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QCD Corrections to pp — W + X:
A Case Study

Scott S. Willenbrock

Physics Department
Brookhaven National Laboratory
Upton, New York 11973

ABSTRACT

We calculate the QCD corrections to inclusive W-boson pro-
duction in proton-antiproton collisions as an example of a QCD-
improved parton model calculation.

1. INTRODUCTION

This year, 1989, marks the twenty-first anniversary of the discovery of what we
now know of as quarks inside the proton. The discovery was made at the Stanford
Linear Accelerator Center (SLAC) by a SLAC-MIT collaboration, using a 4.5-20
GeV electron beam incident on a liquid hydrogen target.! This experiment revealed
the existence of point-like constituents of the proton, which were called “partons”
by Feynman.? Further study at SLAC, as well as at CERN and Fermilab using
neutrino beams, led to the conviction that these partons were the quarks which
had been proposed in the early sixties by Gell-Mann and Zweig to understand the
zoo of hadronic particles.

Another result of these experiments was the realization that quarks alone can-
not account entirely for the structure of nucleons. There seemed to be some objects
which were invisible to the electron and neutrino beams, but which carried about
half the momentum of the proton (in a frame in which the proton is moving rel-
ativistically). We now identify these objects as gluons, the quanta of the force
which binds the quarks into hadrons. This force is called Quantum Chromody-
namics (QCD), and we believe that it is responsible for all of the properties of the
strong nuclear force.? Today we use the word “parton” to refer collectively to the
quarks, antiquarks, and gluons from which we believe all hadrons are constructed.

In the years following the discovery of partons, much theoretical effort was
devoted to understanding and justifying the parton model of hadrons. Many of
the issues involved were resolved when QCD emerged as the theory of the strong
interaction. In particular, QCD provides a framework with which to understand
why partons behave as free particles when probed at high momentum transfer,
despite the fact that they are permanently confined within hadrons. This phe-
nomenon is a result of the running of the QCD coupling, which decreases with



Figure 1: Parton-model picture of inclusive W-boson production
in a proton-antiproton collision, pp — W+ + X.

increasing momentum transfer. The static properties of hadrons are governed by
low momentum transfer, where the QCD coupling is strong, leading to quark con-
finement. At high momentum transfer the QCD coupling is sufficiently weak that
we may treat the partons as free particles.

Today the emphasis of the parton model has switched from justification to
application, although questions of principle still remain. The parton model is
an extremely useful tool for performing calculations of high-momentum-transfer
processes involving hadrons.? In the parton-model picture the proton is regarded
as a “bag” of partons, and each parton specie is assigned a distribution function
f (z), which is the probability density of finding a parton of specie f carrying a
fraction z of the proton’s momentum (in a frame in which the proton is moving rel-
ativistically). One may then calculate a hadronic cross section by calculating the
underlying partonic cross section and convoluting it with the appropriate distri-
bution functions. This is shown diagramatically in Fig. 1 for W-boson production
in a proton-antiproton collision. The hadronic cross section for the production of
a W boson plus hadrons (denoted by X) is

c(ppP—>WT+X)
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where & is the subprocess cross section, 7o = M3,/S (where S is the square of the

total hadronic center-of-mass energy), and the sum runs over all contributing pairs
of partons (¢g = ud, ¢3, ignoring Cabibbo mixing). The three quarks of which




a proton is made (uud) are called valence quarks. There also exists an ocean of
virtual quarks of all flavors, which arises from gluons splitting into gg pairs. These
are called sea quarks. The parton sum in Eq. (1.1) includes both valence and sea
quarks. The second term, in which the proton contributes an antiquark and the
antiproton contributes a quark, is entirely due to the presence of sea quarks.

In principle, the parton distribution functions are calculable from QCD. In
practice, this is a difficult nonperturbative calculation, since the QCD coupling is
strong at an energy scale equal to the proton mass. This difficulty is sidestepped
by extracting the distribution functions from the same sort of experiment which
was pioneered at SLAC some twenty-one years ago; deep inelastic lepton-nucleon
scattering. “Deep” refers to the high-momentum-transfer property of the scatter-
ing; “inelastic” means that the target nucleon is destroyed, creating a shower of
hadrons; and the lepton beam may consist of electrons (as at SLAC), neutrinos,
or muons (the latter two are created as secondary beams at CERN and Fermilab
by colliding a proton beam with a nuclear target to produce charged pions, which
then decay to muons and muon neutrinos). The nucleon target may consist of any
nucleus, with hydrogen and deuterium favored due to their simplicity. Next year
a new era of deep inelastic scattering will begin with the commissioning of HERA
at DESY, the first machine to collide a lepton beam with a proton beam (30 GeV
electrons and 800 GeV protons), rather than with a fixed nuclear target.

The fact that the QCD coupling is weak at high momentum transfer im-
plies that we may perform perturbative calculations of high-momentum-transfer
strong-interaction processes. For example, heavy quark production from proton-
antiproton collisions may be calculated by convoluting the Subprocess cross section
for gg — QQ with gluon distribution functions:

o (5 — Q0 + X) = / day / g (g @)= @) (12

where 79 = 4m?2 / S. Thus the parton model is useful for calculating strong as weil
as electrowea.k processes.

The weakness of the QCD coupling at high momentum transfer also implies
that we may reliably calculate QCD radiative corrections to high-momentum-
transfer hadronic cross sections. This will be the emphasis of these lectures. QCD
-radiative corrections to hadronic processes are typically quite large, roughly 30%
at momentum transfers of order the W-boson mass. (The corrections are larger
at smaller mass scales, due to the increase in the QCD coupling, but eventually
become so large that perturbation theory is unreliable.) QCD radiative corrections
to electroweak physics thus have the attributes of being large enough to be observed
but small enough to be calculated reliably. It is this fortunate situation which
makes the study of this topic so rewarding.

