mass of a soft pion) divided by the total
available energy. To fix the numbers, let us say that at LEP we haveδt = 0.5/90 ≈ 0.0055, assuming a
500 MeV average transverse mass for the pion. The perturbative valueof 〈1− t〉 is roughlyαS/π ≈ .04,
increased by theα2

S correction to roughly 0.055. Thusδt/〈1 − t〉 = 0.1. This means that we can expect
that hadronization effects may have a 10% effect in the determination ofαS from 〈1 − t〉.

An instructive example of a QCD study at LEP can be found in ref. [36]. Estimates of hadroniza-
tion corrections are used there to correct the raw data. Theyr typical value is around 10%. Hadronization
corrections are estimated by running a shower Monte Carlo with or without thehadronization stage. The
corrections are determined by looking at the difference between the two runs, and are then applied to the
data. The error on the hadronization corrections are estimated by using different Monte Carlo programs
with different hadronization models. It is quite clear that this procedure is quite risky. The QCD stage is
in fact similar in all shower Monte Carlo. The hadronization step is different,but it is in all cases tuned
to fit the data. This may generate a bias towards determining the same value ofαS used in the Monte
Carlo. The size of the radiative correction is reported in ref. [36], andthus, the pessimistic reader may
use the whole hadronization correction as an error on the determination, if he wishes to do so.

Table 3 (from ref. [11]) summarizes the determinations ofαS from event shape variables. In all
determinations, NLO calculations are used, together with resummation of soft gluon effects. Power
corrections are estimated using Monte Carlo programs.

Alternative models for the power suppressed corrections have recentlyappeared, and have been
introduced in phenomenological analysis. In ref. [35], several shape variables have been examined in
the energy range of

√
S = 14 to 189 GeV. QCD NLO prediction, together with the power correction

model of ref. [34] are used to fit the data. I will not try to describe here the features of the model; it is
enough to know that power corrections to shape variables depend upona universal parameterα0 in this
model. A summary of the results of this analysis is displayed in figs. 13 and table 4.5. We observe
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Fig. 13: Simultaneous fits toαS andα0 using mean values of shape variables (left) and distributions (right).

fit syst. Th.

means αS 0.1187 ±0.0014 ±0.0001 +0.0028
−0.0015

α0 0.485 ±0.013 ±0.001 +0.065
−0.043

distr. αS 0.1111 ±0.0004 ±0.0020 +0.0044
−0.0031

α0 0.579 ±0.005 ±0.011 +0.099
−0.071

Comb. αS 0.1171 +0.0032
−0.0020

α0 0.513 +0.066
−0.045

Table 4: Results of the fits toαS(MZ) andα0(2 GeV) from ref. [35].
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that the final value is well in agreement with other determinations [11]. Also, tosome extent the data
supports the universality of the non-perturbative parameter. On the other hand, the value determined from
distributions is considerably lower than the value obtained with standard methods (i.e. hadronization
corrections with Monte Carlo models). Furthermore, for some shape variables the consistency of the
determination is quite poor. Thus, as far as power suppressed corrections are concerned, we can certainly
say that they are very poorly understood.

Even if we assume a pessimistic attitude with regard to power corrections, one must recognize
that LEP results do show a remarkable consistency with perturbative QCD results. In figure 14 I try to
give an unbias illustration of the comparison of LEP data with perturbative QCD results. In the figure,

Fig. 14: Bin-by-bin determination ofαS for several different shape variables.

a determination ofαS is performed for several shape variables. The determination was performed first
using a leading order formula (left plot), and then the fullO(α2

S) formula. No hadronization correction
was applied to the data. Three values of the renormalization scale were chosen for each variable:µ =
mZ/4, mZ/2, andmZ . In the figure, parallel bands correspond to these three choices. Theerrors on the
various point are experimental errors. If we had a perfect QCD calculation, e.g. all orders in perturbation
theory, and hadronization corrections were truly negligible, we should expect that all experimental point
lie (within errors) on a constant line. If we only have a leading order calculation, we expect instead
large differences among the various points, that should become smaller andsmaller as we include higher
order corrections. In the plot, of course, we can only represent the leading and next-to-leading result,
since anO(α3

S) calculation has never been performed. It is quite striking to see how, by including the
next-to-leading corrections, the various determinations become much closerto each other. It is left to our
fantasy to imagine what would happen if we could include theO(as3) effects.
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5 PROCESSES WITH HADRONS IN THE INITIAL STATE

We will now turn to describe the application of perturbative QCD to processes in which hadrons are
present also in the initial state, like Deep-Inelastic Scattering (DIS), or the production of some objects
of high invariant mass in hadronic collisions. It turns out that cross sections for these processes can be
computed and related to each other. In general the cross section for the production of some final state
with high invariant mass (which could be made of a heavy weak vector boson, a lepton-antilepton pair,
heavy quarks, jets, and the like) will be expressed by the so calledimproved parton model formula

σH1,H2
(p1, p2) =

∑

i,j

∫

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ) σ̂ij(x1p1, x2p2, αS(µ), µ) . (87)

A pictorial representation of formula 87 is given in fig. 15.

Fig. 15: A graphic representation of the improved parton model formula.

For processes with a single incoming the improved parton model formula is evensimpler. For
example, in DIS

σH(p) =
∑

i

∫

dxf
(H)
i (x1, µ) σ̂i(x, µ) , (88)

Formulae (87) and (88) are applicable to inclusive hard processes. Byinclusive, we mean that no detailed

Fig. 16: The improved parton model formula for DIS.

question on the distribution of the final state hadrons is asked in order to measure the cross section. The
generic concept of a hard process is better illustrated by examples. We may, for example, require that a
very large invariant-mass lepton-antilepton pair (the so called Drell-Yan process) is present in the final
state. Or that jets (for example, of the Sterman-Weinberg kind) with large transverse momentum are
observed. In the case of DIS, we simply require|q2| to be very large.

The recipe for the improved parton model formulae can be summarized in the following points:
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• An incoming beam made of hadrons of typeH is equivalent to a beam of constituents (also called
partons), that is to say of quark and gluons, with a longitudinal momentum distribution character-
ized by the parton density functions (pdf’s from now on)f

(H)
i (x, µ). More specifically, given the

hadronH with momentunmp, the probability to find inH the partoni with momentum between
xp and(x + dx)p is preciselydx f

(H)
i (x, µ). The pdf’s are universal, that is to say, they do not

depend upon the particular process considered.

• The short distance cross sectionσ̂ is calculable as a perturbative expansion inαS

σ̂ij(x1p1, x2p2, αS(µ), µ) =
∑

l

σ̂
(l)
ij (x1p1, x2p2, µ)αl

S(µ) . (89)

The lowest order term of this expansion is precisely the cross section onewould compute naively
at lowest order. For the computation of higher order, a more complex prescription is specified.

• The pdf’s have a mild dependence upon the scaleµ, determined by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equation [37]

∂

∂ log µ2
f

(H)
i (x, µ) =

∫ 1

x

dz

z

∑

j

Pij(αS(µ), z)f
(H)
j (x/z, µ) . (90)

Using the above equations, given the pdf’s at a specified value ofµ, we can compute them at any
other value. The functionsP are called splitting function, and have a perturbative expansion in
powers ofαS(µ)

Pij(αS(µ), z) =
αS(µ)

2π
P

(0)
ij (z) +

(

αS(µ)

2π

)2

P
(1)
ij (z) + O(α3

S) . (91)

The functionsP (0) are given in [37], and the functionsP (1) are given in [38, 39]. The scaleµ is
arbitrary. Theµ dependence in the pdf’s is compensate by theµ dependence in the short distance
cross section. As in the case ofe+e− → hadrons, the scaleµ is taken to be of the order of the
typical scales in the process, in order to avoid the appearance of large logarithms to all orders in
the short distance cross section. In this way, a truncated expression for the short distance cross
section may be used safely.

The approach described above gives the cross section in terms of a power expansion inαS(µ). Since
αS(µ) ≈ 1/ log µ/Λ, this means that by increasing the perturbative order at which the computation is
performed, one adds corrections which are suppressed by one more inverse power oflog µ/Λ. Correc-
tions which are suppressed by powers ofΛ/µ are not included in this approach. Thus, for example, the
pdf’s describe the longitudinal momentum distribution of the partons. Since thepartons are confined in
a hadron, one knows that they must also have a transverse momentum of theorder of the inverse of a
typical hadron size, that is to say1/Λ. This transverse momentum is neglected, since it would give rise
to power suppressed corrections.

In the following I will try to illustrate and justify the improved parton model approach. I will do
this in three steps.

I will first give a naive argument to show that a somewhat simplified versionof formula (87), called
the (naive) parton model formula (i.e., not yet improved), should work. The simplifications consist in
the absence of the scaleµ in the pdf’s and in̂σ. Such formula can be used to compute, for example, DIS
cross section, or Drell-Yan pair production cross section. The parton model formula predicts correctly
the existence of scaling in DIS.

In the second step will try to compute QCD corrections in the context of the parton model formula.
I will show that this approach does not survive when radiative corrections are included.
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In the third step we will find a modification of the parton model formula that is consistent with
radiative corrections. The main consequence of this improved approachis the appearance of a scale
depedence in the pdf’s. This scale dependence is at the origin of scalingviolation phenomena in DIS.

