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Abstract
I review in this series of lectures the basics of perturbative quantum chromody-
namics and some simple applications to the physics of high-energy collisions.

1. INTRODUCTION

Quantum Chromodynamics (QCD) is the theory of strong interactions. It is formulated in terms of
elementary fields (quarks and gluons), whose interactions obey the principles of a relativistic QFT, with
a non-abelian gauge invariance SU(3). The emergence of QCD as theory of strong interactions could be
reviewed historically, analyzing the various experimental data and the theoretical ideas available in the
years 1960–1973 (see e.g. Refs. [17,18]). To do this accurately and usefully would require more time
than I have available. I therefore prefer to introduce QCD right away, and to use my time in exploring
some of its consequences and applications. I will therefore assume that you all know more or less what
QCD is! I assume you know that hadrons are made of quarks, that quarks are spin-1/2, colour-triplet
fermions, interacting via the exchange of an octet of spin-1 gluons. I assume you know the concept of
running couplings, asymptotic freedom and of confinement. I shall finally assume that you have some
familiarity with the fundamental ideas and formalism of QED: Feynman rules, renormalization, gauge
invariance.

If you go through lecture series on QCD (e.g., the lectures given in previous years at the CERN
Summer School, Refs. [9–11]), you will hardly ever find the same item twice. This is because QCD
today covers a huge set of subjects and each of us has his own concept of what to do with QCD and
of what are the “fundamental” notions of QCD and its “fundamental” applications. As a result, you
will find lecture series centred around non-perturbative applications, (lattice QCD, sum rules, chiral
perturbation theory, heavy quark effective theory), around formal properties of the perturbative expansion
(asymptotic behaviour, renormalons), techniques to evaluate complex classes of Feynman diagrams, or
phenomenological applications of QCD to possibly very different sets of experimental data (structure
functions, deep-inelastic scattering (DIS) sum rules, polarized DIS, small x physics (including hard
pomerons, diffraction), LEP physics, pp̄ collisions, etc.

I can anticipate that I will not be able to cover or to simply mention all of this. After introducing
some basic material, I will focus on some elementary applications of QCD in high-energy e+e−, ep and
pp̄ collisions. The outline of these lectures is the following:

1. Gauge invariance and Feynman rules for QCD.

2. Renormalization, running coupling, renormalization group invariance.

3. QCD in e+e− collisions: from quarks and gluons to hadrons, jets, shape variables.

4. QCD in lepton-hadron collisions: DIS, parton densities, parton evolution.

5. QCD in hadron-hadron collisions: formalism, W/Z production, jet production.

Given the large number of papers which contributed to the development of the field, it is impossible to
provide a fair bibliography. I therefore limit my list of references to some excellent books and review
articles covering the material presented here, and more. Papers on specific items can be easily found by
consulting the standard hep-th and hep-ph preprint archives.
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2. QCD FEYNMAN RULES

There is no free lunch, so before starting with the applications, we need to spend some time developing
the formalism and the necessary theoretical ideas. I will dedicate to this purpose the first two lectures.
Today, I concentrate on Feynman rules. I will use an approach which is not canonical, namely it does
not follow the standard path of the construction of a gauge invariant Lagrangian and the derivation of
Feynman rules from it. I will rather start from QED, and empirically construct the extension to a non-
Abelian theory by enforcing the desired symmetries directly on some specific scattering amplitudes.
Hopefully, this will lead to a better insight into the relation between gauge invariance and Feynman
rules. It will also provide you with a way of easily recalling or checking your rules when books are not
around!

2.1. Summary of QED Feynman rules

We start by summarizing the familiar Feynman rules for Quantum Electrodynamics (QED). They are
obtained from the Lagrangian:

L = ψ̄(i∂/−m)ψ − eψ̄A/ψ − 1

4
FµνF

µν , (1)

where ψ is the electron field, of mass m and coupling constant e, and F µν is the electromagnetic field
strength.

Fµν = ∂µAν − ∂νAµ . (2)

The resulting Feynman rules are summarized in the following table:

=
i

p/−m+ iε
= i

p/+m

p2 −m2 + iε
(3)

= −i gµν

p2 + iε
(Feynman gauge) (4)

= −ieγµQ (Q = −1 for the electron, Q = 2/3 for the u-quark, etc.)

(5)

Let us start by considering a simple QED process, e+e− → γγ (for simplicity we shall always as-
sume m = 0):

= D1 +D2 (6)

The total amplitude Mγ is given by:
i

e2
Mγ ≡ D1 +D2 = v̄(q̄) ε/2

1

q/− k/1

ε/1 u(q) + v̄(q̄)ε/1

1

q/− k/2

ε/2 n(q) ≡Mµνε
µ
1ε

ν
2 . (7)

Gauge invariance demands that
εν2∂

µMµν = εµ1∂
νMµν = 0 . (8)

Mµ ≡ Mµνε
ν
2 is in fact the current that couples to the photon k1. Charge conservation re-

quires ∂µM
µ = 0:

∂µM
µ = 0 ⇒ d

dt

∫

M0d3x =

∫

∂0M
0 d3x
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=

∫

~∇ · ~M d3x =

∫

S→∞
~M · d~Σ = 0 . (9)

In momentum space, this means
kµ
1Mµ = 0 . (10)

Another way of saying this is that the theory is invariant if εµ(k) → εµ(k)+f(k) kµ . This is the standard
Abelian gauge invariance associated to the vector potential transformations:

Aµ(x) → Aµ(x) + ∂µf(x) . (11)

Let us verify that Mγ is indeed gauge invariant. Using q/u(q) = v̄(q̄)q̄/ = 0 from the Dirac
equation, we can rewrite kµ

1Mµ as:

kµ
1 ε

ν
2Mµν = v̄(q̄)ε/2

1

q/− k/1

(k/1 − q/)u(q) + v̄(q̄)(k/1 − q̄)
1

k1 − q̄
ε/2u(q)

= −v̄(q̄)ε/2u(q) + v̄(q̄)ε/2u(q) = 0 . (12)

Notice that the two diagrams are not individually gauge invariant, only the sum is. Notice also that the
cancellation takes place independently of the choice of ε2. The amplitude is therefore gauge invariant
even in the case of emission of non-transverse photons.

Let us try now to generalize our QED example to a theory where the “electrons” carry a non-
Abelian charge, i.e., they transform under a non-trivial representation R of a non-Abelian group G
(which, for the sake of simplicity, we shall always assume to be of the SU(N) type. Likewise, we
shall refer to the non-abelian charge as “colour”). The standard current operator belongs to the product
R⊗ R̄. The only representation that belongs to R⊗ R̄ for any R is the adjoint representation. Therefore
the field that couples to the colour current must transform as the adjoint representation of the group G.
So the only generalization of the photon field to the case of a non-Abelian symmetry is a set of vector
fields transforming under the adjoint of G, and the simplest generalization of the coupling to fermions
takes the form:

= igλa
ki γ

µ
mn , (13)

where the matrices λa represent the algebra of the group on the representation R. By definition, they
satisfy the algebra:

[λa, λb] = ifabcλc (14)

for a fixed set of structure constants f abc, which uniquely characterize the algebra. We shall call quarks
(q) the fermion fields in R and gluons (g) the vector fields which couple to the quark colour current.

The non-abelian generalization of the e+e− → γγ process is the qq̄ → gg annihilation. Its
amplitude can be evaluated by including the λ matrices in Eq. (6):

i

e2
Mγ → i

g2
Mg ≡ (λbλa)ij D1 + (λaλb)ij D2 (15)

with (a, b) colour labels (i.e. group indices) of gluons 1 and 2, (i, j) colour labels of q̄, q, respectively.
Using Eq. (14), we can rewrite (15) as:

Mg = (λaλb)ij Mγ − g2 fabcλc
ij D1 . (16)
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If we want the charge associated with the group G to be conserved, we still need to demand

kµ
1 ε

ν
2 M

µν
g = εµ1k

ν
2 M

µν
g = 0 . (17)

Substituting εµ1 → kµ
1 in (16) we get instead, using (12):

k1 µM
µ
g = −g2fabc λc

ij v̄i(q̄) ε/2ui(q) . (18)

The gauge cancellation taking place in QED between the two diagrams is spoiled by the non-Abelian
nature of the coupling of quarks to gluons (i.e., λa and λb do not commute, and f abc 6= 0).

The only possible way to solve this problem is to include additional diagrams. That new interac-
tions should exist is by itself a reasonable fact, since gluons are charged (i.e., they transform under the
symmetry group) and might want to interact among themselves. If we rewrite (18) as follows:

k1 µM
µ
g = i

(

fabc g εµ2

)

×
(

i g λc
ij v̄(q̄) γµ u(q)

)

, (19)

we can recognize in the second factor the structure of the qq̄g vertex. The first factor has the appropriate
colour structure to describe a triple-gluon vertex, with a, b, c the colour labels of the three gluons:

= g fabc Vµ1µ2µ3(k1, k2, k3) . (20)

Equation (19) therefore suggests the existence of a coupling like (20), with a Lorentz structure Vµ1µ2µ3

to be specified, giving rise to the following contribution to qq̄ → gg:

= −i g2D3 = (ig λa
ij)v̄(q̄)i γ

µ u(q)j

(−i
p2

)

g fabc Vµνρ(−p, k1, k2) ε
ν
1(k1) ε

ρ
2(k2) . (21)

We now need to find Vµ1µ2µ3(p1, p2, p3) and to verify that the contribution of the new diagram to k1 ·Mg

cancels that of the first two diagrams. We will now show that the constraints of Lorentz invariance, Bose
symmetry and dimensional analysis uniquely fix V , up to an overall constant factor.

Dimensional analysis fixes the coupling to be linear in the gluon momenta. This is because each
vector field carries dimension 1, there are three of them, and the interaction must have total dimension
equal to 4. So at most one derivative (i.e. one power of momentum) can appear at the vertex. In priciple, if
some mass parameter were available, higher derivatives could be included, with the appropriate powers of
the mass parameter appearing in the denominator. This is however not the case. It is important to remark
that the absence of interactions with higher number of derivatives is also crucial for the renormalizability
of the interaction.

Lorentz invariance requires then that V be built out of terms of the form gµ1µ2pµ3 . Bose symmetry
requires V to be fully antisymmetric under the exchange of any pair (µi, pi) ↔ (µj , pj) since the colour
structure fabc is totally antisymmetric. As a result, for example, a term like gµ1µ2p

µ3
3 vanishes under

antisymmetrization, while gµ1µ2p
µ3
1 doesn’t. Starting from this last term, we can easily add the pieces

required to obtain the full antisymmetry in all three indices. The result is unique, up to an overall factor:

Vµ1µ2µ3 = V0 [(k1 − k2)
µ3gµ1µ2 + (k2 − k3)

µ1gµ2µ3 + (k3 − k1)
µ2gµ1µ3 ] . (22)
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To test the gauge variation of the contribution D3, we set µ3 = µ, ε1 = k1 and k3 = −(k1 + k2) in
Eq. (21), and we get:

kµ1
1 εµ2

2 Vµ1µ2µ(k1, k2, k3) = V0 {−(k1 + k2)
µ(k1 · ε2) + 2(k1 · k2)ε

µ
2 − (k2 · ε2)kµ

1 } . (23)

The gauge variation is therefore:

k1 ·D3 = g2fabcλcV0

[

v̄(q̄)ε/2u(q) −
k2 · ε2
2k1k2

v̄(q̄)k/1u(q)

]

. (24)

The first term cancels the gauge variation of D1 +D2 provided V0 = 1, the second term vanishes for a
physical gluon k2, since in this case k2 · ε2 = 0. D1 +D2 +D3 is therefore gauge invariant but, contrary
to the case of QED, only for physical external on-shell gluons.

Having introduced a three-gluon coupling, we can induce processes involving only gluons, such
as gg → gg:

(25)

Once more it is necessary to verify the gauge invariance of this amplitude. It turns out that one more
diagram is required, induced by a four-gluon vertex. Lorentz invariance, Bose symmetry and dimensional
analysis uniquely determine once again the structure of this vertex. The overall factor is fixed by gauge
invariance. The resulting Feynman rule for the 4-gluon vertex is given in Fig. 1.

You can verify that the 3- and 4-gluon vertices we introduced above are exactly those which arise
from the Yang–Mills Lagrangian:

LY M = −1

4

∑

a

F a
µνF

aµν with F a
µν = ∂[µA

a
ν] − g fabcAb

[µA
c
ν] . (26)

It can be shown that the 3- and 4-gluon vertices we generated are all is needed to guarantee gauge
invariance even for processes more complicated than those studied in the previous simple examples. In
other words, no extra 5- or more gluon vertices have to be introduced to achieve the gauge invariance
of higher-order amplitudes. At the tree level this is the consequence of dimensional analysis and of the
locality of the couplings (no inverse powers of the momenta can appear in the Lagrangian). At the loop
level, these conditions are supplemented by the renormalizability of the theory [3,7].