The first complete calculation of the QCD radiative corrections to a hadronic

process was for the Drell-Yan process, p(;-c-)) — ptu~ + X, in which the underlying
parton reaction is ¢§ — 7v* — ptu™ (v* denotes a virtual plioton}.”® Today the
Drell-Yan process also includes W-boson production, as shown in Fig. 1, as well as



Figure 2: Deep inelastic lepton-proton scattering via a virtual
photon.

Z-boson production. These latter two processes were first observed at CERN early
in this decade, and are currently undergoing intense study both there and at the
Fermilab Tevatron. For concreteness, and because of its current importance, we
will concentrate on the calculation of the QCD radiative corrections to W-boson
production in pp collisions. The concepts and techniques which we encounter along
the way are applicable to any parton-model calculation.

Sections 2 and 3 are devoted to deep inelastic scattering. The concepts and
notation introduced there are completely standard, and may be found in many
textbooks. These sections are important in order to understand how we define the
parton distribution functions experimentally.

2. DEEP INELASTIC SCATTERING

Consider the process depicted in Fig. 2, where an incident lepton (electron
or muon) of momentum £ emits a virtual photon of momentum ¢ and recoils
with momentum ¢, which is measured. The virtual photon strikes a proton of
momentum P, dissociating it into a shower of hadrons which we denote X. We
define the Lorentz-invariant kinematic variables

Q? = —¢* = 2EE'(1 - cos ) (2.1)

P.g
v=" (22
where M is the proton mass, E and E' are the lepton energies in the lab frame
(the proton rest frame), and 8 is the lepton scattering angle in the lab frame.




E' and 6 or, equivalently, v and Q?, entirely determine the kinematics of the
scattering process. Q? is the square of the momentum transfer, and the scattering
is considered “deep” if Q% >> M2,

The amplitude for this deep inelastic scattering process is

iM = (i.e)(—ie) éa(z’) iy (8) < P| T, |X > (2.3)

where e is defined by « = e?/4n (e > 0). The lepton spinors are labeled by their
momenta, and the spinor product above is referred to as the leptonic current. The
quantity < P|J, |X > is called the hadronic current, and describes the dissociation
of the proton. Unlike the leptonic current, it is not possible to calculate the
hadronic current perturbatively, since it involves complicated strong-interaction
physics. The only thing we know @ priori about this current is that it is conserved:

¢ < P|J,| X >=0. (2.4)

This is a consequence of QED, which guarantees that photons couple only to
conserved currents. ,

To obtain the cross section for this process, we first square the amplitude.
Summing over final spins and averaging over initial spins, we obtain

—_— 11 1 1
2 - 22 2 — 4 & rpv )
|IM| 55 M| =e Q4L 2<P|J‘,;|X >< X|Jy| P > (2.5)
where (neglecting the lepton mass)
L¥ = STy = 2 (848 48788 — g0 ). (2.6)

The differential cross section is then
3 pt
1 — dé
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where § = (P + 2)2 and dX denotes the phase space of the final-state hadrons. If
we define
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then we may write
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where we have integrated out all information about the final hadronic state X.
Eq. (2.9) is thus the differential cross section to observe the scattered lepton with
momentum ¢, regardless of the final hadronic state. The process is referred to as



“inclusive,” since all final states are included, as opposed to “exclusive,” in which
a particular hadronic final state is identified.

The only information we have on the hadronic tensor Wy, is based on sym-
metries. It is Lorentz invariant by construction, and depends only on the mo-
menta P and g, so it must therefore be a linear combination of the five tensors
P,P,, Pyay, Puay, quqv, and guy (the tensor e*¥?? P,qq is eliminated by the parity-
conserving nature of QED). Conservation of the hadronic current, Eq. (2.4), tells
us that ¢*W, = 0 and ¢"W,, = 0. These two conditions greatly restrict the
structure of W), from the five independent tensors listed above to just two. We
find

Wyv == (gj.w - q;gy) 441 (U, Qz)

1 P‘q P'q 2
M2 (P#-Qu_q“i_) (PV_QP?) W (V:Q ) (2‘10)

where Wy and W, are functions of the kinematic variables v and Q? (the factor
M~2 is introduced to give W, the same dimensions as W;). These coefficients are
referred to as form factors.

The 1968 SLAC-MIT experiment was the first measurement of these form
factors at high Q2 (Q% >> M?). The results were startling; the form factor W)
and the product vW,, which a priori depend on the two independent variables
v and QZ, were found to depend only on the ratio Q?/v. For this reason it is
conventional to define the variable

_QF &
T =g = P e (2.11)
and the form factors
Fl (2’:, Qz) = 2MW1 (V, QZ) (2.12)
F, (=, Qz) =vW; (v, Qz) . (2.13)

The experimental results may then be expressed by stating that F; and F) are
independent of Q? at large Q2. This contrasts sharply with elastic proton form
fagtors (in which the proton remains intact), which decrease like 1/Q* for large
Q°.

The property that Fy and F are independent of Q? at large Q* is called Bjorken
scaling, and was predicted by Bjorken prior to the SLAC-MIT experiment. It was
Feynman who interpreted this scaling property in terms of the parton model, to
which we now turn.
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Figure 3: Parton-model picture of deep inelastic lepton-proton
scattering.

3. THE PARTON MODEL

The parton-model picture of deep inelastic lepton-nucleon scattering is de-
picted in Fig. 3. The proton is pictured as a bag of free quarks, antiquarks, and
gluons — the three valence quarks are shown in the figure. The virtual photon
strikes one of the quarks, which carries a fraction y of the proton’s momentum
(in a frame in which the proton is moving relativistically), knocking it out of the
proton. The final quarks combine into an assortment of hadrons to create the final
state X of the preceding section. This “hadronization” is not of any interest to
us, since we are surnming over all final states.