5.1 The naive parton model formula

The basic parton model ideas are based upon a very commonly used intuitivepicture of inclusive high
energy scattering of composite systems, when we require a very large momentum transfer. Suppose, for
example, that we collide to hydrogen beams, and require that in the final statewe find a pair of electrons
with large transverse momenta. It is clear that the most likely mechanism for producing such an event is
the collision of two electron from the two incoming hydrogen atoms. If the transverse momenta of the
electrons are much higher than the hydrogen binding energy, we may think that, to a good approximation,
the cross section may be computed from the elementary electron-electron cross section, applied to a beam
of incoming free electron. The fact that we want to observe a high transverse momentum scattering
implies that the binding of the electrons to the nuclei cannot have an important effect in this case. In
other words, the electrons behave as free particles in the collision. Observe that the inclusive character of
the reaction, and the presence of high momentum transfer, are both necessary conditions for this approach
to be valid. Inclusiveness is needed, because after the two electron collide, the remaining constituent of
the original atoms (i.e., the protons in the case of hydrogen) are also foundin the final state. The high
momentum transfer is instead needed for the reaction to take place in a very short transverse distance. If
this was not the case, like, for example, in the case when we look for small angle scattering, the atoms
may interact coherently. Or, more simply, if the momentum transfer was of the same size as the typical
momentum of the electron in the atom, the binding properties of the system could nolonger be neglected.

Assuming now that we have ultra-relativistic monochromatic beams of hydrogen atoms of energy
E, in order to compute the above cross section we would assume that these beams are equivalent to
electron beams with energyEe = E × me/mp. In reality, even if the atom beams were perfectly
monochromatic, the electron beam would not be perfectly monochromatic. Theelectrons are moving
inside the atom, with a typical velocity of the order of the electromagnetic couplingv ≈ αem. A simple
exercise in relativistic transformations would show that its energy spread would be of the ordervEe. In
fact, the electron energy could be characterized by a pdffe(x), peaked around the valuex = me/mp,
and a width of ordervx. Also the transverse momentum of the electron would be of ordervme. However,
while the transverse momentum remains invariant under boost, and thus becomes truly negligible at high
energy, the spread in longitudinal momentum is amplified by the boost, and it thusscales with the energy.
This discussion applies to a boosted, non-relativistic system. We can now tryto guess what happens for
a relativistic system, in which all constituents have velocities of order1, and comparable energies. The
transverse momenta still remain fixed at high energies. Their pdf’s, however, will no longer be peaked
around a particular value. Their spread would be of order 1.

Knowing that the basic building blocks of our hadronic world are quarks and gluons, we thus
expect that for a proton projectile, we will have structure functions for quarks, antiquarks and gluons.
We also naively expect the momentum sum rule

∫ 1

0
dx

∑

i

x f
(p)
i (x) = 1 , (92)

because the total momentum of the incoming projectile must be conserved. We also expect that the
proton flavour is conserved. Thus, for example

∫ 1

0
dx

(

f (p)
u (x) − f

(p)
ū (x)

)

= 2 . (93)

Since we know that the proton is a relativistic system, we expect that a good fraction of its energy should
be carried by the binding force, that is to say, by the gluons. Thus, the gluon pdf should be sizeable.
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Based upon these assumptions, we can now compute various high energy processes involving
hadrons in the initial state. The rules are simple: compute the cross section youare considering for
colliding partons, and then assume that your hadron beam is a beam of partons, with momenta distributed
according to the pdf’s. Always neglect the transverse momenta of the partons, and their masses.

Let us now apply this model to Deep-Inelastic electron scattering. There wecollide an electron
with a proton. The kinematical variables of the process are usually definedas

q = k − k′ , Q2 = −q2 , S = (k + p)2 , xBj =
Q2

2p · q , y =
p · q
k · p . (94)

Experimentally, one measuresS, y andxBj. One only needs to observe the outgoing electron to obtain
these quantities. The process is an inclusive one, that is to say, no conditions are imposed on the hadronic
final state. The variabley has a simple interpretation in the laboratory frame of a fixed target experiment:
it is the fractional energy loss of the electron.

The corresponding partonic process is the scattering of a charged parton, that is to say a quark
or an antiquark, with the electron. The cross section for this process is easily computed, by using the

Fig. 17: DIS in the parton model.

standard Feynman rules of electrodynamics

dσ̂l

dŷ
= c2

l

ŝ

Q4
2πα2

em

(

1 + (1 − ŷ)2
)

(95)

wherel runs over all quarks and antiquarks, andcl is the corresponding electric charge. The kinematics
is given by

p̂ = xp ŝ = (k + p̂)2 = 2k · p̂ , ŷ =
p̂ · q
k · p̂ , (p̂ + q)2 = 2p̂ · q − Q2 = 0 . (96)

Observe that eq. 95 is a full cross section, properly normalized, divided by the appropriate flux factors.
Now we write, according to the parton model, the hadronic cross section

dσ

dŷ
=

∫

dx
∑

l

fl(x)
dσ̂l

dŷ
. (97)

In order to obtain formula (97) we have only used the composition of probabilities, and the fact that cross
sections are invariant for longitudinal boosts. We now observe that

y =
p · q
k · p =

p̂ · q
k · p̂ = ŷ , xBj =

Q2

2p · q = x
Q2

2p̂ · q = x , (98)
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and thus we have

dσ

dy dxBj

=
∑

l

fl(x)
dσ̂l

dŷ
=

2πα2
emSxBj

Q4

(

1 + (1 − y)2
)

∑

l

c2
l fl(xBj) . (99)

Observe thaty has a simple interpretation also in the centre-of-mass of the electron-quark system, where
it is given byy = (1 − cos θel)/2, andθel is the scattering angle of the electron in this frame.

In its simplicity, the parton model makes rather striking predictions. First of all, itshows that the
DIS cross section scales with energy at fixedxBj andy. Furthermore, they dependence of the cross
section is fully predicted. As we will discuss further on, thisy dependence is typical of vector interaction
with fermions, and is thus direct evidence of the fact that charged partons are fermions (this is formally
expressed by the so called Callan-Gross relation, as we will see in subsequent chapters).

The same type of reasoning can be applied also to other processes. For example, in a collision
of two hadrons, a quark from one hadron may annihilate with an antiquark from the other hadron, and
produce a lepton-antilepton pair, provided there are enough antiquarksin the projectile, like in pion-
nucleon collisions, or in proton-antiproton collisions. This is the so-called Drell-Yan process. Its parton

Fig. 18: Drell-Yan pair production in the parton model.

model interpretation is illustrated in fig. 18. As before, we define the partonicvariables:

p̂1 = x1 p1 , p̂2 = x2 p2 , S = (p1 + p2)
2 = 2 p1 p2 , Q2 = q2 = 2x1 x2S . (100)

The partonic cross section is given by

σ̂
(DY)
l = c2

l

4παem

9Q2
, (101)

which is very similar to the cross section fore+e− → µ+µ−, except for en extra factor of1/31. Accord-
ing to the parton model interpretation, the hadronic cross section is

σ(DY) =
∑

l

∫

dx1 dx2

(

f
(H1)
l (x1) f

(H2)

l̄
(x2) + (l ↔ l̄)

)

c2
l

4παem

9Q2
, (102)

for Q2 = ŝ = x1 x2 S. The validity of the above formula is restricted to the range whereQ2 is large. It
is therefore usually written as

dσ(DY)

dQ2
=

∑

l

∫

dx1 dx2

(

f
(H1)
l (x1) f

(H2)

l̄
(x2) + (l ↔ l̄)

)

δ(x1x2S − Q2)c2
l

4παem

9Q2
. (103)

1This comes from the colour average for the initial state quark. Its physical meaning is that, in the average, the probability
for the colour of the initial quark to match that of the antiquark is1/3.
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Pushing further our parton model interpretation of hard scattering processes, we can go on and compute
the cross section for producing high transverse momentum jets, of heavybb̄ pairs, oftt̄ pairs, and so on.
In these processes, also gluons could enter in the initial state.

Not all hadronic processes can be computed in this way. For example, Drell-Yan cross sections,
for Q2 approaching typical hadronic scales, cannot be computed. The rule ofthumb for deciding if a
process is a hard process or not, in the context of the parton model, is to ask whether it is insensitive
to the initial transverse momentum of the partons, which is of the order of typical hadronic scales. The
parton densities do not carry any information about this quantity.

5.2 Does the Parton Model survive radiative corrections?

We will now try to add perturbative QCD corrections to the Parton Model. As inthe case ofe+e− →
hadrons, we will find soft and collinear singularities associated to radiationof gluons from final state
partons, which we expect to cancel for appropriately defined final states. This is the case, for example,
in fully inclusive hadronic final states, like in DIS or in Drell-Yan pair production, or in the production
of Sterman-Weinberg jets.

A new element that can arise in the case of reactions initiated by hadrons, is the appearance of
initial state soft and collinear singularities. We will show that initial state collinearsingularities cannot
possibly cancel, and thus spoil the Parton Model interpretation of hard processes. Let us thus consider a
generic hard process initiated by a hadron, and its parton cross section,which we assume for simplicity
to be initiated by a quark

= M(p̂)u(p̂) . (104)

HereM indicates the amplitude for the process, andu is the Dirac spinor. All the complexity of the
process is hidden inM, and we don’t care about it for the moment. The cross section is obtained by
squaring the amplitude, averaging over the initial state spin and colors, and dividing by the appropriate
flux factors

σ(0)(p̂) =
N

p̂0
M(p̂)

1

2

∑

u(p̂)ū(p̂)M†(p̂) =
N

p̂0
M(p̂)

/̂p

2
M†(p̂) (105)

whereN is whatever normalization factor arises from the rest of the amplitude.