Before one can start calculating cross-sections, a technical subtlety that arises in QCD when squar-
ing the amplitudes and summing over the polarization of external states needs to be discussed. Let us
again start from the QED example. Let us focus, for example, on the sum over polarizations of photon k1:

∑

ε1

|M |2 =

(
∑

ε1

εµ1ε
ν∗
1

)

MµM
∗
ν . (27)

The two independent physical polarizations of a photon with momentum k = (k0; 0, 0, k0) are given by
εµL,R = (0; 1,±i, 0)/

√
2. They satisfy the standard normalization properties:

εL · ε∗L = −1 = εR · ε∗R εL · ε∗R = 0 .
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= δab −i gαβ

p2 + iε
(Feynman gauge)

= δab i

p2 + iε

= δik i

/p−m+ iε

∣
∣
∣
∣
mn

= gfabc
[

gαβ(p− q)γ + gβγ(q − r)α + gγα(r − p)β
]

= −ig2fxacfxbd
(

gαβgγδ − gαδgβγ
)

−ig2fxadfxbc
(

gαβgγδ − gαγgβδ
)

−ig2fxabfxcd
(

gαγgβδ − gαδgβγ
)

= −gfabc qα

= ig λa
ki γ

α
mn

Fig. 1: Feynman rules for QCD. The solid lines represent the femions, the curly lines the gluons, and the dotted lines represent

the ghosts.
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We can write the sum over physical polarizations in a convenient form by introducing the vector k̄ =
(k0; 0, 0,−k0):

∑

i=L,R

εµi ε
ν∗
i ≡







0 ~0
1 0 0

~0 0 1 0
0 0 0







= −gµν +
kµk̄ν + kν k̄µ

k · k̄ . (28)

We could have written the sum over physical polarizations using any other momentum `µ, provided
k · ` 6= 0. This would be equivalent to a gauge transformation (prove it as an exercise). In QED
the second term in Eq. (28) can be safely dropped, since kµM

µ = 0. As a cross check, notice that
kµM

µ = 0 implies M0 = M3, and therefore:

∑

i=L,R

|εi ·M |2 = |M1|2 + |M2|2 = |M1|2 + |M2|2 + |M3|2 − |M0|2 ≡ −gµν MµM
∗
ν . (29)

Therefore, the production of the longitudinal and time-like components of the photon cancel each other.
This is true regardless of whether additional external photons are physical or not, since the gauge in-
variance k1 ·M = 0 shown in Eq. (12) holds regardless of the choice for ε2, as already remarked. In
particular,

kµ1
1 kµ2

2 Mµ1µ2 = 0 (30)

(for n photons, kµ1
1 kµ2

2 . . . kµn
n Mµ1 ...µn = 0) and the production of any number of unphysical photons

vanishes. The situation in the case of gluon emission is different, since k1 ·M ∝ ε2 · k2, which vanishes
only for a physical ε2. This implies that the production of one physical and one non-physical gluons is
equal to 0, but the production of a pair of non-physical gluons is allowed! If ε2 · k2 6= 0, then M0 is not
equal to M3, and Eq. (28) is not equivalent to

∑
εµε

∗
ν = −gµν .

Exercise: show that

∑

non−physical

|εµ1 εν2Mµν |2 =

∣
∣
∣
∣i g

2 fabcλc 1

2k1k2
v̄(q̄)k1/ u(q)

∣
∣
∣
∣

2

. (31)

In the case of non-Abelian theories, it is therefore important to restrict the sum over polarizations and
(because of unitarity) the off-shell propagators to physical degrees of freedom with the choice of physical
gauges. Alternatively, one has to undertake a study of the implications of gauge-fixing in non-physical
gauges for the quantization of the theory (see Refs. [3,7]). The outcome of this analysis is the appearance
of two colour-octet scalar degrees of freedom (called ghosts) whose rôle is to enforce unitarity in non-
physical gauges. They will appear in internal closed loops, or will be pair-produced in final states.
They only couple to gluons. Their Feynman rules are supplemented by the prescription that each closed
loop should come with a −1 sign, as if they obeyed Fermi statistics. Being scalars, this prescription
breaks the spin-statistics relation, and leads as a result to the possibility that production probabilities
be negative. This is precisely what is required to cancel the contributions of non-transverse degrees of
freedom appearing in non-physical gauges. Adding the ghosts contribution to qq̄ → gg decays (using
the Feynman rules from Fig. 1) gives in fact

= −
∣
∣
∣
∣
i g2 fabcλc 1

2k1k2
v̄(q̄)k1/ u(q)

∣
∣
∣
∣

2

, (32)

which exactly cancels the contribution of non-transverse gluons in the non-physical gauge
∑
εµε

∗
ν =

−gµν , given in Eq. 31.
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The detailed derivation of the need for and properties of ghosts (including their Feynman rules
and the “−1” prescription for loops) can be found in the suggested textbooks. I will not derive these
results here since we will not need them for our applications (we will use physical gauges or will con-
sider processes not involving the 3g vertex). The full set of Feynman rules for the QCD Lagrangian is
given in Fig. 1.

2.2. Some useful results in colour algebra

The presence of colour factors in the Feynman rules makes it necessary to develop some technology to
evaluate the colour coefficients which multiply our Feynman diagrams. To be specific, we shall assume
the gauge group is SU(N). The fundamental relation of the algebra is

[λa, λb] = ifabdλc , (33)

with fabc totally antisymmetric. This relation implies that all λ matrices are traceless. For practical
calculations, since we will always sum over initial, final, and intermediate state colours, we will never
need the explicit values of f abc. All of the results can be expressed in terms of group invariants (a.k.a.
Casimirs), some of which we will now introduce. The first such invariant (TF ) is chosen to fix the
normalization of the matrices λ:

tr(λaλb) = TF δab , (34)

where by convention TF = 1/2 for the fundamental representation. Should you change this convention,
you would need to change the definition (i.e. the numerical value) of the coupling constant g, since g λa

appears in the Lagrangian and in the Feynman rules.

Exercise: Show that tr(λaλb) is indeed a group invariant. Hint: write the action on λa of a general group
transformation with infinitesimal parameters εb as follows:

δλa =
∑

b,c

εbf
abcλc . (35)

The definition of TF allows to evaluate the colour factor for an interesting diagram, i.e. the quark
self-energy:

∼
∑

a

(λaλa)ij ≡ CF δij . (36)

The value of CF can be obtained by tracing the relation above:

CFN = tr
∑

a

λaλa = δab TF δab =
N2 − 1

2
, (37)

where we used the fact that δabδab = N2 − 1, the number of matrices λa (and of gluons) for SU(N).

There are some useful graphical tricks (which I learned from P. Nason, Ref. [9]) which can be used
to evaluate complicated expressions. The starting point is the following representation for the quark and
gluon propagators, and for the qq̄g and ggg interaction vertices:

fermion (38)

gluon (39)
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1√
2







− 1

N







Fermion-Gluon Vertex (ta) (40)

1√
2




 −




 3-Gluon Vertex (f abc) (41)

Contraction over colour indices is obtained by connecting the respective colour (or anticolour) lines. A
closed loop of a colour line gives rise to a factor N , since the closed loop is equivalent to the trace of the
unit matrix. So the above representation of the qq̄g vertex embodies the idea of “colour conservation”,
whereby the colour-anticolour quantum numbers carried by the qq̄ pair are transferred to the gluon.
The piece proportional to 1/N in the qq̄g vertex appears only when the colour of the quark and of the
antiquark are the same. It ensures that λa is traceless, as it should. This can be easily checked as an
exercise. The factor 1/

√
2 is related to the chosen normalization of TF .

As a first example of applications, let us reevaluate CF :

=
1√
2







− 1

N







× 1√
2







− 1

N







=
1

2




 − 1

N
− 1

N
+

+
1

N2










= δijN
2 − 1

2N
. (42)

As an exercise, you can calculate the colour factor for qq̄ → qq̄ scattering, and show that:

∑

a

(λa)ij(λ
a)`k = =

1

2









− 1

N









=
1

2

(

δikδ`j −
1

N
δijδ`k

)

. (43)

This result can be used to evaluate the one-loop colour factors for the interaction vertex with a photon:

=
1

2




 − 1

N




 =

1

2

N2 − 1

N
δij = CF δij . (44)
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For the interaction with a gluon we have instead:

=
1√
2









− 1

N









× 1

2









− 1

N









=
1

2
√

2









− 1

N
− 1

N
+

1

N2









= − 1

2N

1√
2









− 1

N









= − 1

2N
(45)

Notice that in the case of the coupling to the photon the qq̄ pair is in a colour-singlet state. The gluon
exchange effect in this case has a positive sign (⇒ attraction). In the case of the coupling to the gluon
the qq̄ pair is in a colour-octet state, and the gluon-exchange correction has a negative sign relative to the
Born interaction. The force between a qq̄ pair is therefore attractive if the pair is in a colour-singlet, while
it is repulsive if it is in a colour-octet state! This gives a qualitative argument for why no colour-octet qq̄
bound state exists.

The remaining important relation that one needs is the following:

∑

a,b

fabcfabd = CAδ
cd with CA = N . (46)

You can easily prove it by using the graphical representation given in Eq. (41), or by using Eq. (43)
and fabc = −2i tr([λa, λb]λc).

3. RENORMALIZATION, OR: “THEORISTS ARE NOT AFRAID OF INFINITIES!”

QCD calculations are extremely demanding. Although perturbative, the size of the coupling constant
even at rather large values of the exchanged momentum, Q2, is such that the convergence of the pertur-
bative expansion is slow. Several orders of perturbation theory (PT) are required in order to obtain a good
accuracy. The complexity of the calculations grows dramatically with the order of the approximation. As
an additional complication, the evaluation of a large class of higher-order diagrams gives rise to results
which are a priori ill-defined, namely to infinities. A typical example of what is known as an ultraviolet
divergence, appears when considering the corrections to the quark self-energy. Using the Feynman rules
presented in the previous lecture, one can obtain:

= (−ig)2 CF

∫
d4`

(2π)4
γµ

i

p/+ `
γν

(

− ig
µν

`2

)

≡ip/Σ(p) , (47)

where simple manipulations lead to the following expression for Σ(p):

Σ(p) = iCF

∫
d4`

(2π)4
1

`2(p+ `)2
, (48)
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which is logarithmically divergent in the ultraviolet (|`| → ∞) region. In this lecture we will discuss how
to deal with these infinities. To start with, we study a simple example taken from standard electrostatics.

3.1. The potential of an infinite line of charge

Let us consider a wire of infinite length, carrying a constant charge density λ. By definition, the dimen-
sions of λ are [length]−1 . Our goal is to evaluate the electric potential, and eventually the electric field,
in a point P at distance R from the wire. There is no need to do any calculation to anticipate that the
evaluation of the electric potential will cause some problem. Using the fact that the potential should be
linear in the charge density λ, we write V (R) = λf(R). Since the potential itself has the dimensions of
[length]−1 , we clearly see that there is no room for f(R) to have any non-trivial functional dependence
on R. The problem is made explicit if we try to evaluate V (R) using the standard EM formulas:

V (R) =

∫
λ(r)

r
dx = λ

∫ +∞

−∞

dx√
R2 + x2

, (49)

where the integral runs over the position x on the wire. This integral is logarithmically divergent, and the
potential is ill-defined. We know however that this is not a serious issue, since the potential itself is not
a physical observable, only the electric field is measurable. Since the electric field is obtained by taking
the gradient of the scalar potential, it will be proportional to

V ′(R) ∼ λ

∫ +∞

−∞

dx

(R2 + x2)3/2
, (50)

which is perfectly convergent. It is however interesting to explore the possibiity of providing a useful
operative meaning to the definition of the scalar potential. To do that, we start by regularizing the integral
in Eq. (49). This can be done by introducing the regularized V (R) defined as:

VΛ(R) =

∫ Λ

−Λ
λ

dx√
R2 + x2

= λ log

[√
Λ2 +R2 + Λ√
Λ2 +R2 − Λ

]

. (51)

We can then define the electric field as

~E(R) = lim
Λ→∞

[−~∇VΛ(R)] . (52)

It is easy to check that this prescription leads to the right result:

~E(R) = lim
Λ→∞

R̂
2λ

R

Λ√
Λ2 +R2

→ 2λ

R
R̂ . (53)

Notice that in this process we had to introduce a new variable Λ with the dimension of a length. This
allows us to solve the puzzle first pointed out at the beginning. At the end, however, the dependence
of the physical observable (i.e. the electric field) on this extra parameter disappears. Notice also that
the object:

δV = lim
Λ→∞

[VΛ(r2) − VΛ(r1)] = λ log

(

r21
r22

)

(54)

is well defined. This suggests a way of defining the potential which is meaninfgul even in the Λ → ∞
limit. We can renormalize the potential, by subtracting V (R) at some fixed value of R = R0, and taking
the Λ → ∞ limit:

V (R) → V (R) − V (R0) = λ log

(

R2
0

R2

)

. (55)
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The non-physical infinities present in V (R) and V (R0) cancel each other, leaving a finite result, with
a non-trivial R-dependence. Once again, this is possible because a dimensionful parameter (in this
case R0) has been introduced.

This example suggests a strategy for dealing with divergencies:

1. Identify an appropriate way to regularize infinite integrals

2. Absorb the divergent terms into a redefinition of fields or parameters, e.g, via subtractions.
This step is usually called renormalization.

3. Make sure the procedure is consistent, by checking that the physical results do not depend
on the regularization prescription.

In the rest of this lecture I will explain how this strategy is applied to the case of ultraviolet divergencies
encountered in perturbation theory.