It is easy to see that the parton model explains Bjorken scaling, i.e., that Fj
and F, are independent of Q2. At zeroth order in QCD, the parton subprocess
involved in deep inelastic scattering is simply v*q — ¢, as depicted in Fig. 3. Since
the quarks are massless, the only energy scale present in this subprocess 1s Q?, so
the dimensionless form factors Fy and F, cannot depend on @QZ, since there is no
other mass with which to form a dimensionless ratio (the parton subprocess does
not know about M). However, F] and F can depend on the dimensionless ratio
z = Q%*/2P - q. Since the final quark is massless, we find

(p+q)’=0=2p-¢- Q" | (3.1)
Using p = y.P, this gives - '
T =y. (3.2)

Thus, at zeroth order in QCD, the variable z may be identified with the fraction
of the proton’s momentum carried by the struck parton, and | and I3 depend
only on z.



The parton model allows us to calculate the form factors Fj and F in terms
of the probability density f(y) that the struck quark carries momentum fraction
y. Recall from Eq. (2.9) that the hadronic cross section for deep inelastic lepton-
nucleon scattering is (for § >> M?)

1 €t d3e
do = ——L*¥4x MW, ——7—.
TTesgr T eyl eE

The cross section in the parton model is

1
do=Y [ aufitw)de (34)

(3.3)

where the sum is over all species of quarks and antiquarks, and d5; is the cross
section for the parton subprocess (lepton-quark scattering). We will take Eq. (3.4)
as our definition of the quark and antiquark distribution functions at zeroth order
in QCD.

The upper imit on the y integral in Eq. (3.4) is obvious; the quark cannot carry
more momentum than the proton itself. The lower limit arises in the following
way. The scattered quark produces a physical multi-parton state, i.e., a state of
positive invariant mass (in Fig. 3, this state is simply one quark). Thus

(p+q)P 20. (3.5)
Using p = yP, this gives
2yP-q—Q*20 (3.6)
or
y>z (3.7)

where © = Q2/2P - ¢, as defined in the previous section.
The cross section for the lepton-quark scattering subprocess may be written

1i —. d3¢

A — 34 1} .
Y=g e (38)
where
s=(p+8>=2p £=yS ‘ (3.9)
and

.y 1 , )
Ww=§/<yPIJLIX’ ><X'| 7} |yP > dX' (2m)' 8! (p+q-X') (3.10)

is the tensor associated with the square of the quark current (the factor 1/2 is
from averaging over the initial quark spins). This tensor may be calculated per-
turbatively, an exercise we will begin shortly. Combining Egs. (3.4) and (3.8), and
comparing the result with Eq. (3.3), we obtain

W *—1——2[1@-()%‘?‘ - (3.11)
FV_4ﬂ_M - i Yy Y wy .




where the factor 1/y arises from the lepton-quark flux factor {s = y5).
At zeroth order in QCD, the quark current is simply given by the parton
subdiagram in Fig. 3. Thus

<yP|J;|X'>=<p|J:; | > = —igiw (p) yuu (p) (3.12)

where ¢; is the quark electric charge (the factor of e associated with the coupling
was removed from the current and made explicit in Eq. (2.3)). Thus

d3 !
f
W;y = 29: /T 15'}';:157:/(2 ) 2E’
The phase space factor may be written

d3 f
2E

(2n et (pra—p).  (313)

2t p+ag-p)=dP () 6 (p+a—7)
=5((p+a"). (3.14)

Performing the trace, we obtain

W:;y - zgiz (2p,upv + 9uPr + QP — JuD - q) 27 & (2p cq— Qz) (3.15)
or, using p = yP,

. b{y — x
W = 2q,2 (2y2PuP,, + yqu Py + Yy Py — Y9 P - q) QW—M%%TQ—)- (3.16)
where we’ve used © = Q?/2P - ¢ in the delta function.
We know from Lorentz invariance and current conservation that Wy, has the

form ngen in Eq. (2.10), so W' must also have this form, since it is related to
Wy via Eq. (3.11). Thus, to 1solate the form factors W; and W5, we need only
calculate the coefficients of the tensors P#P" and ¢#” when we insert Eq. (3.16)
into Eq. (3.11). Thus

W“”=47rMP qZ /—f (v) 2y*PuPy + -+~ quyP - q) 6 (y — 2).

(3.17)
Using v = P - ¢/M (see Eq. (2.2)), we obtain
a 1
Wﬁw = i mf, (:L') IL'P“P,, e — EMI/Q'W, . (318)
Comparing with our general expression for W, Eq. (2.10), we see that
4G .
W, = Z —-afi(z)
1]
¢
Wy = Z 571 (%) (3.19)



or, using the definitions of Fy and F3, Egs. (2.12) and (2.13),

F (z,Q%) = Zq? fi(z) (3.20)

By (z,Q%) = Z gz fi(z). -(3.21)

Thus, at zeroth order in QCD, the form factors F} and F; are simply related to the
sum over the quark and antiquark distribution functions, weighted by the square
of the electric charge. As desired, F1 and F; are manifestly independent of @2, a
consequence of the parton-model picture.

According to Egs. (3.20) and (3.21), 2 = zFi, at least at zeroth order in
QCD. This equation is known as the Callan-Gross relation. The fact that this
relation is upheld experimentally may be construed as evidence that the partons
have spin %, a necessary condition if we are to interpret them as quarks.

The phenomenoclogy of the parton model is a fascinating subject. By using
charged lepton (electron and muon), neutrino, and antineutrino beams on hydro-
gen and deuterium targets, a wealth of information may be gathered, including
the shapes of the quark and antiquark distribution functions for each quark flavor,
and the separate valence and sea distribution functions for up and down quarks.
These topics are beyond the scope of these lectures. They are treated in many
excellent textbooks to which the interested reader may turn. None of these topics
are necessary for the subject of these lectures, the calculation of QCD corrections
to parton-model processes.