We want to focus upon the initial state corrections

= gsM(p̂ − l)
/̂p − /l

(p̂ − l)2
γµu(p̂) ǫµ(l) , (106)

whereǫµ(l) is the polarization vector of the final gluon. We also observe that this may notbe the only
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correction of orderαS. One may also have a process in which an initial gluon splits into a quark-antiquark
pair, and the generated quark gives rise to the reaction

.

We will assume that this complication does not occur. For example, we may assume that the hard cross
section measures some effect due to the difference of the quark contentfor two different flavours. Since
the gluon produces equal number of quarks for all flavours, it could not contribute in this case. In
these cases, one says that the cross section is only sensitive to thenon-singletcomponent of the parton
densities. We thus concentrate on the non-singlet case now. Further on we will describe how to treat the
general case.

Experience with thee+e− case tells us that asl becomes parallel tôp we will have a collinear
singularity. It is convenient thus to writel in the following way

l = (1 − z)p̂ + l⊥ + ξη (107)

whereη is an arbitrary vector such thatη2 = 0 andη · p̂ 6= 0. For example, in the centre-of-mass frame
of the collision process we can choose

p̂ = (p̂0, 0⊥, p̂0) , η = (1, 0⊥, −1) . (108)

The phase space for the emission of the gluon is

d3l

2 l0 (2π)3
=

d4l

(2π)4
2π δ(l2) =

p̂ · η dξ dz d2l⊥
(2π)3

δ
(

2 p̂ · η (1 − z)ξ −
∣

∣l2⊥
∣

∣

)

=
d2l⊥

2 (2π)3
dz

1 − z
. (109)

which yields, from the on-shell condition for the gluon,

ξ =

∣

∣l2⊥
∣

∣

2 p̂ · η (1 − z)
and (p̂ − l)2 = −

∣

∣l2⊥
∣

∣

1 − z
. (110)

The most singular part of this cross section can be obtained similarly with whatwas done in the case
of e+e− annihilation. It does not make much sense, in this case, to assume thatl is small, and thus
the derivation is a little bit more involved. It is nevertheless instructive, so I will report it in the next
subsection. People who are willing to accept the result without discussion,can skip it.

5.3 Derivation of the singular part of the cross section

The amplitude in eq. (106), using our kinematic definitions, can be written as

gsM(p̂ − l)
/̂p − /l

−
∣

∣l2⊥
∣

∣ /(1 − z)
γµu(p̂)ǫµ(l) . (111)

When squared, it seems to give rise to terms of order1/l4⊥. We will see that these terms, however,

cancel. The trick is to make careful use the relationlµǫ
(i)
µ (l) = 0. The singular region is the one whenl

is collinear top̂, that is to say whenl⊥ vanishes. In this regionl ≈ (1 − z)p, and thusp ≈ l/(1 − z), up
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to small corrections. Inserting this expression forp in eq. (111) will lead to simple Dirac algebra, since
by anticommutingl with γµ we getlµ, which vanishes when dotted into the polarization. We thus write

p =
l − l⊥ − ξη

1 − z
(112)

and replace it in eq. (111). The term inξ kills the singularity, and we drop it, since we are only interested
in the singular part. We obtain

gs M(p̂ − l)
z/l − /l ⊥
−

∣

∣l2⊥
∣

∣

γµu(p̂)ǫµ(l) , (113)

which becomes

gs M(p̂ − l)
−zγµ/l − /l ⊥γµ

−
∣

∣l2⊥
∣

∣

u(p̂)ǫµ(l)

= gs M(p̂ − l)
−zγµ [(1 − z)/p + /l ⊥] − /l ⊥γµ

−
∣

∣l2⊥
∣

∣

u(p̂)ǫµ(l) (114)

= gs M(p̂ − l)
−zγµ/l ⊥ − /l ⊥γµ

−
∣

∣l2⊥
∣

∣

u(p̂)ǫµ(l) ,

= gs M(p̂ − l)
−2zlµ⊥ − (1 − z)/l ⊥γµ

−
∣

∣l2⊥
∣

∣

u(p̂)ǫµ(l) , (115)

where the first step is obtained by anticommuting/l andγµ, which we can do as explained before. Then
we rewritel in terms ofp. Next, we drop the/p term, since it is in front of the spinoru(p̂), and thus gives
zero, according to the Dirac equation. Finally, we use the anticommutation relationγµ/l ⊥ = −/l ⊥γµ+2l⊥µ
In this last form, the singularity appears to be at most of order1/ |l⊥|, so that the amplitude squared will
give at most a1/l2⊥ singularity. The rest is simple algebra. We square eq. (115), replace thegluon spin
sum with the transverse projector−g⊥µν , replace the fermion spin averaged productu(p̂)ū(p̂) with p̂/2,
and obtain

g2
s

1

l4⊥
M(p̂ − l)

(

−2zlµ⊥ − (1 − z)/l ⊥γµ
) /̂p

2
(−2zlν⊥ − (1 − z)γν/l ⊥) (−g⊥µν)M†(p̂ − l)

= g2
s

1

l4⊥
M(p̂ − l)

/̂p

2

(

4z2
∣

∣l2⊥
∣

∣ + 4z(1 − z)
∣

∣l2⊥
∣

∣ + 2(1 − z)2
∣

∣l2⊥
∣

∣

)

M†(p̂ − l)

= g2
s

2
∣

∣l2⊥
∣

∣

(

1 + z2
)

M(p̂ − l)
/̂p

2
M†(p̂ − l) . (116)

To get the cross section, we should multiply the above expression byN/p̂2, and integrate over the phase
space. We obtain

σ(1) =
αSCF

2π

∫

σ(0)(zp)
1 + z2

1 − z

dl2⊥
l2⊥

dz . (117)

where

σ(0)(zp) = NM(p̂ − l)
/̂p − /l

2(p̂ − l)0
M†(p̂ − l) = NM(p̂ − l)

/̂p

2(p̂)0
M†(p̂ − l) . (118)

where we have made use of the relationg2
s = 4παS. The factorCF = 4/3 arises from the colour algebra.

It can be obtained according to the colour Feynman rules of fig. 3, as illustrated in the graphic equation

. (119)
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There we see a factor of 3 arising in the first term, because of the sum over the colour entering the Born
amplitude, and a factor of 3 in the second because of the colour loop, the net effect being(3 + 1/3)/2 =
4/3.

The result obtained so far arises from the real emission of a gluon. Virtual corrections are also
present, i.e. a gluon can be emitted and reabsorbed by the same line.

5.4 Effects due to the emission of a collinear gluon

The final result is

σ(1) =
αSCF

2π

∫

[

σ(0)(zp̂) − σ(0)(p̂)
] 1 + z2

1 − z

dl2⊥
l2⊥

dz , (120)

where the second term in squared parenthesis is due to the virtual corrections. We see that there is a
singularity atz = 1 which cancels between real and virtual corrections. The regionz → 1 corresponds
to soft gluon emission. Thus, soft singularities cancel. There are also collinear singularities, associated
to the smalll⊥ region. These do not cancel.

We first make the following remark. In the initial amplitudes, the presence of a denominator of
the form1/l2⊥ may seem to give rise to divergences liked2l⊥/l4⊥. The singularity we find at the end is
instead weaker, of orderd2l⊥/l2⊥, because of anl2⊥ we find from the numerator algebra. We can easily
convince ourselves that this is a consequence of angular momentum conservation. Vector interaction,
in fact, do not change the helicity of a particle. Thus the helicity of the incoming quark must be equal
to the that of the outgoing quark. On the other hand, physical gluons have±1 helicity. Thus, in the
collinear limit, the total angular momentum contributed by spin is not conserved. This gives rise to the
extral2⊥ suppression in the cross section. Also, by dimensional analysis, we see that we cannot expect
divergences stronger thand2l⊥/l2⊥ in theories with dimensionless coupling constants.

In the case ofe+e− → hadrons, we made the approximation thatz ≈ 1, for simplicity. If we had
been more careful, instead of formula (75), we would have obtained a formula similar to eq. (120). There
would be, however, a very important difference: in the Born cross section for the real emission, under
the integral sign, we would haveσ(0)(p̂) instead ofσ(0)(zp̂). This property is characteristic of splitting
processes taking place in the final state, rather than in the initial state. Figure19 illustrate this fact. This

Fig. 19: Collinear processes in the final and in the initial state.

is the reason why collinear singularities cancel in thee+e− →hadrons case, and do not cancel in this
case.

Equation (120) exhibit a rather intuitive property of collinear emission. Since the singularities are
due to the fact that the intermediate propagator goes near its mass shell, the intermediate particle travels
for a relatively long time and distance. Thus, when it initiates the interaction, it behaves essentially
like an on-shell particle, and the phenomenon can be described in probabilistic terms. In other words,
the total amplitude squared for the splitting process and the hard scattering, becomes the product of the
square of the amplitude for the splitting process, times the square of the amplitudefor the hard scattering
(i.e., the cross section).

The l2⊥ integral is divergent in the lower limit. Its upper limit is instead some scale, of the order
of the typical momenta involved in the hard process, which we now callQ. Equation (120) can then be
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interpreted intuitively in the following way. In a hard process, taking place ina time of order1/Q (by
the Heisenberg indeterminacy principle), an incoming parton is also probed for a time of order1/Q. In
a short period of time, a quantum state may fluctuate into states to which it couples, even if they have
energies that differ by an amount of orderQ or less. This is what happens to our incoming quark. This
also explain why the larger isQ, the more likely is the splitting to take place.