3.2. Dimensional regularization

The typical expressions we have to deal with have the form:

I(M2) =

∫
d4`

(2π)4
1

[`2 +M2]2
. (56)

You can easily show that the integral encountered in the quark self-energy diagram can be rewritten as:

1

`2
1

(`− p)2
=

∫ 1

0
dx

1

(L2 +M2)2
, with L = `− xp,M 2 = x(1 − x)p2 . (57)

The most straighforward extension of the ideas presented above in the case of the infinite charged wire is
to regularize the integral using a momentun cutoff, and to renormalize it with a subtraction (for example,
I(M2) − I(M2

0 )). Experience has shown, however, that the best way to regularize I(M 2) is to take the
analytic continuation of the integral in the number of space-time dimensions. In fact

ID(M2) =

∫
dD`

(2π)D

1

(`2 +M2)2
(58)

is finite ∀D < 4. If we could assign a formal meaning to ID(M2) for continuous values of D away from
D = 4, we could then perform all our manipulations in D 6= 4, regulate the divergences, renormalize
fields and couplings, and then go back to D = 4.

To proceed, one defines (for Euclidean metrics):

dD` = dΩd−1 `D−1d` , (59)

with dΩD−1 the differential solid angle inD dimensions. ΩD−1 is the surface of aD-dimensional sphere.
It can be obtained by using the following formal identity:

∫

dD` e−
~̀2 ≡

[∫

d` e−`2
]D

= πD/2 . (60)

The integral can also be evaluated, using Eq. (59), as
∫

dD` e−
~̀2

= ΩD

∫ ∞

0
`D−1 e−`2d` = ΩD

1

2

∫ ∞

0
d`2(`2)

D−2
2 e−`2

= ΩD
1

2

∫ ∞

0
dx e−xx

D−2
2 ≡ ΩD

2
Γ

(
D

2

)

. (61)
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Comparing Eqs. (60) and (61) we get:

ID(M2) =
1

(4π)D/2

1

Γ(D/2)

∫ ∞

0
dx x

D−2
2 (x+M2)2 =

1

(4π)D/2

Γ(2 −D/2)

Γ(2)
(M2)

D
2
−2 (62)

Defining D = 4 − 2ε (with the understanding that ε will be taken to 0 at the end of the day), and using
the small-ε expansion:

Γ(ε) =
1

ε
− γε + O(ε) , (63)

we finally obtain:

(4π)2ID(M2) → 1

ε
− log 4πM 2 − γε . (64)

The divergent part of the integral is then regularized as a pole in (D − 4). The M -dependent part of
the integral behaves logarithmically, as expected because the integral itself was dimensionless in D = 4.
The 1/ε pole can be removed by a subtraction:

I(M2) = I(µ2) + (4π)2 log

(

µ2

M2

)

, (65)

where the subtraction scale µ2 is usually referred to as the “renormalization scale”.

One can prove (and you will find this in the quoted textbooks) that other divergent integrals which
appear in other loop diagrams can be regularized in a similar fashion, with the appearance of 1/ε poles.
Explicit calculations and more details on this techinque can be found in the literature quoted at the end.

3.3. Renormalization

Let us come back now to our quark self-energy diagram, Eq. (47). After regulating the divergence using
dimensional regularization, we can eliminate it by adding a counterterm to the Lagrangian:

L → L + Σ(p)ψ̄i∂/ψ = [1 + Σ(p)]ψ̄i∂/ψ + . . . (66)

In this way, the corrections at O(g2) to the inverse propagator are finite:

= −ip/Σ(p) + ip/Σ(p) = 0 . (67)

The inclusion of this counterterm can be interpreted as a renormalization of the quark wave function. To
see this, it is sufficient to define:

ψR =
(

1 + Σ(p2)
)1/2

ψ (68)

and verify that the kinetic part of the Lagrangian written in terms of ψR takes again the canonical form.

It may seem that this regularization/renormalization procedure can always be carried out, with all
possible infinities being removed by ad hoc counterterms. This is not true. That these subtractions can be
performed consistently for any possible type of divergence which develops in PT is a highly non-trivial
fact. To convince you of this, consider the following example.
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Let us study the QCD corrections to the interaction of quarks with a photon:

= (−ig)2CF

∫
d4`

(2π)4




γp i

p/+ /̀

Γµ

︷ ︸︸ ︷

(−i eγµ)
i

p̄/+ /̀
γp






(−i
`2

)

= −ig2CF

∫
d4`

(2π)4
(−2)(p̄/ + /̀)Γµ(p/+ /̀)

1

`2(p+ `)2(p̄+ `)2

leading div.−→ −ig2(−2)CF

∫
d4`

(2π)4
/̀Γµ/̀

`2(p+ `)2(p̄+ `)2
def
= ieγµV (q2) .

It is easily recognized that V (q2) is divergent. The divergence can be removed by adding a counterterm
to the bare Lagrangian:

Lint = −e Aµψ̄γ
µψ → −eAµψ̄γ

µψ − eV (q2)Aµψ̄γ
µψ

= −[1 + V (q2)] e Aµψ̄γ
µψ . (69)

If we take into account the counterterm that was introduced to renormalize the quark self-energy, the part
of the quark Lagrangian describing the interaction with photons is now:

Lq,γ =
[

1 + Σ(p2)
]

ψ̄ i ∂/ ψ −
[

1 + V (q2)
]

eAµ ψ̄γ
µψ . (70)

Defining a renormalized charge by:

eR = e
1 + V (p2)

1 + Σ(q2)
, (71)

we are left with the renormalized Lagrangian:

LR = ψ̄R i ∂/ ψR + eRAµ ψ̄R γ
µ ψR . (72)

Can we blindly accept this result, regardless of the values of the counterterms V (p2) and Σ(q2)? The
answer to this question is NO! Charge conservation, in fact, requires eR = e. The electric charge carried
by a quark cannot be affected by the QCD corrections, and cannot be affected by the renormalization of
QCD-induced divergencies. There are many ways to see that if eR 6= e the electric charge would not be
conserved in strong interactions. The simplest way is to consider the process e+νe → W+ → ud̄. The
electric charge of the initial state is +1 in units of e. After including QCD corrections (which in the case
of the interaction with a W are the same as those for the interaction of quarks with a photon), the charge
of the final state is +1 in units of eR. Unless eR = e, the total electric charge would not be conserved in
this process! The non-renormalization of the electric charge in presence of strong interactions is the fact
that makes the charge of the proton to equal the sum of the charges of its constituent quarks, in spite of
the complex QCD dynamics that holds the quarks together.

As a result, the renormalization procedure is consistent with charge conservation if and only if

V (q2)

Σ(p2)

q2→0
= 1 . (73)

This identity should hold at all orders of perturbation theory. It represents a fundamental constraint on
the consistency of the theory, and shows that the removal of infinities, by itself, is not a trivial trick which
can be applied to arbitrary theories. Fortunately, the previous identity can be shown to hold. You can
prove it explicitly at the one-loop order by explicitly evaluating the integrals defining V (q) and Σ(p).
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To carry out the renormalization program for QCD at 1-loop order, several other diagrams in
addition to the quark self-energy need to be evaluated. One needs the corrections to the gluon self-energy,
to the coupling of a quark pair to a gluon, and to the 3-gluon coupling. Each of these corrections gives rise
to infinities, which can be regulated in dimensional regularization. For the purposes of renormalization,
it is useful to apply the concept of D dimensions not only to the evaluation of the infinite integrals, but to
the full theory as well. In other words we should consider the Lagrangian as describing the interactions of
fields inD-dimensions. Nothing changes in its form, but the canonical dimensions of fields and couplings
will be shifted. This is because the action (defined as the integral over space-time of the lagrangian), is a
dimensionless quantity. As a result, the canonical dimensions of the fields, and of the coupling constants,
have to depend on D:

[∫

dDxL(x)

]

= 0 ⇒ [L] = D = 4 − 2ε ,

[∂µφ∂
µφ] = D ⇒ [φ] = 1 − ε ,

[ψ̄∂/ψ] = D ⇒ [ψ] = 3/2 − ε ,

[ψ̄A/ψg] = D ⇒ [g] = ε .

The gauge coupling constant acquires dimensions! This is a prelude to the non-trivial behaviour of
the renormalized coupling constant as a function of the energy scale (“running”). But before we come
to this, let us go back to the calculation of the counter-terms and the construction of the renormalized
Lagrangian.

Replace the bare fields and couplings with renormalized ones1:

ψbare = Z
1/2
2 ψR ,

Aµ
bare = Z

1/2
3 Aµ

R ,

gbare = Zg µ
εgR .

We explicitly extracted the dimensions out of gbare, introducing the dimensional parameter µ (renormal-
ization scale). In this way the renormalized coupling gR is dimensionless (as it should be once we go
back to 4-dimensions).

The Lagrangian, written in terms of renormalized quantities, becomes:

L = Z2ψ̄i∂/ψ − 1

4
Z3F

a
µνF

µν
a + ZgZ2Z

1/2
3 µε gψ̄A/ψ + (gauge fixing, ghosts, . . .) (74)

It is customary to define
Z1 = Zg Z2 Z

1/2
3 . (75)

If we set Zn = 1 + δn, we then obtain:

L = ψ̄ i ∂/ψ − 1

4
F a

µνF
µνa + µε gψ̄A/ψ + [ghosts, GM]

+ δ2 ψ̄ i∂/ψ − 1

4
δ3F

a
µνF

µνa + δ1µ
εgψ̄A/ψ . (76)

The counter-terms δi are fixed by requiring the 1-loop Green functions to be finite. The explicit evalua-
tion, which you can find carried out in detail, for example, in Refs. [7,3], gives:

1For the sake of simplicity, here and in the following we shall assume the quarks as massless. The inclusion of the mass
terms does not add any interesting new feature in what follows.
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quark self-energy ⇒ δ2 = −CF

(
αs

4π

1

ε

)

, (77)

gluon self-energy ⇒ δ3 =

(
5

3
CA − 4

3
nf TF

)
αs

4π

1

ε
, (78)

qq̄g vertex corrections ⇒ δ1 = −(CA + CF )
αs

4π

1

ε
. (79)

As usual we introduced the notation αs = g2/4π. The strong-coupling renormalization constant Zg can
be obtained using these results and Eq. (75):

Zg =
Z1

Z2Z
1/2
3

= 1 + δ1 − δ2 −
1

2
δ3 = 1 +

αs

4π

1

ε

[

−11

6
CA +

2

3
nF TF

]
def≡ 1− 1

ε

(
b0
2

)

αs . (80)

Notice the cancellation of the terms proportional to CF , between the quark self-energy (Z2) and the
abelian part of the vertex correction (Z1). This is the same as in the case of the QCD non-renormalization
of the electric coupling, discussed at the beginning of the lecture. The non-abelian part of the vertex
correction contributes viceversa to the QCD coupling renormalization. This is a consequence of gauge
invariance. The separation of the non-abelian contributions to the self-energy and to the vertex is not
gauge-invariant, only their sum is. Notice also that the consistency of the renormalization procedure
requires that the renormalized strong coupling g defining the strength of the interaction of quarks and
gluons should be the same as that defining the interaction of gluons among themselves. If this didn’t
happen, the gauge invariance of the qq̄ → gg process so painfully achieved in the first lecture by fixing
the coefficient of the 3-gluon coupling would not hold anymore at 1-loop! Once again, this additional
constraint can be shown to hold through an explicit calculation.

3.4. Running of αs

The running of αs is a consequence of the renormalization-scale independence of the renormalization
process. The bare coupling gbare knows nothing about our choice of µ. The parameter µ is an artifact
of the regularization prescription, introduced to define the dimensionful coupling in D dimensions, and
should not enter in measurable quantities. As a result:

dgbare

dµ
= 0 . (81)

Using the definition of g: gbare = µεZg g, we then get

εµ2ε Z2
g αs + µ2ε αs2Zg

dZg

dt
+ µ2ε Z2

g

dαs

dt
= 0 , (82)

where
d

dt
= µ2 d

dµ2
=

d

d log µ2
. (83)

Zg depends upon µ only via the presence of αs. If we define

β(αs) =
dαs

dt
, (84)

we then get:

β(αs) + 2
αs

Zg

dZg

dαs
β(αs) = −εαs . (85)
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Using Eq. (80) and expanding in powers of αs, we get:

β(αs) =
−εαs

1 + 2 αs
Zg

dZg

dαs

=
−εαs

1 − b0αs
ε

= −b0α2
s +O(α2

s, ε) , (86)

and finally:

β(αs) = −b0α2
s with b0 =

1

2π

(
11

6
CA − 2

3
nf TF

)

N=3
=

1

12π
(33 − 2nf ) . (87)

We can now solve Eq. (84), assuming b0 > 0 (which is true provided the number of quark flavours is less
than 16) and get the famous running of αs:

αs(µ
2) =

1

b0 log(µ2/Λ2)
. (88)

The parameter Λ describes the boundary condition of the first order differential equation defining the
running of αs, and corresponds to the scale at which the coupling becomes infinity.

3.5. Renormalization group invariance

The fact that the coupling constant αs depends on the unphysical renormalizaiton scale µ should not be
a source of worry. This is because the coupling constant itself is not an observable. What we observe are
decay rates, spectra, or cross sections. These are given by the product of the coupling constant times some
matrix element, which in general will acquire a non-trivial renormalization-scale dependence through the
renormalization procedure. We therefore just need to check that the scale dependence of the coupling
constant and of the matrix elements cancel each other, leaving results which do not depend on µ.