4. pp— Wt + X: TREE LEVEL

The first step in our calculation of the QCD corrections to inclusive W-boson
. production in proton-antiproton collisions is to calculate the lowest-order cross
section, as shown in Fig. 1. The partons carry momenta p; = 1P and p; = 2P,
so the square of the parton center-of-mass energy is

s=(p1+p2)’ =2p1 pz = 21228 L (4.0)

where S = (P + P2)2 is the square of the hadron center-of-mass energy. (Often §
is used to denote the square of the parton center-of-mass energy and s to denote
the square of the hadron center-of-mass energy.) In the case at hand, s = M#; in
general, however, s is an independent variable. It is conventional to define

T=3/S=z122 (4.2)

and to denote the minimum value of 7 by 7p. For example, for the parton subpro-
cess q§ — Wg, the minimum value of s is M¢,, ie., there must be at least enough
energy to produce a real W boson (the gluon may be arbitrarily energetic, since
it is massless), so 79 = MZ,/S. The hadronic cross section is then given in terms




of the partonic cross section and the parton distribution functions by Eq. (1.1).
The limits on the z; and 72 integrals are defined by the conditions z1, z2 € 1 and
T = Z1Z2 2 T0. )

The tree amplitude for the parton subprocess ¢g — W™ is given by

iM = —izTe (o) 7 (1= 35) w(pr) o (8) (43)

where the momenta are labeled in Fig. 1 and ¢, (k) is the W-boson -polarization
vector. We now square the amplitude, sum over the W-boson polarization states,
and average over the quark spins. We must also average over color; for a given
quark color, there is only one chance in three that the antiquark will have the right
anticolor to yield a colorless W boson. Thus we obtain

11147

S kuky
T = 5338 Trpt (1= (1= 0) (—ow + S22) . (44)
3228 My

We may discard the k,k, /MEV term in the W-boson polarization sum, using

Bob (1= 7s)p1 =2 (b1 + B2) (1 +75) = 0 (4.5)

since 15%,2 = p%,z = 0. This is a manifestation of the conservation of the W-boson
" current,

kyT(p2) 7" (1 —vs)u(pi) =0(p2) (b1 +p2) L~ vs)ul(p1) =0 (4.6)

for massless quarks (P1u(p1) =0, T(p2) p2 = 0).
Performing the trace in Eq. (4.4), we obtain

—— 11142
2 - ___7 8. .
| M | 5338 8s (4.7)
The partonic cross section is given by
1 d*k 4
6= —|MP———(2m)" §* (p1 +p2 — k) . 4.8
P oo (00 84 4 = ) (48)

Performing a phase-space manipulation similar to Eq. (3.14),

a*k
ﬁ;‘fsé (p1+p2 ~ k) = d*k 6 (kK* — M) 6* (p1 +p2 — k) = 6 (K* — M) (49)

and inserting the expression for |M|?, Eq. (4.7), into Eq. {4.8), we obtain the
partonic cross section

=g (s — M%) (4.10)

where zw = sin? 8w, and « = ¢?/4r, as always.



We now insert the partonic cross section, Eq. (4.10), into Eq. (1.1), to obtain
the hadronic cross section. Recalling s = 21225, we write

1r2 o 1 1
= d d
°T3 z_W%L “ fm/n o
x [g: (€1)T; (22) + T (21) g5 (22)] 6 (21225 — Miy) - (4.11)

Using the delta function to perform the dz integral, we obtain

™ a1l 1 dz
=TT S GOSN ACA ALY
where 79 = MZ,/S. The sum is over all contributing quark-antiquark combinations
(¢ = ud, c3, neglecting Cabbibo mixing).

To complete the calculation, we need to perform the integration over the quark
and antiquark distribution functions. The distribution functions are extracted
from deep inelastic scattering, as detailed in sections 2 and 3. Several groups have
used the available data to construct parameterizations of the parton distribution
functions, which can be used to perform the integral in Eq. (4.12) numerically.
The most popular sets of parton distribution functions currently available are:

e Gliick, Hoffman, and Reya (GHR)”

e Duke and Owens (DO)?

e Eichten, Hinchliffe, Lane, and Quigg (EHLQ)®

e Martin, Roberts, and Stirling (MRS)*°

e Diemoz, Ferroni, Longo, and Martinelli (DFLM)*
e Tung!?

All of these sets are available as prepackaged computer programs.

To make contact with reality, let’s make a rough comparison of our predicted
cross section for pp — W + X with the results of the 1988-89 Fermilab Tevatron
collider run. Using any of the above listed sets of distribution functions to perform
the integral in Eq. (4.12), we find o (pp— Wt +X) ~ 7 nb. Multiplying this
by the integrated luminosity of the run, fLdt ~ 5 pb™!, and a factor of 2 to
include W~ production, we expect about 7 X 10* W bosons to be produced. The
cleanest signal for a W boson in a hadron collider is via its decays to ev, and pvy,
each of which has a branching ratio of 1/9 (assuming W+ — th is kinematically
forbidden, as it appears at this time). Thus we expect about 8,000 W — ev
events. Preliminary results on the W-boson production cross section by the CDF
collaboration at Fermilab are based on a sample of about 2000 W — ev events.
The factor of four discrepancy is due to experimental cuts made on the data and
to detector efficiencies. '




(a) (b)

Figure 4: QCD corrections to pp — W 4+ X: (a) virtual gluon,
gluon radiation, and gluon exchange between a participant and
spectator quark, (b) initial gluon, due to the gluon content of the
proton.