5.5 Failure of the parton model

The presence of collinear divergences tells us that there must be something wrong with the parton model.
Of course, we know that divergences, in the real physical world, are never there. In our case, for example,
if we introduce the mass of the quark, the divergence goes away. Or, wemay use the known fact that
at low scale confinement effects take place, and thus put a lower cutoff of order Λ in the transverse
momentum integral. Or again, we may remember that the parton is off-shell in the incoming nucleon, by
an amount of orderΛ. This also would act as a cut-off. However, neither of these remedies would really
solve the problem. Our cross section would become strongly dependent upon low energy details, like
the quark mass, the off-shellness in the nucleon, or confinement effects, while the Parton Model assumes
that these details do not count. Furthermore, the physics of these details is low scale physics, and is thus
uncalculable in perturbative QCD.

We will now show that, in spite of the collinear divergences, the Parton Model can be rescued,
provided we accept to make some modifications to the original concept.

We begin by introducing some notation. First of all we define

P (0)
qq (z) = CF

(

1 + z2

1 − z

)

+

(121)

where the notation with the+ suffix is called theplus prescription. It specifies that the expression in
parenthesis is to be interpreted as a distribution, and its integral against a smooth functionf(z) is given
by

∫ 1

0

(

1 + z2

1 − z

)

f(z) dz =

∫ 1

0

1 + z2

1 − z
(f(z) − f(1)) . (122)

We then introduce an infrared cutoffλ, and rewrite formula 120 as

σ(1) =
αS

2π
log

Q2

λ2

∫

dz P 0
qq(z)σ(0)(zp̂) , (123)

whereQ is a characteristic scale in the process. Since The corrected partonic cross section can be written
as

σ(p̂) = σ(0)(p̂) + σ(1)(p̂) =

∫

dz Γqq(z, Q2)σ(0)(zp̂) (124)

where

Γqq(z, Q2) = δ(1 − z) +
αS

2π
log

Q2

λ2
P 0

qq(z) . (125)

The form of equation (124) hints to a possible way to resque the parton model approach. In fact, it
has the form of the parton model cross section, except for theQ2 dependence. It is telling us that we
should consider a parton as having a structure, that depends upon the scale at which we are probing it.
This becomes even more apparent if we insert the corrected formula in the parton model formula for the
hadronic cross section. We just replacep̂ = yp, multiply by the parton densityfq(y) and integrate iny:

σ(p) =

∫

dy dz fq(y) Γqq(z, Q2)σ(0)(zyp) . (126)

This formula represents the probablity to find partonq in the hadron, with a fractiony of its momentum,
times the probability to find partonq in partonq with a fractionz of its momentum times the cross
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section for the final parton, with momentumyzp. It is natural to think that if we have an object that
can be represented as a beam of constituents, and the constituents can berepresented as a beam of
subconstituents, the same object can be represented as a beam of subconstituents. Mathematically this
works as follows. We insert the identity

∫

dx δ(x − yz) in equation 126, and obtain

σ(p) =

∫

dxf̃q(x, Q2)σ(0)(xp) . (127)

where we have defined

f̃q(x, Q2) =

∫

dydz fq(y) Γqq(z, Q2) δ(x − zy) . (128)

We are getting closer and closer to the improved parton model formula. In fact, if instead of using the
process scaleQ we introduce an intermediate scaleµ, the connection becomes even clearer. We can
write

σ(p) =

∫

dxf̃q(x, µ2) σ̂(xp, µ2) , (129)

where

σ̂(p̂) = σ(0)(p̂) +
αS

2π
log

Q2

µ2

∫

dzP 0
qq(z)σ(0)(zp̂) . (130)

Equation (129) is easily verified by expanding the product off̃ and σ̂, neglecting terms of orderα2
S,

and combining the logarithms according to the equationlog µ2/λ2 + log Q2/µ2 = log Q2/λ2. It is
the QCD-improved parton model formula we were seeking, and it forms the basis for the application of
perturbative QCD to phenomena initiated by hadrons. A considerable difference with the “naive” Parton
Model formula is the appearance of a scaleµ in the parton densities.

Let us summarize we have done so far. We have attempted to compute radiative corrections to
a parton process. We have found that these corrections are large, and depend upon unknown low scale
dynamics, which is represented here by the cutoffλ. However, we have found that these large corrections
can be absorbed into a redefinition of the parton densities. The parton densities redefinition does not
depend upon the hard process in question: it is universal. The physical cross section can then be defined
in terms of these new parton densities. Instead of the partonic cross section, in the QCD-improved parton
model formula we have a so calledshort distancecross section̂σ. This is obtained by subtracting the
infrared sensitive (orlong distance) part from the partonic cross section. Thus, the short-distance cross
section is controlled by high momenta, and is thus calculable in perturbation theory. It is important to
choose the scaleµ of the order of the scaleQ of the hard process, in order to avoid the appearance of
large logarithms in the perturbative expansion.

Of course, our argument was only carried out at leading order in perturbation theory. There is a
variety of more complex arguments that show that formula (87) actually holds toall order in perturbation
theory. This is called theFactorization Theorem[40]. We will comment later on its present status. For
now, we will assume that the procedure outlined above can in fact be carried out to all orders in the
coupling constant. Thus, the short-distance cross section can be givenas a power expansion inαS. If
the scale at whichαS is evaluated is near the typical scale of the hard process, no large logarithms can
appear in the coefficients of the expansion, since all the scales entering inthe coefficients are of the same
order. Thus, one can improve the accuracy of the short distance cross section by computing higher and
higher orders in perturbation theory. The scaleµ introduced in this context is called the factorization
scale. The scale at whichαS is evaluated is the renormalization scale, and should be of the same order as
the factorization scale. In principle, they can be taken to be different. Here, for simplicity, I will always
assume that the renormalization and factorization scales are taken equal.

The new pdff̃(µ) contains uncalculable long distance effects. It has to be measured, by using
formula (87) with some reference hard process, which is typically chosento be DIS. One then extracts
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f(µ) at a given scaleµ. Itsµ dependence is however calculable. In fact, taking the derivative of eq. (128)
we get

∂

∂ log µ2
f̃q(x, µ2) =

∫

dydz fq(y)
dΓqq(z, µ2)

d log µ2
δ(x − zy)

=
αS

2π

∫

dydz fq(y)P 0
qq(z)δ(x − zy)

=
αS

2π

∫

dydz f̃q(y, µ2)P 0
qq(z)δ(x − zy) + O(α2

S) , (131)

where we have used eq. 125, and dropped higher order terms inαS in order to identifyf with f̃ in the
last step.

Equation (131) is the Altarelli–Parisi (AP) equation (or Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi equation) for the non-singlet case. It is also commonly written in the form

∂

∂ log µ2
fq(x, µ2) =

αS

2π

∫ 1

x

dy

y
fq(y, µ2)P 0

qq(x/y) , (132)

where we have dropped the tilde sign, since the “naive” parton density disappears in the improved parton
model approach.

The AP equation allows us to compute the parton densities at any scale, once we have measured
them at an initial scale. Thus, in the improved parton model, predictivity is not lost. As before, the
measurement of the pdf’s in one process (at one scale) allows one to extend the computation to any
scale.

5.6 The evolution equations in the general case

We introduce the following symbolic notation for the AP equation

µ2 ∂

∂µ2
fi(µ) =

∑

j

Pij ⊗ fj(µ) , (133)

where the⊗ product is defined as

f1 ⊗ f2 ⊗ . . . fn (x) =

∫ 1

0
dx1 dx2 . . . dxnf1(x1) f2(x2) . . . fn(xn) δ(x − x1x2 . . . xn) . (134)

We have

Pij(y) =
αS(µ)

2π
P

(0)
ij (y) +

(

αS(µ)

2π

)2

P
(1)
ij (y) + . . . (135)

where theP (0)
ij (y) are given in ref. [37], and theP (1)

ij (y) in [38, 39]. The terms of orderα3
S are not yet

known exactly, although recently approximate expressions have become available [41], based upon some
partial results [42] [43]. Work on an exact calculation is under way [44].

We report below the formulae for theP (0)
ij (y). Its only non-vanishing components are

P (0)
qq (x) = P

(0)
q̄q̄ (x) = CF

(

1 + x2

1 − x

)

+

, (136)

P (0)
qg (x) = P

(0)
q̄g (x) = Tf

(

x2 + (1 − x)2
)

, (137)

P (0)
gq (x) = P

(0)
gq̄ (x) = CF

1 + (1 − x)2

x
, (138)

P (0)
gg (x) = 2CA

[

z

(

1

1 − z

)

+

+
1 − z

z
+ z(1 − z) +

(

11

12
− nf

6CA

)

δ(1 − x)

]

(139)

41



For a derivation of the above formulae similar to the one given in subsection 5.3, the reader can look in
Appendix B of ref. [45]. For a more intuitive (although less conventional)derivation, the reader can look
directly in the original Altarelli-Parisi paper [37].

We do not report here the higher orderP
(1)
ij (y) functions. Observe, however, that at higher orders

the componentsPqiqj
for i 6= j andPqiq̄j

(for any i andj) do arise. Here we limit our discussion, for
simplicity, to leading order evolution only.