Consider now a physical observable, for example the ratio R = σ(e+e− → hadrons)/σ(e+e−

→ µ+µ−). R can be calculated in perturbation theory within QCD, giving rise to an expansion in the
renormalized coupling αs(µ):

R[αs, s/µ
2] = 1 + αs f1(t) + α2

s f2(t) + . . . =
∞∑

n=0

αn
s f(n)(t) , (89)

where t = s/µ2 (and we omitted a trivial overall factor 3
∑

f Q
2
f ). R depends on µ explicitly via the

functions f(n)(t) and implicitly through αs. Since R is an observable, it should be independent of µ, and
the functions f(n)(t) cannot be totally arbitrary. In particular, one should have:

µ2 dR

dµ2
= 0 =

[

µ2 ∂

∂µ2
+ β(αs)

∂

∂αs

]

R[αs, s/µ
2] = 0 . (90)

Before we give the general, formal solution to this differential equation, it is instructive to work out
directly its form within perturbation theory.

µ2 dR

dµ2
= 0 = β(αs) f1(t) + αs µ

2 df1

dµ2
+ 2αs β(αs) f2(t) + α2

s µ
2 df2

dµ2
+ . . . (91)

At order αs (remember that β is of order α2
s) we get

df1

dµ2
= 0 ⇒ f1 = constant ≡ a1 . (92)

This is by itself a non-trivial result! It says that the evaluation of R at one-loop is finite, all UV infinities
must cancel without charge renormalization. If they didn’t cancel, f1 would depend explicitly on µ. As
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we saw at the beginning, this is a consequence of the non-renormalization of the electric charge. At order
α2

s we have:

β(αs)f1(t) + α2
s

df2

d log µ2
= 0 ⇒ f2 = b0 a1 log

µ2

s
+ a2 (integration constant) . (93)

So up to order α2
s we have:

R = 1 + a1 αs
︸ ︷︷ ︸

one−loop

+ a1 b0 α
2
s log µ2/s+ a2α

2
s

︸ ︷︷ ︸

two−loops

+ . . . (94)

Notice that the requirement of renormalization group invariance allows us to know the coefficient of the
logarithimc term at 2-loops without having to carry out the explicit 2-loop calculation! It is also important
to notice that in the limit of high energy, s → ∞, the logarithmic term of the two-loop contribution
becomes very large, and this piece becomes numerically of order αs as soon as log s/µ2 >∼ 1/b0 αs. You
can easily check that renormalization scale invariance requires the presence of such logs at all orders of
PT, in particular:

f(n)(t) = a1

[

b0 log
µ2

s

]n

+ . . . (95)

We can collect all these logs as follows:

R = 1 + a1αs

[

1 + αsbo log
µ2

s
+ (αsb0 log

µ2

s
)2 + . . .

]

+ a2α
2
s + . . . (96)

= 1 + a1
αs(µ)

1 + αs(µ)bo log s
µ2

+ a2α
2
s + . . . ≡ 1 + a1αs(s) + a2α

2
s + . . . (97)

In fact:
αs(µ)

1 + αs(µ)bo log s
µ2

=
1

bo log µ2

Λ2 + bo log s
µ2

=
1

bo log s
Λ2

≡ αs(s) (98)

RG invariance constrains the form of higher-order corrections. All of the higher-order logarithmic terms
are determined in terms of lower-order finite coefficients. They can be resummed by simply setting the
scale of αs to s. You can check by yourself that this will work also for the higher-order terms, such as
those proportional to a2. So the final result has the form:

R = 1 + a1αs(s) + a2α
2
s(s) + a3α

3
s(s) + . . . (99)

Of course a1, a2, . . . have to be determined by an explicit calculation. However, the truncation of the
series at order n has now an accuracy which is truly of order αn+1

s , contrary to before when higher-
order terms were as large as lower-order ones. The explicit calculation has been carried out up to the a3

coefficient, in particular,

a1 =
3

4

CF

π
≡ 1

π
. (100)

The formal proof of the previous equation can be obtained by showing that the general form of the
equation

[

µ2 ∂

∂µ2
+ β(αs)

]

R (αs,
s

µ2
) = 0 , (101)

is given by






R(αs(s), 1) , with

dαs

d log s
µ2

= β(αs) .
(102)
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4. QCD IN e+e− COLLISIONS

e+e− collisions provide one of the cleanest environments in which to study applications of QCD at high
energy. This is the place where theoretical calculations have today reached their best accuracy, and where
experimental data are the most precise, especially thanks to the huge statistics accumulated by LEP, LEP2
and SLC. The key process is the annihilation of the e+e− pair into a virtual photon or Z0 boson, which
will subsequently decay to a qq̄ pair. e+e− collisions have therefore the big advantage of providing an
almost point-like source of quark pairs, so that, contrary to the case of interactions involving hadrons in
the initial state, we at least know very precisely the state of the quarks at the beginning of the interaction
process.

Nevertheless, it is by no means obvious that this information is sufficient to predict the properties
of the hadronic final state. We all know that this final state is clearly not simply a qq̄ pair, but some high-
multiplicity set of hadrons. It is therefore not obvious that a calculation done using the simple picture
e+e− → qq̄ will have anything to do with reality. For example, one may wonder why don’t we need
to calculate σ(e+e− → qq̄g . . . g . . .) for all possible gluon multiplicities to get an accurate estimate of
σ(e+e− → hadrons). And since in any case the final state is not made of q’s and g’s, but of π’s, K’s,
ρ’s, etc., why would σ(e+e− → qq̄g . . . g) be enough?

The solution to this puzzle lies both in a question of time and energy scales, and in the dynamics
of QCD. When the qq̄ pair is produced, the force binding q and q̄ is proportional to αs(s) (

√
s being

the e+e− centre-of-mass energy). Therefore it is weak, and q and q̄ behave to good approximation like
free particles. The radiation emitted in the first instants after the pair creation is also perturbative, and it
will stay so until a time after creation of the order of (1 GeV)−1, when radiation with wavelengths >∼ (1
GeV)−1 starts being emitted. At this scale the coupling constant is large, non-perturbative phenomena
and hadronization start playing a rôle. However, as we will show, colour emission during the perturbative
evolution organizes itself in such a way as to form colour-neutral, low mass, parton clusters highly
localized in phase-space. As a result, the complete colour-neutralization (i.e., the hadronization) does
not involve long-range interactions between partons far away in phase-space. This is very important,
because the forces acting among coloured objects at this time scale would be huge. If the perturbative
evolution were to separate far apart colour-singlet qq̄ pairs, the final-state interactions taking place during
the hadronization phase would totally upset the structure of the final state. As an additional result of this
“pre-confining” evolution, memory of where the local colour-neutral clusters came from is totally lost. So
we expect the properties of hadronization to be universal: a model that describes hadronization at a given
energy will work equally well at some other energy. Furthermore, so much time has passed since the
original qq̄ creation, that the hadronization phase cannot significantly affect the total hadron production
rate. Perturbative corrections due to the emission of the first hard partons should be calculable in PT,
providing a finite, meaningful cross-section.

The nature of non-perturbative corrections to this picture can be explored. One can prove for ex-
ample that the leading correction to the total rateRe+e− is of order F/s2, where F ∝ 〈0|αsF

a
µνF

µνa|0〉 is
the so-called gluon condensate. Since F ∼ O(1 GeV4), these NP corrections are usually very small. For
example, they are of O(10−8) at the Z0 peak! Corrections scaling like Λ2/s or Λ/

√
s can nevertheless

appear in other less inclusive quantities, such as event shapes or fragmentation functions.

We now come back to the perturbative evolution, and will devote the first part of this lecture
to justifying the picture given above. In the second half we shall discuss jet cross-sections and shape
variables.
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4.1. Soft gluon emission

Emission of soft gluons plays a fundamental rôle in the evolution of the final state [6,15]. Soft gluons are
emitted with large probability, since the emission spectrum behaves like dE/E, typical of bremstrahlung
even in QED. They provide the seed for the bulk of the final-state multiplicity of hadrons. The study of
soft-gluon emission is simplified by the simplicity of their couplings. Being soft (i.e., long wavelength)
they are insensitive to the details of the very-short-distance dynamics: they cannot distinguish features of
the interactions which take place on time scales shorter than their wavelength. They are also insensitive
to the spin of the partons: the only feature they are sensitive to is the colour charge. To prove this let us
consider soft-gluon emission in the qq̄ decay of an off-shell photon:

(103)

Asoft = ū(p)ε(k)(ig)
−i
p/+ k/

Γµ v(p̄) λa
ij + ū(p) Γµ i

p̄/+ k/
(ig)ε(k) v(p̄) λa

ij

=

[
g

2p · k ū(p)ε(k) (p/ + k/)Γµ v(p̄) − g

2p̄ · k ū(p) Γµ (p̄/+ k/)ε(k) v(p̄)

]

λa
ij .

I used the generic symbol Γµ to describe the interaction vertex with the photon to stress the fact that the
following manipulations are independent of the specific form of Γµ. In particular, Γµ can represent an
arbitrarily complicated vertex form factor. Neglecting the factors of k/ in the numerators (since k � p, p̄,
by definition of soft) and using the Dirac equations, we get:

Asoft = gλa
ij

(
p · ε
p · k − p̄ε

p̄ · k

)

ABorn . (104)

We then conclude that soft-gluon emission factorizes into the product of an emission factor, times the
Born-level amplitude. From this exercise, one can extract general Feynman rules for soft-gluon emission:

= g λa
ij 2pµ (105)

Exercise: Derive the g → gg soft-emission rules:

= igfabc 2pµ gνρ (106)

Example: Consider the “decay” of a virtual gluon into a quark pair. One more diagram should be
added to those considered in the case of the electroweak decay. The fact that the quark pair is not in a
colour-singlet state anymore makes things a bit more interesting:
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(107)

k→0
=

[

i g fabc λc
ij

(
Qε

Qk

)

+ g (λb λa)ij

(
pε

pk

)

− g (λaλb)ij

(
p̄ε

pk

) ]

ABorn

= g (λa λb)ij

[
Qε

Qk
− p̄ε

pk

]

+ g (λb λa)ij

[
pε

pk
− Qε

Qk

]

. (108)

The two factors correspond to the two possible ways colour can flow in this process:

(109)

In the first case the antiquark (colour label j) is colour connected to the soft gluon (colour label b),
and the quark (colour label i) is connected to the decaying gluon (colour label a). In the second case,
the order is reversed. The two emission factors correspond to the emission of the soft gluon from the
antiquark, and from the quark line, respectively. When squaring the total amplitude, and summing over
initial and final-state colours, the interference between the two pieces is suppressed by 1/N 2 relative to
the individual squares:

∑

a,b,i,j

|(λaλb)ij |2 =
∑

a,b

tr
(

λaλbλbλa
)

=
N2 − 1

2
CF = O(N3) , (110)

∑

a,b,i,j

(λaλb)ij [(λ
bλa)ij]

∗ =
∑

a,b

tr(λaλbλaλb) =
N2 − 1

2
(CF − CA

2
)

︸ ︷︷ ︸

− 1
2N

= O(N) . (111)

As a result, the emission of a soft gluon can be described, to the leading order in 1/N 2, as the incoherent
sum of the emission form the two colour currents.

4.2. Angular ordering for soft-gluon emission

The results presented above have important consequences for the perturbative evolution of the quarks.
A key property of the soft-gluon emission is the so-called angular ordering. This phenomenon consists
in the continuous reduction of the opening angle at which successive soft gluons are emitted by the
evolving quark. As a result, this radiation is confined within smaller and smaller cones around the quark
direction, and the final state will look like a collimated jet of partons. In addition, the structure of the
colour flow during the jet evolution forces the qq̄ pairs which are in a colour-singlet state to be close in
phase-space, thereby achieving the pre-confinement of colour-singlet clusters alluded to at the beginning
of the lecture.
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Let us start first by proving the property of colour ordering. Consider the qq̄ pair produced by the
decay of a rapidly moving virtual photon. The amplitude for the emission of a soft gluon was given in
Eq. (104). Squaring, summing over colours and including the gluon phase-space we get the following
result:

dσg =
∑

|Asoft|2
d3k

(2π)32k0

∑

|A0|2
−2pµp̄ν

(pk)(p̄k)
g2
∑

εµε
∗
ν

d3k

(2π)32k0

= dσ0
2(pp̄)

(pk)(p̄k)
g2 Cf

(
dφ

2π

)
k0dk0

8π2
d cos θ

= dσ0
αsCF

π

dk0

k0

dφ

2π

1 − cos θij

(1 − cos θik)(1 − cos θjk)
d cos θ , (112)

where θαβ = θα − θβ , and i, j, k refer to the q, q̄ and gluon directions, respectively. We can write the
following identity:

1 − cos θij

(1 − cos θik)(1 − cos θjk)
=

1

2

[

cos θjk − cos θij

(1 − cos θik)(1 − cos θjk)
+

1

1 − cos θik

]

+
1

2
[i↔ j] ≡W(i)+W(j) .