5. QCD-IMPROVED PARTON MODEL

We are now prepared to embark on the main subject of these lectures — the
calculation of the QCD corrections to W-boson production in pp collisions. Some
potential corrections are shown in Fig. 4. There are virtual gluon corrections, such
as the vertex correction shown in Fig. 4(a}. There are corrections due to gluon
radiation, also shown in Fig. 4(a). These two processes may be regarded as QCD
corrections to the parton subprocess qg — W.

There are also corrections due to the exchange of a gluon between a parton
which participates in the scattering subprocess and a spectator parton, also shown
in Fig. 4(a). This type of correction is suppressed by powers of A*/Q?, where A is
the QCD scale parameter (A ~ 200 MeV) and Q is the scale of the parton subpro-
cess. Such corrections are referred to as “higher twist,” and are totally negligible
for the process at hand, in which Q% = MT?V The fact that such corrections are
suppressed is important for the validity of the parton model, since they would spoil
any attempt to factorize the hadronic cross section into a partonic cross section
multiplied by parton distribution functions, as in Eq. (1.1). This factorization has
been proven to all orders in QCD perturbation theory for the Drell-Yan process.*®

There is another class of QCD corrections to W-boson production, shown in
Fig. 4(b). These corrections are due to the presence of gluons in the incident
hadrons. These diagrams are the same order in the QCD coupling as those of
Fig. 4(a), and must therefore be included in a consistent calculation.

There are QCD corrections to the parton distribution functions as well. These
must be included along with the corrections to the parton subprocess, since the
hadronic cross section is given by a product of distribution functions and the
subprocess cross section, as in Eq. (1.1). The distribution functions are defined
in terms of deep inelastic scattering, as discussed in sections 2 and 3. Fig. 5
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Figure 5: QCD corrections to deep inelastic lepton-proton scat-
tering: (a) virtual gluon, gluon radiation, and gluon exchange be-
tween a participant and spectator quark, (b) initial gluon, due to
the gluon content of the proton.

shows various QCD corrections to deep inelastic scattering. These corrections are
analogous to the corrections to W-boson production in Fig. 4. Fig. 5(a) shows
virtual gluon, gluon radiation, and participant-spectator corrections, similar to
Fig. 4(a). As before, the correction due to gluon exchange between a participant
and spectator parton is higher-twist, i.e., suppressed by powers of A%/Q?, and may
safely be neglected. Fig. 5(b) shows a correction due to the presence of gluons in
the hadron target, similar to the correction to W-boson production in Fig. 4(b).

There is another potential roadblock to the factorization of the hadronic cross
section into a partonic cross section multiplied by parton distribution functions,
as in Eq. (1.1). This is due to the presence of large logarithms encountered in
perturbation theory. One finds that the QCD corrections to the parton-model
picture are of O (a,lnQ?/ mz), where o, is the QCD coupling, @ is the relevant
partonic energy scale, and m is the parton mass (m << 1 GeV). Although a,
is small at large Q?, o,1n Q?/m? is not, and perturbation theory breaks down.
This would spoil the parton-model picture, in which the partons are treated as
free particles at zeroth order in QCD.

In order to understand how we handle these large logarithms, we must first
understand their source. Consider the first diagram in Fig. 6, in which a W boson
is produced in association with a quark. This diagram may be considered as a
QCD correction to W-boson production, as in Fig. 4(b). The propagator of the
intermediate quark is

: _ . B—htm -t m
A a—— = z(p3 -—p1)2 T z—-—-——zpl 3 (5.1)

where m is the quark mass (pg = mz). If we choose the gluon to be moving along
the z axis, and the final quark to be scattered into the y — z plane by an angle 8,




Figure 6: Feynman diagrams for g¢ — Wq.

then we may write the momenta as

D= (E17 07 0! El)
pg‘z (Eg,,(}, /6E3 sin 9,,3E3 cQs 3) . (5.2)

where 3 is the velocity of the quark. The denomination of the quark propagator
in Eq. (5.1) is thus
1 1
2p1 - P3 - 2E1E3 (1 - ﬁcose)'

If we set the quark mass to zero, then 8 = 1, and we find that the propagator is
“singular at § = 0, i.e., at zero scattering angle. This divergence is referred to as
a collinear singularity, since the outgoing fermion is moving in the same direction
as the incoming gluon. This singularity is avoided if we use a non-zero quark
mass, so it is often referred to as a mass singularity. Collinear divergences are also
discussed in the lectures by Frank Paige.

To obtain the cross section for the process in Fig. 6, we square the amplitude
and integrate over the scattering angle. We find that the square of the first diagram
in Fig. 6 gives

(5.3)

i
2p1 - p3

|IM|? ~ (5.4)
as we will show in section 6. (One would naively expect |[M|? ~ 1/(2p 'p3)2,
i.e., the square of the denominator of the quark propagator, but the square of the
numerator of the diagram contributes a factor of 2p; - p3.) Thus, using Eq. (5.3),

we find
/1 0 1 1 )
G ~ dz |M N/ dz 5.5
1 M| ¥ 175 (

where z = cosf. In the limit 3 — 1, the integral diverges logarithmically at
the upper limit, corresponding to & = 0. To make the logarithm explicit, we
perform the z integration in Eq. (5.5), and then take the 3 — 1 limit. Using
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Figure 7: Feynman diagrams for v*¢ — ¢7.

+42 =1 — B% = E%/m?, we obtain

&~ —=In

8 1-p8

Thus the large logarithm is a result of the collinear divergence in the angular inte-
gral. This divergence may be regulated by a non-zero quark mass, as in Eq. (5.6).