We begin by taking the difference of eq. (133) with itself, for two different quark or antiquark
flavour labelsi andj. We find

µ2 ∂

∂µ2
(fi(µ) − fj(µ)) =

∑

k

(Pik ⊗ fk(µ) − Pjk ⊗ fk(µ)) . (140)

As discussed earlier, ifi is a quark (or antiquark), thenk can only be the same quark (or antiquark) or a
gluon. The gluon contribution cancels among the two terms in parenthesis, andone gets

µ2 ∂

∂µ2
(fi(µ) − fj(µ)) = Pqq ⊗ (fi(µ) − fj(µ)) . (141)

Thus, if we havenf light flavours, there are2nf − 1 independent combinations of the parton densities
that evolve independently from each others. They are called non-singlet components. Next, we take the
sum of eq. (133) for all quark flavours and antiflavours. We get

∑

i6=g

∂

∂µ2
fi(µ) =

∑

i6=g

Pik ⊗ fk(µ) =
∑

i6=g

∑

k 6=g

Pik ⊗ fk(µ) +
∑

i6=g

Pig ⊗ fg(µ)

= Pqq ⊗
∑

i6=g

fi(µ) + 2nf Pig ⊗ fg(µ) . (142)

On the other hand, eq. (133) for the gluon reads

∂

∂µ2
fg(µ) =

∑

i

Pgi ⊗ fi(µ) =
∑

i6=g

Pgi ⊗ fi(µ) + Pgg ⊗ fg(µ) . (143)

Thus, defining
S(µ) =

∑

i6=g

fi(µ) , (144)

we get the system of equations

µ2 ∂

∂µ2
fg(µ) = Pgq ⊗ S(µ) + Pgg ⊗ fg(µ)

µ2 ∂

∂µ2
S(µ) = Pqq ⊗ S(µ) + 2nf Pig ⊗ fg(µ) , (145)

which define the evolution of the so calledsingletcomponentS and the gluon. Thus, while the non-
singlet components evolve independently, the singlet component mixes with thegluon density in its
evolution.

5.7 Sum rules

We said earlier that we expect our parton densities to satisfy certain sum rules. Thus, for example
∫

dx
[

f (p)
u (x) − f

(p)
ū (x)

]

= 2 . (146)
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We must make sure that evolution equations do not spoil the sum rules. Sincethe difference of the quark
and antiquark parton densities is a non-singlet component, we have

µ2 ∂

∂µ2

∫

dx
[

f (p)
u (x) − f

(p)
ū (x)

]

=

∫

dx
αS

2π
Pqq(y)

[

f (p)
u (z) − f

(p)
ū (z)

]

δ(x − yz) dy dz

=
αS

2π

[∫

Pqq(y)dy

] ∫

dz
[

f (p)
u (z) − f

(p)
ū (z)

]

= 0 (147)

because
∫

Pqq(y)dy = 0. Similarly, one can show that the momentum sum rule is also preserved by
evolution.

5.8 Scheme dependence

There is some ambiguity in the way one defines the parton densities, This ambiguityis best seen as an
ambiguity in the type of infrared cutoff one uses. For example, one could give a mass to the quark, or
assume it is slightly off-shell. By doing this, the large logarithm does not change, but different finite
pieces can arise in the calculation. In the present context we have only looked at the divergent parts.
When doing next-to-leading QCD calculation, however, one would like to compute precisely the finite
pieces. The reader can find interesting examples in ref. [46, 47] and [48]. There the same processes are
computed (the Deep-Inelastic and the Drell-Yan cross section), but with different infrared cutoffs. Thus,
the finite terms in the various cross sections turn out to be different. However, when expressing the DY
cross section in terms of the DI cross section, both approaches yield the same formula. Thus, to some
extent, the definition of the parton density is a matter of convention, like the definition of αS. It has to
be specified together with a procedure for the computation of short distance cross section. Today, the so
calledMS scheme is widely used, and most parton densities are given in theMS scheme.

5.9 Summary

We summarize what we have learned in this chapter.

First of all, by intuitive reasoning, we derived cross sections for high energy inclusive processes,
assuming that the transverse momentum of constituents in hadrons was limited to typical hadronic scales.

We tried to compute radiative corrections to these formulae, and we found inconsistencies, i.e.
uncancelling collinear divergences.

With a procedure very similar to renormalization, we showed that the collinear divergences can be
factorized into the parton densities.

Let us discuss how is the procedure of factorization similar to renormalization. In renormalization,
we hide our ignorance of UV effects into a redefinition of the strong coupling constant. Here, we hide
our inability to compute IR effects into a redefinition of the parton densities.

As a result of this procedure, we find that the parton densities are actuallyscale dependent. We
may think of a hard process as a probe of transverse dimensions and time oforder1/Q. When we probe
a constituent at higher and higher values ofQ, that is to say for shorter and shorted time, because of the
uncertainty principle, we may find it fluctuating into a virtual pair of constituentsoff the energy shell by
an amount of orderQ. The larger isQ the larger is the phase space for virtual particles. This is why
parton densities evolve with the scale at which they are measured.

The original assumption of limited transverse momenta fails in the parton model. We have seen,
in fact, that because of initial state radiation, integrals of the formd2l⊥/l2⊥ arise. Roughly, we expect

〈l2⊥〉 ≈ αS

∫

d2l⊥
l2⊥

l2⊥ ≈ αSQ2 . (148)

Thus the transverse momentum is not limited, but it is “perturbatively” small, i.e. itis suppressed by a
coupling constant factor.
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5.10 How solid is the Factorization Theorem?

The argument given in this chapter does not certainly pretend to be fully convincing. Thus, we would
like to have a more solid proof of this theorem.

In the case of the DIS process, such proof exists. It relies upon a clever analytic continuation
property of the DIS cross section, that can be used to apply the powerful language of the operator-product
expansion (O.P.E.) to the problem.

For production processes in hadronic collisions, things are much more difficult. Even in the sim-
plest case, the Drell-Yan process, the factorization theorem has a long controversial history, which was
finally settled by the calculation of Lindsay, Ross and Sachrajda [49, 50, 51]. All-order arguments for
factorization have been given in ref. [52]. Today, the factorization theorem is widely accepted in the high
energy physics community.

6 DEEP INELASTIC SCATTERING

Deep-Inelastic Scattering (DIS) is the next-to-simplest QCD process aftere+e− annihilation into hadrons.
It is experimentally quite simple, since in order to define the DIS cross section one does not need to intro-
duce jet definitions. It is enough to measure the momentum of the outgoing leptonin order characterize
the final state.

Deep-Inelastic scattering is also the best place where to measure structurefunctions, as can be seen
from eq. (99). Thus, QCD predictions for hadronic collisions rely uponthe experimental determination
of structure functions performed at DIS experiments.

From a theoretical point of view, DIS (likeRe+e−) has also a privileged status. There are in fact
good reasons to believe that power corrections in DIS processes behave like 1/Q2. This is unlike (for
example) jets ine+e− annihilation, where one expects corrections of the order of1/Q. Thus, DIS is a
good place where to measureαS.

The most general form of the DIS cross section for electromagnetic processes is given by

dσ

dx dy
=

4πα2
em(S − M)2

Q4

[(

1 − y − xyM2

S − M2

)

F2(x, Q2) + y2 x F1(x, Q2)

]

, (149)

whereF2 andF1 are called the structure functions for DIS,y corresponds to the variables defined previ-
ously,M is the mass of the target nucleon andx = xBj. I will not illustrate the derivation of this formula,
which is found in many textbooks. It is a simple consequence of electrodynamics at the lowest order
in αem, and of Lorentz invariance. It does not, therefore, contain any dynamical consequence of strong
interactions, aside from its symmetry properties. From formula (99), and after what we have said in
the previous chapter with regard to the factorization theorem, we can now write down the leading order,
QCD-improved parton model formula for DIS

dσ

dy dx
=

2πα2
emSxBj

Q4

(

1 + (1 − y)2
)

∑

l

c2
l fl(x, Q) . (150)

In order to have leading order accuracy, it is sufficient to chooseµ ≈ Q. For simplicity, I have chosen
µ = Q. From eqs. (149) and (150), neglecting mass effects, we find

F2(x, Q) = 2xF1(x, Q) , (151)

which is the so-called Callan-Gross relation, and

F2(x, Q) = x
∑

l

c2
l fl(x, Q) . (152)
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The Callan–Gross relation is a prediction of the parton model, and it is a consequence of the fact that
the only charged partons are fermions. It is however only a leading order prediction. When radiative
corrections are included, it is violated. One definesFL = F2 − 2xF1.

It is useful to focus now upon they dependence of the parton model formula. We have

y =
p̂ · q
p̂ · k = 1 − p̂ · k′

p̂ · k =
1 − cos θ

2
, (153)

and thusy is related to the electron scattering angleθ in the CM frame of the electron-parton collision
(sometimes called the partonic CM frame).

The scattering of the lepton on a quark of the same helicity, gives rise to ay dependence propor-
tional to 1, while in the case of a quark of different helicity, they dependence is(1 − y)2. Thus, in
the case of spin-averaged cross sections in electromagnetism, they dependence is1 + (1 − y)2. The
verification of these properties is a simple exercise with Feynman graphs.

The vanishing of the cross section in the backward limit (i.e.y = 1) for the quarks and lepton
with opposite helicity has a simple intuitive explanation. The spins of the lepton andthe quark are
aligned, since their helicities are opposite, and their momenta are opposite. Thus, they have a total
angular momentum 1 in the collision direction. Vector interactions conserve helicities. Thus, the quark
and lepton will have the same helicity after the interaction. In the case of backward scattering, however,
they have opposite momentum, and thus they have opposite total spin. Thus, conservation of angular
momentum imposes the vanishing of the backward cross section, which is whatthe(1− y)2 dependence
predicts.