(113)
We would like to interpret the two functions W(i) and W(j) as radiation probabilities from the

quark and antiquark lines. Each of them is in fact only singular in the limit of gluon emission parallel to
the respective quark:

W(i) → finite if k ‖ j (cos θjk → 1) , (114)

W(j) → finite if k ‖ i (cos θik → 1) . (115)

The intepretation as probabilities is however limited by the fact that neither W(i) nor W(j) are positive
definite. However, you can easily prove that

∫
dφ

2π
W(i) =







1
1−cos θik

0

if θik < θij ,

otherwise ,
(116)

where the integral is the azimuthal average around the q direction. A similar result holds for W(j):

∫
dφ

2π
W(j) =







1
1−cos θjk

0

if θjk < θij ,

otherwise .
(117)

As a result, the emission of soft gluons outside the two cones obtained by rotating the antiquark direction
around the quark’s, and viceversa, averages to 0. Inside the two cones, one can consider the radiation
from the emitters as being uncorrelated. In other words, the two colour lines defined by the quark and
antiquark currents act as independent emitters, and the quantum coherence (i.e. the effects of interference
between the two graphs contributing to the gluon-emission amplitude) is accounted for by constraining
the emission to take place within those fixed cones.

If one repeats now the exercise for emission of one additional gluon, one will find the same angular
constraint, but this time applied to the colour lines defined by the previously established antenna. As
shown in the previous subsection, the qq̄g state can be decomposed at the leading order in 1/N into two
independent emitters, one given by the colour line flowing from the gluon to the quark, the other given
by the colour line flowing from the antiquark to the gluon. So the emission of the additional gluon will
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be constrained to take place either within the cone formed by the quark and the gluon, or within the cone
formed by the gluon and the antiquark. Either way, the emission angle will be smaller than the angle of
the first gluon emission. This leads to the concept of angular ordering, with successive emission of soft
gluons taking place within cones which get smaller and smaller.

The fact that colour always flows directly from the emitting parton to the emitted one, the colli-
mation of the jet, and the softening of the radiation emitted at later stages, ensure that partons forming a
colour-singlet cluster are close in phase-space. As a result, hadronization (the non-perturbative process
that will bind together colour-singlet parton pairs) takes place locally inside the jet and is not a collective
process: only pairs of nearby partons are involved. The inclusive properties of jets (e.g. the particle
multiplicity, jet mass, jet broadening, etc.) are independent of the hadronization model, up to corrections
of order (Λ/

√
s)n (for some integer power n, which depends on the observable), with Λ <∼ 1 GeV.

4.3. Jet rates

We now present explicit calculations of interesting observables. For simplicity, we will work with the
soft-gluon approximation for the matrix elements and the phase-space. As a result, the correction to the
differential e+e− → qq̄ cross-section from one-gluon emission becomes:

dσg = σ0
2αs

π
CF

dk0

k0

d cos θ

1 − cos2 θ
, with σ0 = Born amplitude. (118)

In this equation we used the fact that in the soft-g limit the q and q̄ are back-to-back, and

q · q̄ = 2q0q̄0 , q · k = q0k0(1 − cos θ) , q̄k = q̄0k0(1 + cos θ) . (119)

Notice the presence in dσg of soft and collinear singularities. They will have to cancel in the total cross-
section which, as we saw in the previous lecture, is finite. They do indeed cancel against the contribution
to the total cross-section coming from the virtual correction diagram, where a gluon is exchanged be-
tween the two quarks. In the total cross-section (and for other sufficiently inclusive observables) the final
states produced by the virtual diagrams and by the real emission diagrams in the soft or collinear limit
are the same, and both contribute. In order for the total cross-section to be finite, the virtual contribution
will need to take the following form:

d2σv

dk0d cos θ
= −σ0

2αs

π
CF

∫
√

s/2

0

dk′0
k′0

∫ 1

−1

d cos θ′

(1 − cos2 θ′
× 1

2
δ(k0) [δ(1 − cos θ) + δ(1 + cos θ)]

(120)
plus finite corrections. In this way:

∫
√

s/2

0
dk0

∫ 1

−1
d cos θ

[

d2σg

dk0d cos θ
+

d2σv

dk0d cos θ

]

= finite . (121)

With the form of the virtual corrections available (at least in this simplified soft-gluon-dominated ap-
proximation) we can proceed and calculate other quantities.

Jets are usually defined as clusters of particles close-by in phase-space. A typical jet definition
distributes particles in sets of invariant mass smaller than a given parameter M , requiring that one particle
only belongs to one jet, and that no other particles (or jets) can be added to a given jet without its mass
exceeding M . In the case of a three-particle final state, such as the one we are studying, we get three-jet
events if (q + k)2, (q̄ + k)2 and (q + q̄)2 are all larger than M 2. We will have two-jet events when at
least one of these quantities gets smaller than M 2. For example emission of a gluon near the direction of
the quark, with 2qk = 2q0k0(1 − cos θ) < M 2, defines a two-jet event, one jet being given by the q̄, the
otherby the system q + k.

63



One usually introduces the parameter y = M 2/s, and studies the jet multiplicity as a function
of y. Let us calculate the two- and three-jet rates at order αs. The phase-space domain for two-jet events
is given by two regions. The first one is defined by 2qk = 2q0k0(1 − cos θ) < ys. This region consists
of two parts:

(I)a :

{
k0 < y

√
s

0 < cos θ < 1
⊕ (I)b :

{
k0 > y

√
s

1 − y
√

s
k0

< cos θ < 1
, (122)

(I)a corresponds to soft gluons at all angles smaller than π/2 (i.e. in the quark emisphere), while (I)b

corresponds to hard gluons emitted at small angles from the quark.

The second region, (II), is analogous to (I), but the angles are now referred to the direction of the
antiquark. The integrals of dσ over (I) and (II) are of course the same. The O(αs) contribution to the
two-jet rate is therefore given by:

σ
(αs)
2 jet

σ0
=

1

σ0

[

2

∫

(I)a

d σg + 2

∫

(I)b

d σg +

∫

virtual
d σv

]

=
4αsCF

π

[
∫ y

√
s

0

dk0

k0

∫ 1

0

d cos θ

1 − cos2 θ
+

∫
√

s/2

y
√

s

dk0

k0

∫ 1

1−( y
√

s
k0

)

d cos θ

1 − cos2 θ

−
∫ y

√
s

0

dk0

k0

∫ 1

0

d cos θ

1 − cos2 θ

]

=
4αsCF

π

{

−
∫
√

s/2

y
√

s

dk0

k0

∫ 1

0

d cos θ

1 − cos2 θ
+

∫
√

s/2

y
√

s

dk0

k0

∫ 1

1−( y
√

s
k0

)

d cos θ

1 − cos2 θ

}

=
4αsCF

π

∫
√

s/2

y
√

s

dk0

k0

∫ 1−( y
√

s
k0

)

0

(
d cos θ

1 − cos2 θ

)

=
2αsCF

π

∫
√

s/2

y
√

s

dk0

k0

[

(−) log
k0

y
√
s

+ (finite for y → 0)

]

= −αsCF

π
log2 2y. (123)

Including the Born contribution, which always gives rise to two and only two jets, we finally have:

σ2−jet = σ0

[

1 − αsCF

π
log2 y + . . .

]

,

σ3−jet = σ0
αsCF

π
log2 y + . . .

If y → 0, σ3−jet becomes larger than σ2−jet. If y is sufficiently small, we can even get σ2−jet < 0!
This is a sign that higher-order corrections become important. In the soft-gluon limit, assuming that the
emission of a second gluon will also factorize 2, we can repeat the calculation at higher orders and obtain:

σ2−jet ' σ0

[

1 − αsCF

π
log2 y +

1

2!

(
αsCF

π
log2 y

)2

+ . . .

]

= σ0 e−
αsCF

π
log2 y ,

σ3−jet ∼ σ0
αsCF

π
log2 y e−

αsCF
π

log2 y ,

...
2This is not true (see later on), but let us just accept it to see how things develop.
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σ(n+2)−jet ∼ σ0
1

n!

(
αsCF

π
log2 y

)n

e−
αsCF

π
log2 y . (124)

It is immediate to recognize in this series a Poisson distribution, leading to an average number of jets
given by:

〈njet〉 ' 2 +
αsCF

π
log2 y . (125)

The smaller the resolution parameter y, the smaller the mass of the jets, the larger the importance of
higher order corrections. If we take the parameter M down to the scale of few hundred MeV hun-
dred MeV (M ∼ ΛQCD), each particle gets identified with an independent jet. We can therefore estimate
the s-dependence of the average multiplicity of particles produced:

〈npart〉 ∼
CFαs

π
log2 s

Λ2
=

CF

π

1

b0 log s
Λ2

log2 s

Λ2
' CF

πb0
log

s

Λ2
. (126)

The final state particle multiplicity grows with log(s).

In practice, things are a bit more complicated than this. Once the first gluon is emitted, additional
gluons can be emitted from it as well. Therefore the final-state multiplicity will be dominated by the
emission of gluons from gluons. The analysis becomes more complicated (see e.g. Refs. [6,8] for the
details), and the final result is:

〈npart(s)〉 ∼ exp

√

2CA

πb
log(

s

Λ2
) (127)

for the particle multiplicity, and

〈njet(y)〉 = 2 + 2
CF

CA
(cosh

√

αsCA

2π
log2 1

y
− 1) ∼ CF

CA
exp

√

αsCA

2π
log2 1

y
(128)

for the average jet multiplicity.

Other interesting quantities that can be calculated using the simple formulas we developed so
far are the average jet mass and the thrust. To define the jet mass we just divide the final state into two
emispheres, separated by the plane orthogonal to the thrust axis. We now call jets the two sets of particles
on either side of the plane. The 〈m2〉 of the jet is then given by

〈m2
jet〉 =

1

2σ0

{
∫

(I)
(q + k)2dσg +

∫

(II)
(q̄ + k)2dσg

}

. (129)

The virtual correction does not enter here, since the pure qq̄ final state has jet masses equal to 0. The
result of this simple computation leads to

〈m2
jet〉 =

αsCF

π
s . (130)

Another interesting variable often used in experimental studies is the thrust T , defined by:

T = max

T̂

∑

i

|~pi · T̂ | /
∑

i

|~pi| ,

where T̂ is the thrust axis, defined so as to maximize T . For three-body final states, T̂ is the direction of
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the highest-energy parton, and T is proportional to twice its energy:

T = 2
q̄0√
s
≡ 1 − (q + k)2

s
= 1 −

m2
jet

s
. (131)

As a result:

〈1 − T 〉 =
αsCF

π
. (132)

At LEP, 〈1 − T 〉 ' 0.120
π × 4

3 ' 0.05. The terms neglected in the soft-gluon approximation we used
throughout can be calculated, and give some small correction to the above results. Corrections will like-
wise come from higher-order effects. State-of-the-art calculations exist which evaluate all these “shape
variables” (and more!) up to O(α2

s) accuracy, including a full next-to-leading-log accurate resummation
of higher-order logarithms (such as the log 1/y terms we encountered in the discussion of jet rates, or
terms of the form logn(1−T ) which appear at higher orders in the evaluation of the thrust distributions).
These calculations allow a reliable estimate of several different observables directly proportional to αs,
and provide the theoretical input for the extraction of αs from the LEP QCD data [8].

Notice that non-perturbative corrections proportional to Λ√
s
, with Λ ∼ 1 GeV, can have a signifi-

cant impact on the extraction of αs. For example, a Λ√
s

correction to 〈1 − T 〉 would be a 20 % effect:

Λ√
s
∼ 0.01 , 〈1 − T 〉PT ' 0.05 .

Indeed one measures 〈1 − T 〉LEP = 0.068±0.003, vs the full PT QCD prediction of 0.055 (us-
ing αs = 0.120).

5. QCD AND THE PROTON STRUCTURE AT LARGE Q2

The understanding of the structure of the proton at short distances is one of the key ingredients to be able
to predict cross-section for processes involving hadrons in the initial state. All processes in hadronic col-
lisions, even those intrinsically of electroweak nature such as the production of W/Z bosons or photons,
are in fact induced by the quarks and gluons contained inside the hadron. In this lecture I will introduce
some important concepts, such as the notion of partonic densities of the proton, and of parton evolution.
These are the essential tools used by theorists to predict production rates for hadronic reactions.

The idea that the parton language [1] and the use of perturbative QCD can be used to describe the
structure of the proton at short distances was developed in the late 60’s and early 70’s (for a nice review,
see Ref. [17]). While I will not provide you with a rigorous proof of the legitimacy of this approach, I
will try to justify it qualitatively to make it sound at least plausible. I will then proceed to extract some
results based on the application of perturbative QCD to lepton-hadron interactions.

5.1. The parton model

We all know that quarks are deeply bound inside the proton. It is important to realise, however, that
the binding forces responsible for the quark confinement are due to the exchange of rather soft gluons.
If a quark were to exchange a hard virtual gluon with another quark, in fact, the recoil would tend to
break the proton apart. It is easy to verify that the exchange of gluons with virtuality larger than Q is
then proportional to some large power of mp/Q, mp being the proton mass. Since the gluon coupling
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constant gets smaller at large Q, exchange of hard gluons is significantly suppressed 3. As a result, the
typical time scale for quarks inside the proton to interact among themselves is of the order of 1/mp,
or longer. If we probe the proton with an off-shell photon, the interaction should take place during the
limited lifetime of the virtual photon, given by the inverse of its virtuality as a result of the Heisenberg
principle. Once the photon gets “inside” the proton and meets a quark, the struck quark has no time to
negotiate a coherent response with the other quarks, because the time scale for it to “talk” to its pals
is too long compared with the duration of the interaction with the photon itself. As a result, the struck
quark has no option but to interact with the photon as if it were a free particle.