The key to eliminating these collinear logarithms is to realize that they occur in
both the parton subprocess, as we have just demonstrated, endin the corrections to
the distribution functions. In deep inelastic scattering, the analogue of the diagram
we have just analyzed is the first diagram in Fig. 7. This diagram is singular when
the outgoing antiquark is collinear with the incoming gluon, and gives rise to a
In Q?/m?. As we said earlier, a complete calculation of the QCD corrections to the
hadronic cross section includes the corrections to both the partonic cross section
and the distribution functions. As we shall see explicitly, the Inm? terms from
these two corrections cancel, leaving the cross section free of large logarithms, and
restoring the validity of perturbation theory. The cancellation of Inm? terms bhas
been proven to all orders in QCD perturbation theory.

The cancellation of these logarithms can be understood physically. Consider
the first diagram in Fig. 6 which, in the collinear region, looks like Fig. 8(a). The
incident gluon splits into a collinear quark and antiquark, and the antiquark an-
nihilates the incident quark to form the W-boson. Now consider the first diagram
in Fig. 7 in the collinear region, as depicted in Fig. 8(b). The incident gluon
again splits into a collinear quark and antiquark, and the virtual photon finds the
quark. In both cases the process factorizes into ¢ — ¢7 times the zeroth-order
process (¢q§ — W or v*¢ — ¢). The collinear logarithm arises from the ¢ — q7
subprocess, and is therefore common to both processes. This is why the collinear
logarithms cancel when both corrections are included in the hadronic cross section
for W-boson production.

The modern approach to regulating collinear divergences uses dimensional reg-
ularization rather than a non-zero quark mass. There are several advantages to the

2
. 1 1+ﬁ__>n£r321 as f — 1. (5.6)
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Figure 8: The first diagrams of Figs. 6 and 7 in the collinear
region: (a) gg — Wg, (b) v*9 — 47.

use of dimensional regularization. One may use massless kinematics throughout,
simplifying the algebra. Other divergences in the calculation, namely infrared and
ultraviolet, may also be regulated dimensionally, so the calculation is simplified
by using one regulator for all three types of singularities. Finally, it is not known
how to extend the quark-mass regulation scheme beyond O (a;), while dimensional
regularization may be applied to all orders in QCD perturbation theory.

From this point onward these lectures will follow the two original complete
calculations of the QCD corrections to the Drell-Yan process, which were published
ten years ago. We will mainly follow the discussion of Ref. 5. However, this
paper uses a finite quark mass to regulate collinear divergences (and a gluon mass
to regulate infrared divergences). Therefore, the calculational details will follow
Ref. 6, in which dimensional regularization is used throughout. These papers deal
with pp — v*+X rather than pp — W+ +X, but the translation is straightforward.
Both papers are classics and will reward the reader who studies them carefully.

The remainder of these lectures are organized as follows. We first consider the
QCD corrections due to the presence of gluons in the proton, as in Figs. 4(b) and
5(b). We calculate the correction to the partonic cross section in section 6. In
section 7 the correction to the quark distribution functions is calculated. The two
corrections are combined in sections 8 and 9 to yield the QCD correction to the
hadronic cross section from initial gluons. We then tackle the QCD corrections
from virtual gluons and gluon radiation. The correction to the partonic cross
section, the quark distribution functions, and the hadronic cross section are treated
in sections 10, 11, and 12, respectively. We conclude with a discussion of the
phenomenology of QCD corrections to W-boson production in pp collisions.

6. gg— Whyg

The Feynman diagrams for the process g¢ — W™q are shown in Fig. 6. The
amplitude 1s

iM = -izjz. (—igs) e (p1) & (k)
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x @ (p3) | v#T4

where T4 are the Gell-Mann color matrices and eﬁ and ¢, are the gluon and W-
boson polarization vectors, respectively. Squaring and summing over spins and
colors, we obtain

2
IM[? = %ngrTATA
[ Tt s =307 Q= ) (L= ) O =) g

+ Trpay” (1 —v5) (B1 + B2) ¥ Pave (B1 + £2) 1o (1 — 75) 317

F 2T (o= )7 (L= Wb G+ B (L =) = | (62)

where the three terms represent the square of the ¢-channel diagram, the square of
the s-channel diagram, and the cross term, respectively. The k#k” / M$, term in the
W-boson polarization sum vanishes due to current conservation, as in Eq. (4.5).
We have defined the usual Mandelstam variables

s=(m+p) =201
t =(p1—p3)* = —2p1-p3
u=(p2—p3)’=—2p2-ms (6.3)
for convenience.
To regulate the collinear divergence, we will perform the calculation in N =

4 — 2¢ dimensions, and take the limit e — 0 in the end. The Dirac algebra is
defined in any number of dimensions via

{r*, 7"} = 24" . (64)

We also have
guyg,uv =N (6.5)

since gy, is the N x N matrix diag (1, -1, ~1,-- -b, —1). Contracting Eq. (6.4) with
Guy, we find

Y¥yu = N. (6.6)

Using these relations, we may derive the following useful identities:
T = -2(1—-€)¢ (6.7)
4y = da - b — 2edp (6.8)

vEdBeve = —2£pd + 2ed i (6.9)




The Dirac matrices have dimension 2%/2 for N even, 2V =1/2 for N odd. -
However, it is consistent to ignore this.and to regard them as having dimension

four. Thus we will use .

where 1 is the unit matrix in Dirac space. There are also ambiguities regarding
the definition of 75 in IV dimensions, but they need not concern us. We will use

{7 15} =0, =1 (6.11)
as in four dimensions. Also,
Trvysdghp =0 (6.12)

which eliminates traces containing a single s in all subsequent calculations.
Armed with these relations, we may attack the traces in Eq. (6.2). The first
trace gives

Trpsy" (B3 — 1) 7" (1 = 75) Pave (1 — v5) (B3 — $1) Vu
= -16(1—¢)’ st (6.13)

where we've used Eq. (6.7) twice, and A
Tripéd =4la-bec-d+a-db-c—a-chb-d|. (6.14)