Parity violating processes contribute anti-symmetrically in the exchange of the helicity of the
incoming lepton. We expect a(1− (1−y)2) = 2(y−y2/2) dependence to be present in this case. Thus,
a third structure function appears. For example, in neutrino charged current DIS (i.e.νµN → µ−X or
ν̄µN → µ+X) we have

dσ

dx dy
=

G2
F(S − M2)

2π

M2
W

(Q2 + M2
W)2

[

(

1 − y − xyM2

S − M2

)

F cc
2 (x, Q2)

+y2 x F cc
1 (x, Q2) ± (y − y2/2)xF cc

3

]

, (154)

where the sign in front ofF3 is chosen positive forν, and negative for̄ν interactions. The parton cross
section is given by

dσ

dy
=

G2
Fŝ

π

M2
W

(Q2 + M2
W)2

{

1 same helicities
(1 − y)2 opposite helicities

. (155)

The neutrino is left handed, and charged current interactions involve left-handed quarks and their an-
tiparticles, which are right-handed. Thus, when the neutrino scatters offa quarks, we get the constanty
dependence; when it scatters off an antiquarks, we get the(1 − y)2 dependece. Because of charge con-
servation (i.e., the neutrino goes into an electron, and thus gives one unit of positive charge to the quark)
only negatively charged quarks or antiquarks can be involved. Thus,for example, forνµp → µ−X,
neglecting for the moment a possible charm or bottom parton density in the proton we have

dσ

dx dy
=

G2
FSx

π

M2
W

(Q2 + M2
W)2

[

(d(x, Q) + s(x, Q)) + (1 − y)2 ū(x, Q)
]

, (156)

Here we introduce the notation

u(x, Q) = f (p)
u (x, Q) , d(x, Q) = f

(p)
d (x, Q) , etc. (157)
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for the quark densities in the proton. The corresponding densities in the neutron are obtain from isospin
symmetry

f (n)
u (x, Q) = d(x, Q) , f

(n)
d (x, Q) = u(x, Q) , etc.. (158)

Thus

F cc
2 (x, Q) = 2xF cc

1 (x, Q) = 2x(d(x, Q) + s(x, Q) + ū(x, Q)) (159)

F cc
3 (x, Q) = 2(d(x, Q) + s(x, Q) − ū(x, Q)) . (160)

Similarly, for ν̄p → e+X

F cc
2 (x, Q) = 2(u(x, Q) + s(x, Q) + d̄(x, Q)) (161)

F cc
3 (x, Q) = 2(−d̄(x, Q) − s̄(x, Q) + u(x, Q)) . (162)

One gets the sum rule
∫ 1

0
dx

[

F ν̄p
3 (x, Q) + F νp

3 (x, Q)
]

= (163)

2

∫ 1

0
dx

[

u(x, Q) − ū(x, Q) + d(x, Q) − d̄(x, Q) + s(x, Q) − s̄(x, Q) + . . .
]

= 6

which is called Gross–Llewellyn Smith sum rule, and expresses the fact thatthere are three quarks in a
proton.

The phenomenology of DIS scattering is quite complex, and it is really impossibleto review it in a
satisfactory way in the context of these lectures. Several complications ofexperimental nature arise, and
have to be dealt with properly. When extracting the structure functionsF1 or F2 from data, it is usually
assumed thatF1 andF2 are related on the basis of the Callan–Gross relation

2xF1(x, Q) = F2(x, Q) × 1 + 4M2x2/Q2

1 + R(x, Q2)
(164)

where, if the Callan–Gross relation was satisfied exactly, one would haveR = 0. Different experiments
are performed on different targets. The structure functions for a nucleon embedded in a nucleus are
distorted (EMC effect). Finally, the size of power suppressed effects (the so calledhigher twist effects)
should be assessed, especially for lowQ2 experiments. In the present context I will not try to explain
how to deal with these complications. I will instead try to give a rough idea of how the strong coupling
constant and the parton densities are extracted from data.

The strong coupling constant can be extracted from DIS data using sum rules, like the Gross–
Llewellyn Smith sum rule. Sum rules are in fact calculable in perturbative QCD, and the difference from
their parton model value can be used to extractαS. For the Gross–Lewellyn Smith sum rule

∫ 1

0
dx

[

F ν̄p
3 (x, Q) + F νp

3 (x, Q)
]

=

6

[

1 − αS

π
×

(

1 + 3.58
αS

π
+ 19

(αS

π

)2
)

+ O(α4
S) − ∆HT

]

. (165)

A recent CCFR determination [53] obtains

αS(1.73GeV ) = 0.280+0.070
−0.068 → αS(MZ) = 0.114+0.009

−0.012 . (166)

These determinations have the advantage that these quantities have been computed at very high order in
perturbation theory [54] , and thus the theoretical error are reduced.Since, however, they are performed
at a rather low scale, some estimate of higher twist effects (the∆HT) are necessary.
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Q ∆αS(MZ)
Measurements (GeV) αs(Q) αs(mZ) exp. theor. Theory

DIS, GLS-sr 1.73 0.280 +0.070
−0.068 0.114 +0.009

−0.012
+0.008
−0.010 ±0.005 NNLO

DIS, ν; xF3 5 0.214 ± 0.021 0.118 ± 0.006 ±0.005 ±0.003 NNLO
DIS, e/µ; F2 2.96 0.252 ± 0.011 0.1172 ± 0.0024 ±0.0017 ±0.0017 NNLO

Table 5: Determinations ofαS from DIS data, taken from ref. [11]. GLS-sr stands for Gross-Llewellyn Smith sum rule.

The standard method to measureαS in DIS is based upon the fact that the speed of evolution is
proportional toαS. The logarithmic derivative of the structure functions with respect toQ2 are found
therefore to have a strong sensitivity to the value ofαS. It is convenient to use a non-singlet structure
function, in order to avoid uncertainties due to the poor knowledge of the gluon density. Thus, for
example, one can useF3 in neutrino scattering [55]. Alternatively, one can use structure functions at very
largex. Since gluons are not valence particles, their density is quite soft, that is to say, concentrated at
small values ofx. In general, there is little gluon content in the hadrons forx > 0.2. Using this fact, one
can also use muon data to determineαS. A summary ofαS measurements from DIS is reported in table 5
from ref. [11]. The table deserves some comments. First of all, notice thatall these determinations are
performed at the NNLO level. This has become possible because of recent progress in the computation
of moments of the splitting functions at orderα3

S [42] [43]. This has allowed NNLO analysis of DIS data
[56] [57]. The heoretical precision of these analysis matches that ofRe+e− . Comparing tables 5 and 2
we see a remarkable consistency in two different determinations, performed with completely different
experimental setups, and at very different scales.

Neutrino scattering allows independent access to the quark and antiquarkcontent of nucleons. It
is generally carried out on heavy, approximately isosinglet targets.F2 measurements in electromagnetic
and charged current experiments give access to the combinations reported in the table 6. In principle,

F ep
2 /x 4

9(u + ū) + 1
9(d + d̄ + s + s̄)

F ed
2 /x 5

9(u + ū + d + d̄) + 2
9(s + s̄)

F νd
2 2(u + ū + d + d̄ + 2s)

F ν̄d
2 2(u + ū + d + d̄ + 2s̄)

F νd
3 2(u − ū + d − d̄ + 2s)

F ν̄d
3 2(u − ū + d − d̄ − 2s̄)

Table 6:F2 in various experimental configurations of interest.

strange and antistrange content could be extracted from neutrino and antineutrino data on isosinglet
targets. Or, assumings = s̄, we can use the combination5/6F νd

2 − 3F ed
2 = x2s. In practice, the strange

content is better constrained by looking at charm production in neutrino DIS. The corresponding signal,
in the case ofνµ scattering, is given by an unlike sign muon pair, one arising from the charged current
scattering, and the other from charm decay.

Assuming that we have measured the strange content, we have access to thecombinationsu + ū,
d+ d̄, u+d andū+ d̄. These quantities are not independent, since the sum of the first two equals the sum
of the last two. Thus, one more input is needed. It was usually assumed that ū = d̄. This assumption,
supplemented with sum-rule restrictions, is however in conflict with data. In fact, using the flavour sum
rules

∫

dx [u(x, Q) − ū(x, Q)] = 2 ,

∫

dx
[

d(x, Q) − d̄(x, Q)
]

= 1 , , (167)

we obtain
∫ 1

0

dx

x

[

F
(p)
2 (x, Q) − F

(n)
2 (x, Q)

]
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=

∫ 1

0
dx

1

3

[

u(x, Q) + ū(x, Q) − d(x, Q) − d̄(x, Q)
]

=
1

3
+

2

3

∫ 1

0
dx

[

ū(x, Q) − d̄(x, Q)
]

(168)

which, if ū = d̄ gives the so called Gottfried sum rule. Experimental measurements of the Gottfried sum
favour a negative contribution from thēu − d̄ difference.

In order to access thēu − d̄ difference as a function ofx, one has to use different experiments.
Drell-Yan pair production in proton-proton collisions is one example.

Thex integrals ofF2 are proportional to a combination of the momentum fraction carried by the
quarks and antiquarks. In particular, for example, the integral ofF νd

2 gives the total momentum fraction
carried by quarks. This quantity is measured to be roughly 0.5. Thus, oneexpects that a large fraction
of the hadron momentum is carried by gluons. This poses a valuable constraint on the gluon density
g(x, Q). From DIS, the traditional way to determineg(x, Q) is from its influence upon the evolution of
the singlet structure functions. This is viable at relatively small values ofx, where the gluon density is
not small. At largex, however, one needs to rely upon direct methods, since the gluon densityis too
small there to influence evolution. Direct photon production is one such process.