The one thing that the above picture does not tell us, obviously, is in which precise state the quark
was once it got struck by the photon. This depends on the internal wave function of the proton, which
perturbative QCD cannot easily predict. We can however say that the wave function of the proton, and
therefore the state of the “free” quark, are determined by the dynamics of the soft-gluon exchanges inside
the proton itself. Since the time scale of this dynamics is long relative to the time scale of the photon-
quark interaction, we can safely argue that the photon sees to good approximation a static snapshot of
the proton’s inner guts. In other words, the state of the quark had been prepared long before the photon
arrived. This also suggests that the state of the quark will not depend on the precise nature of the external
probe, provided the time scale of the hard interaction is very short compared to the time it would take
for the quark to readjust itself. As a result, if we could perform some measurement of the quark state
using, say, a virtual-photon probe, we could then use this knowledge on the state of the quark to perform
predictions for the interaction of the proton with any oter probe (e.g. a virtual W or even a gluon from
an opposite beam of hadrons).

In order to make the measurement of the proton structure as simple as possible, it is therefore wise
to use a probe as simple as possible. A virtual photon emitted from a beam of high-energy electrons pro-
vides such a probe. The relative process is called deeply inelastic scattering (DIS), and was historically
the first phenomenon which led people to introduce the concept of partons [2].

Assuming the parton picture outlined above, we can describe the cross-section for the interaction
of the virtual photon with the proton as follows:

σ0 =

∫ 1

0
dx

∑

i

e2i fi(x) σ̂0(γ
∗qi → q′i, x) , (133)

where the 0 subscript anticipates that this description represents a leading order approximation. In the
above equation, fi(x) represents the density of quarks of flavour i carrying a fraction x of the proton
momentum. The hatted cross-section represents the interaction between the photon and a free (massless)
quark:

σ̂0(γ
∗qi → q′i) =

1

flux

∑

|M0(γ
∗q → q′)|2 d3p′

(2π)32p′0
(2π)4δ4(p′ − q − p)

=
1

flux

∑

|M0|22πδ(p′2) . (134)

Using p′ = xP + q, where P is the proton momentum, we get

(p′)2 = 2xP · q + q2 ≡ 2xP · q −Q2 , (135)

σ̂0(γ
∗q → q′) =

2π

flux

∑

|M0|2
1

2P · q δ(x − xbj) , (136)

3The fact that the coupling decreases at large Q plays a fundamental role in this argument. Were this not true, the parton
picture could not be used!
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where xbj = Q2

2P ·q is the so-called Bjorken-x variable. Finally:

σ0 =
2π

flux

∑|M0|2
Q2

∑

i

xbj fi(xbj) e
2
i ≡ 2π

flux

∑|M0|2
Q2

F2(xbj) . (137)

The measurement of the inclusive ep cross-section as a function of Q2 and P · q (= mp(E
′ − E) in the

proton rest frame, with E ′ = energy of final-state lepton and E = energy of initial-state lepton) probes
the quark momentum distribution inside the proton.

5.2. Parton evolution

Let us now study the QCD corrections to the LO parton-model description of DIS. This study will exhibit
many important aspects of QCD (structure of collinear singularities, renormalization-group invariance)
and will take us to an important element of the DIS phenomenology, namely scaling violations. We start
from real-emission corrections to the Born level process:

(138)

The first diagram is proportional to 1/(p−k)2 = 1/2(pk), which diverges when k is emitted parallel to p:

p · k = p0k0 (1 − cos θ)
cos θ→1−→ 0 . (139)

The second diagram is also divergent, if k is emitted parallel to p′. This second divergence turns out to
be harmless, since we are summing over all possible final states. Whether the final-state quark keeps
all of its energy, or whether it decides to share it with a gluon emitted collinearly, an inclusive final-
state measurement will not care. The collinear divergence can then be cancelled by a similar divergence
appearing in the final-state quark self-energy corrections.

The first divergence is more serious, since from the point of view of the incoming photon (which
only sees the quark, not the gluon) it does make a difference whether the momentum is all carried by the
quark or is shared between the quark and the gluon. This means that no cancellation between collinear
singularities in the real emission and virtual emission is possible. So let us go ahead, calculate explicitly
the contribution of these diagrams, and learn how to deal with their singularities.

First of all note that while the second diagram is not singular in the region k·p→ 0, its interference
with the first one is. It is possible, however, to select a gauge for which the interference of the two
diagrams is finite in this limit. You can show that the right choice is

∑

εµε
∗
ν(k) = −gµν +

kµp′ν + kνp′µ

k · p′ . (140)

Notice that in this gauge not only k · ε(k) = 0, but also p′ · ε(k) = 0. The key to getting to the end
of a QCD calculation in a finite amount of time is choosing a proper gauge (which we just did) and the
proper parametrization of the momenta involved. In our case, since we are interested in isolating the
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region where k becomes parallel with p, it is useful to set

kµ = (1 − z)pµ + βp′µ + (k⊥)µ , (141)

with k⊥ · p = k⊥ · p′ = 0. β is obtained by imposing

k2 = 0 = 2β(1 − z)p · p′ + k2
⊥ . (142)

Defining k2
⊥ = −k2

t , we then get

β =
k2

t

2(pp′) (1 − z)
, (143)

kµ = (1 − x)pµ +
k2

t

2(1 − x)p · p′ p
′
µ + (k⊥)µ , (144)

(k⊥)µ is therefore the gluon momentum vector transverse to the incoming quark, in a frame where γ ∗

and q are aligned. kt is the value of this transverse momentum. We also get

k · p = β p · p′ =
k2

t

2(1 − z)
and k · p′ = (1 − z)p · p′ . (145)

As a result (p − k)2 = −k2
t /(1 − z). The amplitude for the only diagram carrying the initial-state

singularity is:

Mg = igλa
ij ū(p

′)Γ
p̂− k̂

(p− k)2
ε̂(k)u(p) , (146)

(where we introduced the notation â ≡ a/ ≡ aµγ
µ). We indicated by Γ the interaction vertex with the

external current q. It is important to keep Γ arbitrary, because we would like to get results which do not
depend on the details of the interaction with the external probe. It is important that the singular part of
the QCD correction, and therefore its renormalization, be process independent. Only in this way we can
hope to achieve a true universality of the parton densities! So we will keep Γ generic, and make sure that
our algebra does not depend on its form, at least in the p · k → 0 limit. Squaring the most singular part
of the amplitude, and summing over colours and spins, we get:

∑

g polariz.
and colours

|Mg|2 = g2

N×CF
︷ ︸︸ ︷
∑

a

tr (λaλa)× 1

t2
×
∑

ε

Tr [p̂′ Γ(p̂− k̂) ε̂ p ε̂∗ (p̂− k̂) Γ+] , (147)

with t = (p− k)2 = −k2
t /(1 − z). Let us look first at

∑

ε

ε̂ p̂ ε̂∗ =
∑

εµ ε
∗
ν γ

µp̂γν = −γµp̂γµ +
1

k · p′ (p̂′p̂k̂ + k̂p̂p̂′) =
2

1 − z
(k̂ + βp̂′) , (148)

(we used: âb̂ĉ+ ĉb̂â = 2(a · b) ĉ− 2(a · c) b̂+ 2(b · c) â and some of the kinematical relations from the
previous page). Then take

(p̂− k̂) (k̂ + βp̂′) (p̂− k̂) = (p̂− k̂) k̂ (p̂− k̂) + β(p̂− k̂) p̂′ (p̂− k̂) . (149)

In the second term, proportional to β, we can approximate k̂ = (1 − z)p̂. This is because the other
pieces (βp̂′ + k̂⊥) multiplied by β would cancel entirely the 1

t2 singularity, and would only contribute a
non-singular term, which we are currently neglecting. So Eq. (149) becomes

p̂k̂p̂+ βz2p̂p̂′p̂ = 2(p · k)p̂+ βz22(p · p′)p̂ = 2(p · k) (1 + z2)p̂ (150)
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and
∑

|Mg|2 = 2g2 CF
(1 − z)

k2
t

(

1 + z2

1 − z

)

N Tr[p̂′Γp̂Γ+] . (151)

The last factor with the trace corresponds to the Born amplitude squared. So the one-gluon emission
process factorizes in the collinear limit into the Born process times a factor which is independent of the
beam’s nature! If we add the gluon phase-space:

[dk] ≡ d3k

(2π)32k0
=
dk‖
k0

dφ

2π

1

8π2

dk2
⊥

2
=

dz

(1 − z)

1

16π2
dk2

⊥ , (152)

we get:
∑

|Mg|2 [dk] =
dk2

⊥
k2
⊥
dz

(
αs

2π

)

Pqq(z)
∑

|M0|2 , (153)

where

Pqq(z) = CF
1 + z2

1 − z
(154)

is the so-called Altarelli-Parisi splitting function for the q → q transition (z is the momentum fraction
of the original quark taken away by the quark after gluon emission). We are now ready to calculate the
corrections to the parton-model cross-section:

σg =

∫

dx f(x)
1

flux

∫

dz
dk2

⊥
k2
⊥

(
αs

2π

)

Pqq(z)
∑

|M0|2 2πδ(p′2) . (155)

Using (p′)2 = (p− k + q)2 ∼ (zp+ q)2 = (xzP + q)2 and

δ(p′2) =
1

2P · q
1

z
δ(x − xbj

z
) =

xbj

z
δ(x− xbj

z
) , (156)

we finally obtain:

σg =
2π

flux

(∑|M0|2
Q2

)
∑

i

e2i xbj
αs

2π

∫
dk2

⊥
k2
⊥

∫
dz

z
Pqq(z) fi

(
xbj

z

)

. (157)

We then find that the inclusion of the O(αs) correction is equivalent to a contribution to the parton
density:

fi(x) → fi(x) +
αs

2π

∫
dk2

⊥
k2
⊥

∫ 1

x

dz

z
Pqq(z) fi

(
x

z

)

. (158)

Notice the presence of the integral
∫
dk2

⊥/k
2
⊥. The upper limit of integration is proportional to Q2. The

lower limit is 0. Had we included a quark mass, the propagator would have behaved like 1/(k2
⊥ +m2).

But the quark is bound inside the hadron, so we do not quite know what m should be. Let us then assume
that we cutoff the integral at a k⊥ value equal to some scale µ0, and see what happens. The effective
parton density becomes:

f(x,Q2) = f(x) + log

(

Q2

µ2
0

)

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)

. (159)

The dependence on the scale µ0, which is a non-perturbative scale, can be removed by defining f(x,Q2)
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in terms of the parton density f measured at a large, perturbative scale µ2:

f(x, µ2) = f(x) + log

(

µ2

µ2
0

)

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)

. (160)

We can then perform a subtraction, and write:

f(x,Q2) = f(x, µ2) + log

(

Q2

µ2

)

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)

. (161)

The scale µ plays here a similar role to the renormalization scale introduced in the second lecture. Its
choice is arbitrary, and f(x,Q2) should not depend on it. Requiring this independence, we get the
following “renormalization-group invariance” condition:

df(x,Q2)

d lnµ2
= µ2 df(x, µ2)

dµ2
− αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z

)

≡ 0 (162)

and then

µ2df(x, µ2)

dµ2
=

αs

2π

∫ 1

x

dz

z
Pqq(z) f

(
x

z
, µ2

)

. (163)

This equation is usually called the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. As in
the case of the resummation of leading logarithms in Re+e− induced by the RG invariance constraints,
the DGLAP equation – which is the result of RG-invariance – resums a full tower of leading logarithms
of Q2.

Proof: Let us define t = log Q2

µ2 . We can then expand f(x, t) in powers of t:

f(x, t) = f(x, 0) + t
df

dt
(x, 0) +

t2

2!

d2f

dt2
(x, 0) + . . . (164)

The first derivative is given by the DGLAP equation itself. Higher derivatives can be obtained by differ-
entiating it:

f ′′(x, t) =
αs

2π

∫
dz

z
Pqq(z)

df

dt
(
x

z
, t) ,

=
αs

2π

∫ 1

x

dz

z
Pqq(z)

αs

2π

∫ 1

x
z

dz′

z′
Pqq(z)f(

x

zz′
, t) ,

...

f (h)(x, t) =
αs

2π

∫ 1

x
. . . . . .

αs

2π

∫ 1

x/zz′...z(n−1)

dz(n)

z(n)
Pqq(z

(n))f(
x

zz′ . . .
, t) . (165)

The n-th term in this expansion, proportional to (αs t)
n, corresponds to the emission of n gluons (it is

just the n-fold iteration of what we did studying the one-gluon emission case).