The second trace may be obtained from the first via the substitution ps « —ps3,
or

s=(p1+p2) = (p1—p3) =1
t={(p1 —p3) = (p1+p2) =5, , (6.15)

i.e., s & t, so the second trace is equal to the first. The third trace, from the cross
term, gives

Trpsy* (bs — $1)7" (1 — vs) bavyu (1 + B2) 10 (1 — %)
=16 (1 — €) (—uM; + est) (6.16)
where we've used Eq. (6.9), Eq. (6.8), and Trdp = 4a - b, in that order. The

relation
s+t4+u=Mg (6.17)

is also useful in the derivation of Eq. (6.16).
Inserting our results for the traces, Eq. (6.2) for the squared amplitude becomes

- M2
IMP? = 2422 TrTATA(1 - €) [(1 —¢) (-S—t + —t) — 29X StW + 26} . {6.18)
— 3

The collinear region, p; - p3 — 0, corresponds to ¢ — 0, so the collinear singularity
is apparent in Eq. (6.18). The singularity goes like 1/, not 1/t2, because the trace
in Eq. (6.13) is proportional to ¢, as mentioned in section 5.



To obtain the cross section, we must average over colors and spins. The inci-
dent quark may have one of three colors and the incident gluon one of eight. The
Gell-Mann matrices are normalized such that

TrTAT? = %5*‘3 (6.19)
so we obtain for the trace in Eq. (6.18)
TrTATA =4 (6.20)

where we've used §486 45 = 8. Thus the color factor is %%4 = —é— There are N — 2
transverse spatial dimensions in N dimensions, so the gluon has N —2 = 2(1 —¢)
spin components. The quarks have only 2 spin components, since we have chosen
to use four-dimensional Dirac matrices (see Eq. (6.10)). Thus the spin- and color-
averaged squared amplitude for gg — Wq is

— 11 3 —t uME
M= 3h0gt -0 (S+F) 25+ 2

The next step in obtaining the cross section is to integrate over the scattering
angle of the final particles. N-dimensional phase space gives

2m)V " oE; (2r)V 1 2B,

1 /4anr 1 MEN\" ({_ My 12
T 8w \ME /) T(1=¢\ s s

1
-x/o dvv™ (1 —v) _ (6.22)

dN—l dN-l
P.S. = f : Ps Pt (95)Y 57 (py + p2 — ps — pa)
1

where v is related to the scattering angle by v = 7 (1 + cos$), and T'(z) is the
gamma function, defined by

[(z)= / dt e~t* 71, (6.23)
0

In order to perform the angular integral, we write ¢ and u in terms of v. We find

2
t=—-2p1:p3 = —2%% (1 - @) (1 cosf)

=_s(1—ﬂ%‘f—)(1—u)

8

MZ
u=—2py-p3 = —§ (1 - —SK) v (6.24)




where we have used s +1 4+ u = MEV to obtain u from ¢. The cross section for
gq — W™¥q may thus be written

=-~|M]2PS
111, 5,1 4\ 1 ... .1
— o Sl 1-—
162529 9oy (Mﬁv) =g =7

dvv=(1-2)" | (1= &) (7= ! F(1=#)(1=0)
f [ (( y(1- )

5
— 2F——+2e ] (6.25)
where we have adopted the notation
M2
7= __SKL’. (6.26)

The collinear singularity now resides in the v integral; in the limit € — 0, the v
integral is logarithmically divergent at v = 1, which corresponds to'# = 0. This
divergence is regulated by performing the integral in N = 4 — 2¢ dimensions, using

L e 8 _D+a)T(145)
fodw (1-0) = = (6.27)

The v integral in Eq. (6.25) yields

1 T(1- e)F(—e) AL(1—eT(2—¢)
(1'6)(1*;- T2 T T o )
T2 — e)'(—¢) + 2 I%(1—¢)

(2 — 2¢) 1"(2 2¢)

py (6.28)
The collinear singularity now appears as ' {—¢), which diverges as ¢ — 0.

We may now return to N = 4 dimensions by taking the limit ¢ — 0. We must
take this limit carefully, since I' (~e€) ~ —1/¢ in this limit. Using

IF'(z+1)=2cI(z) (6.29)
- and
I'(n)=(n—-1)!, n=integer >1 (6.30)
we may massage the expression above into the form
1T?(1—¢) (1—¢ 1
o —27(1 —(1-—7 6.1
eI (1~ 2¢) (1—7“' T( ) +2( ") (6:31)

where we've dropped terms of O (¢) and higher. The collinear singularity now
appears as an explicit factor of 1/e.



Replacing the v integral in Eq. (6.25) with the expression in Eq. (6.31), we

obtain
€
o=2119p2p2 1 ( i ) FE(1—#)7%

46259 Isgy M,
].F(].—E') 2 A2 3 A 3*\2
x[ eI‘(1—2e)[T +(1—T)]+§+T-2T (6.32)

where we've multiplied a factor of (1 — 7) from phase space into the expression in

(6.31). Using
1/ 47\, —2¢ 1 4 F
—— imm—— + 1— = = —— 1 1 —— it e —— o
C(M;?V)T( 7) e(+enM%r(1_f_)2+ )

212
€ 4 T

in the limit € — 0, we obtain our final expression for the spin- and color-averaged
cross section for gg — Wg:

(6.33)

1ra o 1
12 zw s

—e 2 01 _ 22
Jra-or) (A e 5T st
(6.34)

where ay = g2/4w. Equation (6.34) is also the cross section for g¢ — W™¢, which
is equal to g7 —» W7 by charge conjugation.

g =

7. 79— ¢
We now consider the correction to the quark distribution functions from the
presence of gluons in the proton, as in Fig. 5(b). The Feynman diagrams for the

process 4*g — g7 are shown in Fig. 7. Our goal is to calculate the contribution of
this process to the form factor F,. We will then use

Fy(2,Q%) = Z @z [gi (2,Q%) + T (2, Q)] (7.1)

to define the quark distribution functions to all orders in QCD perturbation theory. -
This is a natural definition of the quark distribution functions because, as we found
in Eq. (3.21), ¢ (z,Q?) = ¢ (=) at zeroth order in QCD.