Today’s tendency for structure function studies is to perform global fitsto a large variety of data
samples. One recent description of structure functions fits is given in ref. [58], where many aspects are
discussed in detail. The result of these fits is shown in fig. 20.
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Fig. 20: Parton distributions by the MRST group.

7 QCD IN HADRONIC COLLISIONS

Perturbative QCD applications in hadronic collisions is extremely important, dueto the impact it has had
in the recent past for the discovery of new particles, and the impact it is going to have in the future for
the search of new physics at the LHC. Thus there are essentially two main points of study for QCD at
hadron colliders, and they clearly go hand in hand

• QCD tests in hard processes
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• Modeling of particle production processes (computing cross sections fortop, higgs, etc.) and
computing backgrounds.

Unlike the case ofe+e− annihilation into hadrons, where each event is a hard process, in hadronic
collisions most events are soft, even if the CM energy is very high. This is because, even if the colliding
energy is high, the momentum transfer involved is not large. However, in theproduction of very massive
particles, or in processes in which particles at high transverse momentum appear, hard momenta are
actually present, and we can apply perturbative QCD. As a rule of thumb, when we try to compute a
process using the parton model formula, and find that it is dominated by small momenta, this means that
we can no longer neglect low energy details, like the off-shellness of the partons inside the colliding
hadrons, or their mass. In this case, the process is controlled by long distance dynamics, and cannot be
computed using perturbative QCD.

7.1 The kinematic variables for hadronic collisions

Given the two colliding hadron beams, one defines the kinematical variables of any outgoing particles
according to the figure below

.

Thus, the transverse momentumk⊥ is the projection of the particle momentum into the transverse plane
(the plane orthogonal to the collision axis). The azimuthal angleφ is defined with respect to the collision
axis. One usually defines

Transverse energy= ET = sin θE

Transverse mass= mT =
√

k2
T + m2

Rapidity = y =
1

2
log

k0 + k‖

k0 − k‖ .

The rapidity has the nice property that under a longitudinal boost it is simply translated by the boost
angle: y → y + log γ. The transverse momentum, and thus the transverse mass, are simply invariant
under longitudinal boosts. Thus, these variables are particularly useful to study hard processes, since in
general the parton centre-of-mass system for the process will be translated with respect to the hadron
CM. For particles of small mass, we have

y ≈ 1

2
log

1 + cos θ

1 − cos θ
= − log tan

θ

2
, (169)

and thus one defines the pseudorapidity

η = − log tan
θ

2
. (170)

It is useful to remember the following formula for the single particle phase space

d3k

2k0(2π)3
=

1

2(2π)3
d2kTdy . (171)

Thus, the single particle phase space is uniform in transverse momentum andrapidity.
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7.2 Total cross section

The total hadronic cross section is in the range of several 10mb range, and it grows logarithmically with S.
This is roughly the inverse of few hundred MeV squared, the characteristic scale of strong interactions.
We cannot compute the total cross section using perturbative QCD. Phenomenological models based
upon Regge theory are usually employed to describe the data.

If we attempted to estimate the total cross section using parton model concept, wewould end up
computing a parton production cross section integrated over the transverse momentum of the parton. On
dimensional ground, this cross section would be divergent at small transverse momenta

dσ

dk2
T

≈ 1

k4
T

⇒ σ ≈
∫

dk2
T

k4
T

≈ 1

Λ2
(172)

where the last step follows from the fact that some non-perturbative hadronic scale (for example, the
off-shellness of the incoming partons) should act as a lower cutoff of theintegral. Thus, perturbation
theory, although incapable to give a definite answer, fails precisely at thepoint when the cross section
becomes of the order of the total cross section.

7.3 Typical inelastic processes

The typical inelastic events in hadronic collisions are quite complex. Severalhadrons are produced, the
average charged multiplicity〈nch〉 being typically of the order of 30 to 40 per event forEcm = 600
to 1800 GeV, and it grows logarithmically with energy. Fluctuations in multiplicity are large, of the
order of 100%, a typical feature of cascade processes. The transverse momentum distribution of the
produced hadrons are characterized by an average transverse mass of the order of few hundred MeV,
growing slowly with energy. The produced particles are distributed uniformly in rapidity, the distribution
dropping smoothly to zero when approaching the maximum rapidity.

7.4 Looking for hard processes in hadronic collisions

Hadron collider physics is complicated by the fact that interesting events arerare with respect to the
common lowpT inelastic events. This is immediately understood if we estimate the cross section for
the production of a 100 GeV object to be of the order of10−4 GeV−2, while the typical inelastic cross
section is of the order of10−4 MeV−2. We expect roughly 1 hard event every 106 soft ones, and this
estimate ignores eventual suppression due to the coupling constant.

Furthermore, soft events may look like hard ones, because of fluctuations. Thus, with a multiplicity
of 30 and an averagepT of few hundred MeV, the average total transverse energy can very well be of the
order of tens of GeV. Fluctuations may favour occasionally even larger transverse momenta.

7.5 Jets at Hadron Colliders

Thus, unlike thee+e− case, where above a certain energy all events look like jet events, in hadronic
collisions establishing the existence of jets has required the use of an appropriate trigger. In fact, one
has to look only at events with a large total transverse energy. If the total transverse energy is larger than
the typical value for a soft event, the events show the presence of jets. This was the method followed by
the UA2 and UA1 experiments at the CERN Spp̄S collider, to establish the existence of jets in hadronic
collisions. It was found there that requiring a transverse energy larger than 70 GeV, most events look like
jet events.

The description of jet production in QCD follows the lines of the QCD-improvedparton model.
At the leading order level, in order to compute jet cross section we only needthe Born cross sections for
parton parton scattering, reported in table 7. The 2-jet inclusive cross section can then be obtained from
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Process dσ̂
dΦ2

qq′ → qq′ 1
2ŝ

4
9

ŝ2+û2

t̂2

qq → qq 1
2

1
2ŝ

[

4
9

(

ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

)

− 8
27

ŝ2

ût̂

]

qq̄ → q′q̄′ 1
2ŝ

4
9

t̂2+û2

ŝ2

qq̄ → qq̄ 1
2ŝ

[

4
9

(

ŝ2+û2

t̂2
+ t̂2+û2

ŝ2

)

− 8
27

û2

ŝt̂

]

qq̄ → gg 1
2

1
2ŝ

[

32
27

t̂2+û2

t̂û
− 8

3
t̂2+û2

ŝ2

]

gg → qq̄ 1
2ŝ

[

1
6

t̂2+û2

t̂û
− 3

8
t̂2+û2

ŝ2

]

gq → gq 1
2ŝ

[

−4
9

ŝ2+û2

ŝû + û2+ŝ2

t̂2

]

gg → gg 1
2

1
2ŝ

9
2

(

3 − t̂û
ŝ2 − ŝû

t̂2
− ŝt̂

û2

)

Table 7: Cross sections for light parton scattering. The notation isp1 p2 → k l, ŝ = (p1 + p2)
2, t̂ = (p1 − k)2, û = (p1 − l)2.

the formula

dσ =
∑

ijkl

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
dΦ2 (173)

that has to be expressed in term of the rapidity and transverse momentum of the quarks (or jets), in order
to make contact with physical reality. The two particle phase space is given by

dΦ2 =
d3k

2k0(2π)3
2π δ((p1 + p2 − k)2) , (174)

and using eq. (171), in the CM of the colliding partons, we get

dΦ2 =
1

2(2π)2
d2kT dy 2 δ(ŝ − 4(k0)2 ) . (175)

Herey is the rapidity of the produced parton in the parton CM frame. It is given by

y =
y1 − y2

2
(176)

wherey1 andy2 are the rapidities of the produced partons in the laboratory frame (in fact, inany frame).
One also introduces

y0 =
y1 + y2

2
=

1

2
log

x1

x2
, τ =

ŝ

s
= x1 x2 . (177)

We have
dx1 dx2 = dy0 dτ . (178)

We obtain

dσ =
∑

ijkl

dy0
1

s
f

(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2

1

2(2π)2
2 dy d2kT (179)

which can also be written as

dσ

dy1 dy2 d2kT

=
1

s 2(2π)2

∑

ijkl

f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
. (180)
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The variablesx1, x2 can be obtained fromy1, y2 andpT from the equations

y0 =
y1 + y2

2
(181)

y =
y1 − y2

2
(182)

xT =
2pT√

s
(183)

x1 = xT ey0 cosh y (184)

x2 = xT e−y0 cosh y . (185)

For the partonic variables, we needŝ = s x1 x2 and the scattering angle in the parton CM frameθ, since

t = −s

2
(1 − cos θ) , u = −s

2
(1 + cos θ) . (186)

Since we are neglecting parton masses, rapidity and pseudorapidity are identical, so that the equation

y = − log tan
θ

2
(187)

gives usθ.