With similar calculations one can include the effect of the other O(αs) correction, originating from the
splitting into a qq̄ pair of a gluon contained in the proton. With the addition of this term, the evolution
equation for the density of the ith quark flavour becomes:

dfq(x, t)

dt
=

αs

2π

∫ 1

x

dz

z

[

Pqq(z) fi(
x

z
, t) + Pqg(z)fg(

x

z
, t)

]

, with Pqg =
1

2

[

z2 + (1 − z)2
]

. (166)

In the case of interactions with a coloured probe (say a gluon) we meet the following corrections, which
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affect the evolution of the gluon density fg(x):

dfg(x, t)

dt
=

αs

2π

∫ 1

x

dz

z



Pgq(z)
∑

i=q,q̄

fi

(
x

z
, t

)

+ Pgg(z)fg

(
x

z
, t

)


 (167)

with

Pgq(z) = Pqq(1 − z) = CF
1 + (1 − z)2

z
and Pgg(z) = 2CA

[
1 − z

z
+

z

1 − z
+ z(1 − z)

]

. (168)

Defining the moments of an arbitrary function g(x) as follows:

gn =

∫ 1

0

dx

x
xn g(x) ,

it is easy to prove that the evolution equations turn into ordinary linear differential equations:

df
(n)
i

dt
=

αs

2π
[P (n)

qq f
(n)
i + P (n)

qg f (n)
g ] , (169)

df
(n)
g

dt
=

αs

2π
[P (n)

gg fg + P (n)
gq f

(n)
i ] . (170)

5.3. Properties of the evolution equations

We now study some general properties of these equations. It is convenient to introduce the concepts of
valence (V (x, t)) and singlet (Σ(x, t)) densities:

V (x) =
∑

i

fi(x) −
∑

ı̄

fı̄(x) , (171)

Σ(x) =
∑

i

fi(x) +
∑

ı̄

fı̄(x) , (172)

where the index ı̄ refers to the antiquark flavours. The evolution equations then become:

dV (n)

dt
=

αs

2π
P (n)

qq V (n) , (173)

dΣ(n)

dt
=

αs

2π

[

P (n)
qq Σ(n) + 2nf P

(n)
qg f (n)

g

]

, (174)

df
(n)
g

dt
=

αs

2π

[

P (n)
gq Σ(n) + P (n)

gg f (n)
g

]

. (175)

Note that the equation for the valence density decouples from the evolution of the gluon and singlet
densities, which are coupled among themselves. This is physically very reasonable, since in perturbation
theory the contribution to the quark and the antiquark densities coming form the evolution of gluons (via
their splitting into qq̄ pairs) is the same, and will cancel out in the definition of the valence. The valence
therefore only evolves because of gluon emission. On the contrary, gluons and qq̄ pairs in the proton sea
evolve into one another.

The first moment of V (x), V (1) =
∫ 1
0 dxV (x), counts the number of valence quarks. We there-

fore expect it to be independent of Q2:

dV (1)

dt
≡ 0 =

αs

2π
P (1)

qq V (1) = 0 . (176)
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Since V (1) itself in different from 0, we obtain a constraint on the first moment of the splitting function:
P

(1)
qq = 0. This constraint is satisfied by including the effect of the virtual corrections, which generate

a contribution to Pqq(z) proportional to δ(1 − z). This correction is incorporated in Pqq(z) via the
redefinition:

Pqq(z) →
(

1 + z2

1 − z

)

+

≡ 1 + z2

1 − z
− δ(1 − z)

∫ 1

0
dy

(

1 + y2

1 − y

)

, (177)

where the + sign turns Pqq(z) into a distribution. In this way,
∫ 1
0 dz Pqq(z) = 0 and the valence sum-rule

is obeyed at all Q2.

Another sum rule which does not depend on Q2 is the momentum sum rule, which imposes the
constraint that all of the momentum of the proton is carried by its constituents (valence plus sea plus
gluons):

∫ 1

0
dxx




∑

i,i

fi(x) + fg(x)



 ≡ Σ(2) + f (2)
g = 1 . (178)

Once more this relation should hold for allQ2 values, and you can prove by using the evolution equations
that this implies:

P (2)
qq + P (2)

gq = 0 , (179)

P (2)
gg + 2nf P

(2)
qg = 0 . (180)

You can check using the definition of second moment, and the explicit expressions of the Pqq and Pgq

splitting functions, that the first condition is automatically satisfied. The second condition is satisfied by
including the virtual effects in the gluon propagator, which contribute a term proportional to δ(1 − z). It
is a simple exercise to verify that the final form of the Pgg(z) splitting function, satisfying Eq. (180), is:

Pgg → 2CA

{
x

(1 − x)+
+

1 − x

x
+ x(1 − x)

}

+ δ(1 − x)

[
11CA − 2nf

6

]

. (181)

5.4. Solution of the evolution equations

The evolution equations formulated in the previous section can be solved analytically in moment space.
The boundary conditions are given by the moments of the parton densities at a given scale µ, where in
principle they can be obtained from a direct measurement. The solution at different values of the scale
Q can then be obtained by inverting numerically the expression for the moments back to x space. The
resulting evolved densities can then be used to calculate cross sections for an arbitrary process involving
hadrons, at an arbitrary scale Q. We shall limit ourselves here to studying some properties of the analytic
solutions, and will present and comment some plots obtained from numerical studies available in the
literature.

As an exercise, you can show that the solution of the evolution equation for the valence density is
the following:

V (n)(Q2) = V (n)(µ2)

[

logQ2/Λ2

log µ2/Λ2

]P
(n)
qq /2πb0

= V (n)(µ2)

[

αs(µ
2)

αs(Q2)

]P
(n)
qq /2πb0

, (182)

where the running of αs(µ
2) has to be taken into account to get the right result. Since all moments P (n)

are negative, the evolution to larger values of Q makes the valence distribution softer and softer. This is
physically reasonable, since the only thing that the valence quarks can do is to loose energy because of
gluon emission.
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Fig. 2: Left:Valence up-quark momentum-density distribution, for different scales Q. Right: gluon momentum-density distri-

bution.

The solutions for the gluon and singlet distributions fg and Σ can be obtained by diagonalizing
the 2×2 system in Eqs. (174) and (175). We study the case of the second moments, which correspond to
the momentum fractions carried by quarks and gluons separately. In the asymptotic limit Σ(2) goes to a
constant, and dΣ(2)

dt = 0. Then, using the momentum sum rule:

P (2)
qq Σ(2) + 2nf P

(2)
qg f

(2)
g = 0 , (183)

Σ(2) + f (2)
g = 1 . (184)

The solution of this system is:

Σ(2) =
1

1 + 4CF
nf

(= 15/31 for nf = 5) , (185)

f (2)
g =

4CF

4CF + nf
(= 16/31 for nf = 5) . (186)

As a result, the fraction of momentum carried by gluons is asymptotically approximately 50% of the
total proton momentum. It is interesting to note that, experimentally, this asymptotic value is actually
reached already at rather low values ofQ2. It was indeed observed already since the early days of the DIS
experiments that only approximately 50% of the proton momentum was carried by charged constituents.
This was one of the early evidences for the existence of gluons.

As I mentioned earlier, a complete solution for the evolved parton densities in x space can only be
obtained from a numerical analysis. This work has been done in the past by several groups (see e.g. the
discussions in Ref. [8]), and is continuously being updated by including the most up-to-date experimental
results used for the determination of the input densities at a fixed scale. Figure 2a describes the up-quark
valence momentum density at different scales Q. Note the anticipated softening at large scales, and the
clear logQ2 evolution. The most likely momentum fraction carried by a valence up quark in the proton
goes from x ∼ 20% at Q = 3 GeV, to x <∼ 10% at Q = 1000 GeV. Notice finally that the density
vanishes at small x.

Figure 2b shows instead the gluon momentum density at different scales Q. This time the density
grows at small-x, with an approximate g(x) ∼ 1/x1+δ behaviour, and δ > 0 slowly increasing at
large Q2. This low-x growth is due to the 1/x emission probability for the radiation of gluons, which
was discussed in the previous lecture and which is represented by the 1/x factors in the Pgq(x) and
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Fig. 3: Left: Sea up-quark momentum-density distribution, for different scales Q. Right: Momentum-density distribution for

several parton species, at Q = 1000 GeV.

Pgg(x) splitting functions. Figure 3a shows the up-quark sea momentum density at different scales Q.
Shape and evolution match those of the gluon density, a consequence of the fact that sea quarks come
from the splitting of gluons. Since the gluon-splitting probability is proportional to αs, the approximate
ratio sea/gluon ∼ 0.1 which can be obtained by comparing Figs. 2b and 3a is perfectly justified.

Finally, the momentum densities for gluons, up-sea, charm and up-valence distributions are shown
in Fig. 3b for Q = 1000 GeV. Note here that usea and charm are approximately the same at very large Q
and small x, The proton momentum is mostly carried by valence quarks and by gluons. The contribution
of sea quarks is negligible.

6. QCD IN HADRONIC COLLISIONS

In hadronic collisions, all phenomena are QCD-related. The dynamics is more complex than in e+e−

or DIS, since both beam and target have a non-trivial partonic structure. As a result, calculations (and
experimental analyses) are more complicated. QCD phenomenology is however much richer, and the
higher energies available in hadronic collisions allow to probe the structure of the proton and of its
constituents at the smallest scales attainable in a laboratory.

Contrary to the case of e+e− and lepton-hadron collisions, where calculations are routinely avail-
able up to next-to-next-to-leading order (NNLO) accuracy, theoretical calculations for hadronic colli-
sions are available at best with next-to-leading-order (NLO) accuracy. The only exception is the case
of Drell-Yan production, where NNLO results are known for the total cross sections. So we generally
have relatively small precision in the theoretical predictions, and theoretical uncertainties which are large
when compared to LEP or HERA.

However, pp̄ collider physics is primarily discovery physics, rather than precision physics (there
are exceptions, such as the measurements of the W mass and of the properties of b-hadrons. But these
are not QCD-related measurements). As such, knowledge of QCD is essential both for the estimate of
the expected signals, and for the evaluation of the backgrounds. Tests of QCD in pp̄ collisions confirm
our understanding of perturbation theory, or, when they fail, point to areas where our approximations
need to be improved. (see, e.g., the theory advances prompted by the measurements of ψ production at
CDF!).
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Finally, a reliable theoretical control over the details of production dynamics allows one to extract
important information on the structure of the proton (parton densities) in regions of Q2 and x otherwise
unaccessible. Control of QCD at the current machines (the Tevatron at Fermilab) is therefore essential
for the extrapolation of predictions to higher energies (say for applications at the future LHC, at CERN).

The key ingredients for the calculation of production rates and distributions in hadronic colli-
sions are:

• the matrix elements for the hard, partonic process (e.g., gg → gg, gg → bb̄, qq̄′ →W, . . .),

• the hadronic parton densities, discussed in the previous lecture.

Then the production rate for a given final state H is given by a factorization formula similar to the one
used to describe DIS:

dσ(pp̄→ H +X) =

∫

dx1 dx2

∑

i,j

fi(x1, Q) fj(x2.Q) dσ̂(ij → H) , (187)

where the parton densities fi’s are evaluated at a scale Q typical of the hard process under consideration.
For example Q ' MDY for production of a Drell-Yan pair, Q ' ET for high transverse-energy (ET )
jets, Q2 ' p2

T +m2
Q for high-pT heavy quarks, etc.

In this lecture we will briefly explore two of the QCD phenomena currently studied in hadronic
collisions: Drell-Yan, and inclusive jet production. More details can be found in Refs. [8,4].

6.1. Drell-Yan processes

While the Z boson has been recently studied with great precision by the LEP experiments, it was actually
discovered, together with the W boson, by the CERN experiments UA1 and UA2 in pp̄ collisions. W
physics is now being studied in great detail at LEP2, but the best direct measurements of its mass by
a single group still belong to pp̄ experiments (CDF and D0 at the Tevatron). Even after the ultimate
luminosity will have been accumulated at LEP2, with a great improvement in the determination of the
parameters of the W boson, the monopoly of W studies will immediately return to hadron colliders, with
the Tevatron data-taking resuming in the year 2000, and later on with the start of the LHC experiments.

Precision measurements of W production in hadronic collisions are important for several reasons:

• this is the only process in hadronic collisions which is known to NNLO accuracy

• the rapidity distribution of the charged leptons from W decays is sensitive to the ratio of the up
and down quark densities, and can contribute to our understanding of the proton structure.

• deviations from the expected production rates of highly virtual W ’s (pp̄ → W ∗ → eν) are a
possible signal of the existence of new W bosons, and therefore of new gauge interactions.