The Born cross section formulae given here predict the production of back-to-back jets, with op-
posite transverse momenta. Details of the jet distributions depend upon the knowledge of the structure
functions. However, it has been observed that, to a good approximation,scattering processes with gluon
exchange in thet channel dominate, and that they are roughly proportional to each other.More specif-
ically, thegg → gg, qg → qg andqq′ → qq′ processes are in the ratio3 × 3, 3 × 4/3 and4/3 × 4/3
respectively. This property is exact in the small angle scattering limit, but holdsto a good approximation
also at large angles. It can be obtained from Table 7, by keeping only themost enhanced terms when
t → 0 (andu → −s) or whenu → 0 (and t → −s). The processes with identical particles in the
final state have an extra factor of1/2, but on he other hand have enhanced terms whent → 0 and when
u → 0, while those with different particles in the final state have only thet singularity. Thus, at the end,
theqq → qq process at small angle gives the same contribution as theqq′ → qq′ process.

Using this property the jet cross section simplifies

dσ

dy1 dy2 d2kT

≈ 1

s 2(2π)2
F (H1)(x1, µ)F (H2)(x2, µ)

dσ̂gg→gg

dΦ2
. (188)

with

F (H)(x, µ) = f (H)
g (x, µ) +

4

9

∑

i6=g

f
(H)
i (x, µ) . (189)

Equation (188) gives a definite prediction for the angular dependence of jet production. It can also be
written, more explicitly, in terms ofx1, x2 andcos θ, whereθ is the scattering angle in the rest frame of
the partons.

dσ

dx1 dx2 d cos θ
= F (H1)(x1, µ)F (H2)(x2, µ)

dσ̂gg→gg

d cos θ
. (190)

Early studies of the UA1 and UA2 experiments have confirmed this behaviour[59].

Modern studies of jet physics at colliders are performed at the next-to-leading level in QCD.
Calculations of jets cross sections at next-to-leading level have been available for quite a long time.
Comparisons between data and calculation require agreement on a jet definition to be used. Such a
definition should be of the Sterman-Weinberg type, that is to say, it should beinfrared and collinear safe.
Several algorithms have been proposed to define jets. For the purpose of this lectures, it will be enough
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Fig. 21: The reach of the D0 inclusive jet analysis in theQ2, x plane for the parton densities (left plot), and the Inclusive jet

cross section as a function ofET , in various rapidity bins, versus theoretical predictions (right plot).

to know that the most commonly used definitions make use of a circle of a given radiusR in theφθ plane.
The circle is moved in the plane until one finds a maximum of the transverse energy deposition inside
the circle, and a jet of the givenφη andET values is associated with this point. The single inclusive
distribution of jets found in this way, as a function ofET, is compared with QCD NLO calculation.

An example of a recent measurement of the inclusive jet cross section is given in ref. [60], from the
D0 collaboration. The inclusive jet cross section is measured in a wide rapidity range. By exploring the
high rapidity region, one extends toward smaller values ofx the region in theQ2, x plane where parton
densities are probed, as shown in the left plot of fig. 21. Jets are defined with theηφ cone algorithm,
with a radiusR = 0.7. The D0 results, together with a NLO QCD predictions, are shown in the right
plot of fig. 21, showing a remarkable agreement. A more detailed comparisonis shown in fig. 22, where
the ratio(data− theory)/theory is plotted. Theoretical results are obtained with the program JETRAD
[61], using the CTEQ4 [62] (left figure) and MRST [58] (right figure) structure functions. The shaded
band corresponds to one standard deviation on the systematic error. Oneexpects a comparable band for
the theoretical error. The data is therefore in good agreement with theoretical predictions, showing a
preference for the CTEQ4 sets.

Double-inclusive jet cross section (i.e., dijet production) studies at the NLO have also become to
appear. CDF has performed a study of dijet production [63]. They lookat theET of one central jet
(0.1 < η1 < 0.7), while the second jet lies in several different pseudorapidity intervals.In this way, the
sensitivity to the parton densities at largex is enhanced. Qualitatively the theory gives a good description
of data, as can be seen from fig 23. A closer look reveals problems at thequantitative level. Looking at
the(data− theory)/theory ratio in the right plot of fig. 23, one sees that no parton density functions set
fits the data satisfactorily, especially in the highET region.

We recall that jet studies at the Tevatron is at the frontier of our knowledge on the parton density
functions. In fact, the single inclusive jet cross section [64] was foundinitially to be higher than QCD
predictions. Further studies have shown that the excess over perturbative predictions is within the cur-
rent flexibility in our parametrization of the parton density. It is however interesting to recall the value
of studies of this kind. Since the QCD jets parton cross sections drop with a thesquare of the transverse
energy, a contact, 4-fermion interaction (similar, therefore, to weak interactions at low energies) would
stick out at sufficiently highET. In particular, a 4-fermion interaction with a coupling constantG, would
give rise to corrections to the cross section due to the interference terms withthe standard QCD ampli-
tude. On purely dimensional ground, such corrections would be of order G, and would thus overcome the
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strong interaction at someET. Thus, high transverse momentum jets studies can be used to put bounds
on these kind of interactions. Sometimes, these bounds are called, somewhatimproperly, compositeness
bounds, since these kinds of 4-fermion interactions would naturally arise incomposite models, due to
the exchange of heavy composite particles.

7.6 Production ofW , Z, and Drell-Yan pairs

From the point of view of perturbative QCD, the production ofW , Z and Drell-Yan pairs are very similar
processes. Some graphs contributing at leading, next-to-leading, and next-to-next-to-leading order in the
strong coupling are shown in fig. 24. The corrections of orderαS have been given a long time ago in

Fig. 24: Some graphs contributing to the Drell-Yan partonic cross section inQCD.

refs. [46, 47, 48], while theα2
S corrections have been computed in ref. [65, 66]. In order to get acquainted

with the kinematics, let us compute the parton cross section for the production of a hypothetic massive
vector meson. The amplitude is

M = g v̄(p2) γµu(p1) (191)

and the partonic cross section is

σ̂ =
1

2ŝ

1

4

1

9

∫

dΦ1

∑

spin,col.

|M|2 , (192)

where we have included a factor of1/4 for the initial spin average,1/9 for the initial colour average,
1/2ŝ to go from an amplitude squared to a cross section, and the one-particle phase spacedΦ1. We have

∑

spin,col.

|M|2 = 3g2 Tr[ /p1γ
µ(− /p2)γµ] = 12g2ŝ , (193)

and

dΦ1 =

∫

d3q

2q0(2π)3
(2π)4 δ4(p1 + p2 − q) = 2π δ((p1 + p2)

2 − M2
V ) (194)

so that at the end we get

σ̂ =
4π2

3
α δ(ŝ − M2

V ) , (195)

with α = g2/(4π). For W± production, the coupling isg = gem/(
√

2 sin θW), and only left handed
quarks, and right handed antiquarks, can contribute. We get

σ̂W =
π2 αem

3
sin−2 θW δ(ŝ − M2

W ) . (196)

The full hadronic cross section is then

σW =

∫

dx1 dx2

[(

f (H1)
u (x1) f

(H2)

d̄
(x2) + f

(H1)

d̄
(x1) f (H2)

u (x2)
)

cos2 θC + . . .
]

× π2αem

3 sin2 θW

δ(s x1 x2 − M2
W ) (197)
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where one should not forget the appropriate CKM factors. A recent summary ofW/Z cross section
studies at the Tevatron is given in ref. [67].

From the measured ratio

R =
σW · B(W → eν)

σZ · B(Z → ee)
, (198)

assuming that the ratio of the production cross section is accurately calculable, one can extractB(W →
eν̄), and from itΓW ,

ΓW =
Γ(W → eν̄)

B(W → eν̄)
, (199)

assuming that theeν width is correctly given by the standard model.

7.7 Heavy Flavour production

The production of heavy flavour in hadronic collisions involves strong interactions directly. Furthermore,
in many cases of interest, the gluon densities play an important role. This is unlike the case ofW/Z
production, in which the main production mechanism does not involve the strong coupling constant. The
search and discovery of the top quark has therefore relied on the wholemachinery of perturbative QCD,
factorization, and structure function physics.

The leading order process is proportional to the square of the strong coupling constant. Next-to-
leading (orderα3

S) calculations for the production of heavy flavour production have beenavailable for a
long time. Furthermore, a large amount of work has been performed on resummation of effects enhanced
in particular kinematic regions [68].

Since the top is very heavy, one expects that perturbative QCD should work well in this case.
In fig. 25, taken from ref. [69], I show a comparison of theoretical predictions with the CDF and D0
measurements.

CDF data for bottom production has always shown a tendency to be higherthan the theoretical
predictions, as one can see from fig. 26, a problem that is being activelyinvestigated. A large body of
data is available for charm production. Theoretical calculations are, however, not very reliable in these
cases, since the charm mass is only moderately heavy, and thus one cannot safely rely upon perturbation
theory. Some results are shown in fig. 27. A recent review of heavy flavour production is given in [68].

8 CONCLUSIONS

In these lectures I have given an overview of perturbative QCD. As wehave seen, the application of
perturbation theory in strong interactions is not straightforward, unlike thecase of weak interactions and
electrodynamics. Nevertheless, a consistent and testable framework forthe application of perturbation
theory in strong interactions can be defined. This framework has been severely tested ine+e−, ep, and
hadron-collision physics. It is perhaps true that, after the very extensive work performed at LEP1 and
at the SLD, our confidence in perturbative QCD has become quite solid. Testing QCD remains however
an important activity, due to the large number of applications that heavily depend upon it. The near
future in particle physics research is in hadron collider physics, where the application of QCD is more
complex. We should not forget, for example, that Higgs production at hadronic colliders is essentially
a stong-interaction phenomenon, driven by gluons. Thus, it is important tobuild more confidence upon
our ability to compute hadronic processes.
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