The partonic cross-section for the production of a W boson from the annihilation of a qq̄ pair can
be easily calculated, giving the following result [8,4]:

σ̂(qiq̄j → W ) = π

√
2

3
|Vij |2 GF M2

W δ(ŝ−M 2
W ) = Aij M

2
W δ(ŝ−M 2

W ) , (188)

where ŝ is partonic center of mass energy squared, and Vij is the element of the Cabibbo-Kobayashi-
Maskawa matrix. The delta function comes from the 2 → 1 phase space, which forces the center-of-mass
energy of the initial state to coincide with the W mass. It is useful to introduce the two variables

τ =
ŝ

Shad
≡ x1x2 , (189)
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y =
1

2
log

(

EW + pz
W

EW − pz
W

)

≡ 1

2
log

(
x1

x2

)

, (190)

where Shad is the hadronic center of mass energy squared. The variable y is called rapidity. For slowly
moving objects it reduces to the standard velocity, but, contrary to the velocity, it transforms additively
even at high energies under Lorentz boosts along the direction of motion. Written in terms of τ and
y, the integration measure over the initial-state parton momenta becomes: dx1dx2 = dτdy. Using this
expression and Eq. (188) in Eq. (187), we obtain the following result for the LO total W production cross
section:

σDY =
∑

i,j

π Aij

M2
W

τ

∫ 1

τ

dx

x
fi(x) fj

(
τ

x

)

≡
∑

i,j

π Aij

M2
W

τLij(τ) , (191)

where the function Lij(τ) is usually called partonic luminosity. In the case of ud̄ collisions, the overall
factor in front of this expression has a value of approximately 6.5 nb. It is interesting to study the partonic
luminosity as a function of the hadronic CoM energy. This can be done by taking a simple approximation
for the parton densities. Following the indications of the figures presented in the previous lecture, we
shall assume that fi(x) ∼ 1/x1+δ , with δ < 1. Then

L(τ) =

∫ 1

τ

dx

x

1

x1+δ

(
x

τ

)1+δ

=
1

τ1+δ

∫ 1

τ

dx

x
=

1

τ1+δ
log

(
1

τ

)

(192)

and

σW ∼ τ−δ log

(
1

τ

)

=

(

Shad

M2
W

)δ

log

(

Shad

M2
W

)

. (193)

The DY cross-section grows therefore at least logarithmically with the hadronic CM energy. This is to
be compared with the behaviour of the Z production cross section in e+e− collisions, which is steeply
diminuishing for values of s well above the production threshold. The reason for the different behaviour
in hadronic collisions is that while the energy of the hadronic initial state grows, it will always be possible
to find partons inside the hadrons with the appropriate energy to produce the W directly on-shell. The
number of partons available for the production of a W is furthermore increasing with the increase in
hadronic energy, since the larger the hadron energy, the smaller will be the value of hadron momentum
fraction x necessary to produce theW . The increasing number of partons available at smaller and smaller
values of x causes then the growth of the total W production cross section.

A comparison between the best available prediction for the production rates of W and Z bosons
in hadronic collisions, and the experimental data, is shown in Fig. 4. The experimental uncertainties will
soon be dominated by the limited knowledge of the machine luminosity, and will exceed the accuracy
of the NNLO predictions. This suggests that in the future the total rate of produced W bosons could be
used as an accurate luminometer.

It is also interesting to note that an accurate measurement of the relative W and Z production rates
(which is not affected by the knowledge of the total integrated luminosity, that will cancel in their ratio)
provides a tool to measure the total W width. This can be seen from the following equation:

ΓW =
Nobs(Z → e+e−)

Nobs(W → e±ν)

(
σW±

σZ

) (

ΓW
eν

ΓZ
e+e−

)

ΓZ .

↑ ↖ ↗ ↑
measure calculable LEP/SLC

As of today, this technique provides the best measurement of ΓW : ΓW = 2.06 ± 0.06 GeV, which is a
factor of 5 more accurate than the current best direct measurements from LEP2.
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Fig. 4: Comparison of measured (a) σ ·B(W → eν) and (b) σ ·B(Z0 → e+e−) to 2-loop theoretical predictions using MRSA

parton distribution functions. The UA1 and UA2 measurements and D0 measurements are offset horizontally by ± 0.02 TeV

for clarity. In the inset, the shaded area shows the 1σ region of the CDF measurement; the stars show the predictions using

various parton distribution function sets (1) MRSA, (2) MRSD0′, (3)MRSD-′, (4) MRSH and (5) CTEQ2M. The theoretical

points include a common uncertainty in the predictions from choice of renormalization scale (MW /2 to 2MW ).

6.2. W rapidity asymmetry

The measurement of the charge asymmetry in the rapidity distribution of W bosons produced in pp̄
collisions can provide an important measurement of the ratio of the u-quark and d-quark momentum
distributions. Using the formulas provided above, you can in fact easily check as an exercise that:

dσW+

dy
∝ fp

u(x1) f
p̄
d̄
(x2) + fp

d̄
(x1)f

p̄
u(x2) , (194)

dσW−

dy
∝ fp

ū(x1) f
p̄
d (x2) + fp

d (x1)f
p̄
ū(x2) . (195)

We can then construct the following charge asymmetry (assuming the dominance of the quark densities
over the antiquark ones, which is valid in the kinematical region of interest for W production at the
Tevatron):

A(y) =

dσW+

dy − dσW−
dy

dσW+

dy +
dσW−

dy

=
fp

u(x1) f
p
d (x2) − fp

d (x1) f
p
u(x2)

fp
u(x1) f

p
d (x2) + fp

d (x1) f
p
u(x2)

. (196)
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Setting fd(x) = fu(x) R(x) we then get:

A(y) =
R(x2) −R(x1)

R(x2) +R(x1)
, (197)

which measures the R(x) ratio since x1,2 are known in principle from the kinematics: x1,2 =√
τ exp(±y)4. The current CDF data provide the most accurate measurement to date of this quantity

(see Ref. [8]).

6.3. Jet production

Jet production is the hard process with the largest rate in hadronic collisions. For example, the cross
section for producing at the Tevatron (

√
Shad = 1.8 TeV) jets of transverse energy Ejet

T
<∼ 50 GeV is

of the order of a µb. This means 50 events/sec at the luminosities available at the Tevatron. The data
collected at the Tevatron so far extend all the way up to the ET values of the order of 450 GeV. These
events are generated by collisions among partons which carry over 50% of the available pp̄ energy, and
allow to probe the shortest distances ever reached. The leading mechanisms for jet production are shown
in Fig. 5.

Fig. 5: Representative diagrams for the production of jet pairs in hadronic collisions.

The 2-jet inclusive cross section can be obtained from the formula

dσ =
∑

ijkl

dx1 dx2 f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
dΦ2 , (198)

that has to be expressed in terms of the rapidity and transverse momentum of the quarks (or jets), in order
to make contact with physical reality. The two-particle phase space is given by

dΦ2 =
d3k

2k0(2π)3
2π δ((p1 + p2 − k)2) , (199)

and, in the CM of the colliding partons, we get

dΦ2 =
1

2(2π)2
d2kT dy 2 δ(ŝ − 4(k0)2 ) , (200)

where kT is the transverse momentum of the final-state partons. Here y is the rapidity of the produced
4In practice one cannot determine x1,2 with arbitrary precision on an event-by-event basis, since the longitudinal momentum

of the neutrino cannot be easily measured. The actual measurement is therefore done by studying the charge asymmetry in the
rapidity distribution of the charged lepton.
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parton in the parton CM frame. It is given by

y =
y1 − y2

2
, (201)

where y1 and y2 are the rapidities of the produced partons in the laboratory frame (in fact, in any frame).
One also introduces

y0 =
y1 + y2

2
=

1

2
log

x1

x2
, τ =

ŝ

Shad
= x1 x2 . (202)

We have
dx1 dx2 = dy0 dτ . (203)

We obtain

dσ =
∑

ijkl

dy0
1

Shad
f

(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2

1

2(2π)2
2 dy d2kT , (204)

which can also be written as

dσ

dy1 dy2 d2kT
=

1

Shad 2(2π)2

∑

ijkl

f
(H1)
i (x1, µ) f

(H2)
j (x2, µ)

dσ̂ij→k+l

dΦ2
. (205)

The variables x1, x2 can be obtained from y1, y2 and kT from the equations

y0 =
y1 + y2

2
, (206)

y =
y1 − y2

2
, (207)

xT =
2kT√
Shad

, (208)

x1 = xT e
y0 cosh y , (209)

x2 = xT e
−y0 cosh y . (210)

For the partonic variables, we need ŝ and the scattering angle in the parton CM frame θ, since

t = − ŝ
2

(1 − cos θ) , u = − ŝ
2

(1 + cos θ) . (211)

Neglecting the parton masses, you can show that the rapidity can also be written as:

y = − log tan
θ

2
≡ η , (212)

with η being usually referred to as pseudorapidity.
The leading-order Born cross sections for parton parton scattering are reported in Table 1. It is

interesting to note that a good approximation to the exact results can be easily obtained by using the soft-
gluon techniques introduced in the third lecture. Based on the fact that even at 90◦ min(|t|, |u|) does not
exceed s/2, and that therefore everything else being equal a propagator in the t or u channel contributes
to the square of an amplitude 4 times more than a propagator in the s channel, it is reasonable to assume
that the amplitudes are dominated by the diagrams with a gluon exchanged in the t (or u) channel. It
is easy to calculate the amplitudes in this limit using the soft-gluon approximation. For example, the
amplitude for the exchange of a soft gluon among a qq ′ pair is given by:

(λa
ij) (λa

kl) 2pµ
1

t
2p′µ = λa

ij λ
a
kl

4p · p′
t

=
2s

t
λa

ij λ
a
kl . (213)
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Process dσ̂
dΦ2

qq′ → qq′ 1
2ŝ

4
9

ŝ2+û2

t̂2

qq → qq 1
2

1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

)

− 8
27

ŝ2

ût̂

]

qq̄ → q′q̄′ 1
2ŝ

4
9

t̂2+û2

ŝ2

qq̄ → qq̄ 1
2ŝ

[
4
9

(
ŝ2+û2

t̂2
+ t̂2+û2

ŝ2

)

− 8
27

û2

ŝt̂

]

qq̄ → gg 1
2

1
2ŝ

[
32
27

t̂2+û2

t̂û
− 8

3
t̂2+û2

ŝ2

]

gg → qq̄ 1
2ŝ

[
1
6

t̂2+û2

t̂û
− 3

8
t̂2+û2

ŝ2

]

gq → gq 1
2ŝ

[

−4
9

ŝ2+û2

ŝû + û2+ŝ2

t̂2

]

gg → gg 1
2

1
2ŝ

9
2

(

3 − t̂û
ŝ2 − ŝû

t̂2
− ŝt̂

û2

)

Table 1: Cross sections for light parton scattering. The notation is p1 p2 → k l, ŝ = (p1 + p2)
2, t̂ = (p1 − k)2, û = (p1 − l)2.

The pµ and p′µ factors represent the coupling of the exchanged gluon to the q and q ′ quark lines, respec-
tively (see Eq. (105). Squaring, and summing and averaging over spins and colours, gives

∑

colours,spin

|Mqq′ |2 =
1

N2

(

N2 − 1

4

)

4s2

t2
=

8

9

s2

t2
. (214)

Since for this process the diagram with a t-channel gluon exchange is symmetric for s ↔ u exchange,
and since u → −s in the t → 0 limit, the above result can be rewritten in an explicitly (s, u) symmetric
way as

4

9

s2 + u2

t2
, (215)

which indeed exactly agrees with the result of the exact calculation, as given in Table 1. The corrections
which appear from s or u gluon exchange when the quark flavours are the same or when we study a qq̄
process are small, as can be seen by comparing the above result to the expressions in the Table.

As another example we consider the case of qg → qg scattering. The amplitude will be exactly
the same as in the qq′ → qq′ case, up to the different colour factors. A simple calculation then gives:

∑

colours,spin

|Mqg|2 =
9

4

∑

|Mqq′ |2 =
s2 + u2

t2
. (216)

The exact result is
u2 + s2

t2
− 4

9

u2 + s2

us
, (217)

which even at 90◦, the point where the t-channel exchange approximation is worse, only differs from
this latter by no more than 25%.

As a final example we consider the case of gg → gg scattering, which in our approximation gives:

∑

|Mgg|2 =
9

2

s2

t2
. (218)

By u↔ t symmetry we should expect the simple improvement:

∑

|Mgg|2 ∼ 9

2

(

s2

t2
+
s2

u2

)

. (219)
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This only differs by 20% from the exact result at 90◦.

Notice that at small t the following relation holds:

σ̂gg : σ̂qg : σ̂qq̄ =

(
9

4

)

: 1 :

(
4

9

)

. (220)

The 9/4 factors are simply the ratios of the colour factors for the coupling to gluons of a gluon (CA)
and of a quark (TF ), after including the respective colour-average factors (1/(N 2 − 1) for the gluon, and
1/N for the quark). Using Eq. (220), we can then write:

dσhadr =

∫

dx1 dx2

∑

i,j

fi(x1) fj(x2) dσ̂ij =

∫

dx1 dx2 F (x1) F (x2) dσ̂gg(gg → jets) , (221)

where the object:

F (x) = fg(x) +
4

9

∑

f

[qf (x) + q̄f (x)] (222)

is usually called the effective structure function. This result indicates that the measurement of the inclu-
sive jet cross section does not allow in principle to disentangle the independent contribution of the various
partonic components of the proton, unless of course one is considering a kinematical region where the
production is dominated by a single process. The relative contributions of the different channels, as
predicted using the global fits of parton densities available in the literature, are shown in Fig. 6.

Fig. 6: Relative contribution to the inclusive jet-ET rates from the different production channels.

Predictions for jet production at colliders are available today at the next-to-leading order in QCD.
A comparison between these calculations and the available data is given in Figs. 7 and 8.

At the Tevatron, jets up to 450 GeV transverse momentum have been observed. That is x >∼ 0.5
and Q2 ' 160, 000 GeV2. This is a domain of x and Q2 not accessible to HERA. The current agreement
between theory and data is at the level of 30 % over 8 orders of magnitude of cross-section, from ET ∼
20 to ET ∼ 450 GeV. The small deviation observed by CDF at high ET is under active investigation
both experimentally and theoretically. It is still premature to say whether it can be a signal of new
phenomena, or whether it is the result of our incomplete knowledge of the gluon density at large x.
Either way, future higher-statistics measurements at the Tevatron will provide some important input on
these fundamental questions. The resulting knowledge will enable theorists to reliably predict production
rates for all interesting processes that will take place at the LHC.
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