Alternatively, we could use F} to define the quark distribution functions, via
Eq. (3.20). This prescription yields a different result for the distribution functions
at O (a,). Thus the Callan-Gross relation, which at zeroth order is F, = zFy, 1s
modified by QCD corrections. It is conventional to use F, via Eq. (7.1), to define
the distribution functions to all orders in QCD perturbation theory.




In order to extract Fy from the tensor W, it is convenient to define the
transverse and longitudinal structure functions

2
WT = _...g-”'VW“” = (3 - 26) Wl - @E‘WQ (7.2)
M?2y2 M4
Wi = P“PVWLW = — 0z Wi+ 0t Wo (7.3)

where we have used the general form for W,,, Eq. (2.10). The calculation is
performed in N = 4 - 2¢ dimensions, in anticipation of collinear divergences to be
encountered. Solving Eqs. (7.2) and (7.3) for W3, we find

(1—¢€)— Fg =Wt + 4 (3 2¢) Wp, (7.4)

where we've used F, = vW, and ¢ = QZ/QMU, as always.
We now calculate the contribution of the process v*¢ — ¢7 to Wr. Contracting
Eq. (3.11) with —g¢*¥, we find

Wr = 4:7'FMZ/ =g (y) Wi (7.5)

where W‘ = ——g’“’W' Recall that VVz is the square of the parton electromag-
netic current 1ntegrated over the phase space of the final partons (see Eq. (3.10)).

Thus W;,, is the square of the amplitude for v*¢ — ¢g, with the virtual photon
indices contracted with —g¢*¥, integrated over the ¢g phase space.

The calculation of the square of y*¢ — ¢g¢ is greatly expedited by noticing that
it is related, by crossing, to g¢ — Wgq, which we calculated in section 6. To go
from gqg — WTgq to v*g — ¢7, we replace the W boson with the virtual photon,
and relabel momenta:

P1— P2

P2 — —p4

3 —P3

k — —q. (7.6)

Thus the Mandelstam variables are mapped as follows:

s=(pr+p) = (p2—p)’ =t
t=(p1—p3)’ — (pz —pa)’ =
u=(p2—ps)’ = (pa+ps)* =s. (7.7)

Recall that the second term in the sum over the W-boson polarizations vanished,
leaving simply —g**, which is what we want for this calculation. We must replace



the weak coupling with the electromagnetic coupling, g — 4g%e®. Finally, there

is a relative minus sign, since squaring 4*g — ¢¢ produces a closed fermion loop,
while squaring g¢ — Wg does not.

Performing these manipulations on the squared amplitude for gg — Wtq,
E4q. (6.18), we obtain

. 2
| M 2= —8¢2e?g?TrTATA(1 —¢) [— (1—¢) (% + -;i) - 2%— + 25} . (7.8)
Averaging over colors gives the color factor %TTTATA == %, and averaging over the
gluon spin gives a factor 1/2(1 —¢). Thus the spin- and color-averaged squared
amplitude is

— 11 U sQ?
| M |2 = -2~-2-8q,?e293 [(1 —€) G + ?) - 2% — ze] . (7.9)
Collinear divergences are present in the forward (¢ — 0) and backward (u — 0)
regions.

The quark-antiquark phase space is simple, since the quarks are massless.
It can be obtained from the W-boson-quark phase space, Eq. (6.22), by setting
Mw = 0. Thus .

dN—1P3 dN—1p4 N N
<= (21r)N_1 o E, (27r)N_1 °F, (2m)" &7 (p1 + p2 — 3 — P4)
1 f4ar\¢ 1 e -
= g;-r- (T) m/; dv'v 6(1 —’U) € (7.10)

where v = £ (1 + cos §), as usual. Writing ¢ and u in terms of v, we find

Y R | q*
t=-—2p2-p4=—2—\/§§\/§ 1—--3— (1 —cos8)

2
2
= —3 (1-&-%) (1 —v)
QZ
u=—2py-p3=—3 (1 + —;) v (7.11)
where we have used s + ¢ + u = —Q? to obtain u from 1.

Before performing the angular integral, let us relate s to the usual parton-
model variables z and y. The gluon carries fraction y of the proton’s momentum,
so pp = yP. Thus

Q? Q?
= = . 7.12
‘ 2P -gq y2p2 - q ( )

Using
s=(p2+q)P =2p-¢—Q* (7.13)




we find

s=2Q? (1 - f) . (7.14)
z )
Defining
=2 (7.15)
Y
we obtain
2
s=—(1-2)
2
2
u=——0v (7.16)
z

where ¢ and u are obtained via Eq. (7.11).
Inserting the expressions for s, t, and u, Eq. (7.16), into the expression for

| M |2, Eq. (7.9), and integrating over the gg phase space, Eq. (7.10), we obtain

Wi =M [2P.S.
11 1 /4 1
Slggpl (B2 )
22 8t \Q?1—2/) T'(1—¢)

1
_ —e l1—v v 1
€(1— ~ —2(l-2)— 2.
| x/ﬂd’u'v (1—v) [(1 e)( - +1—v) z( z)v(l—v) e]
(7.17)
(By definition, the factor e? is removed, as in Eq. (3.13).) Performing the v integral

and taking the limit € — 0, we obtain

py ' — 21—
Wt = 2¢7 [22 +(1— 2)2} (—%%—2% —I-ln%l . z) (7.18)

- where the manipulations involved are similar to those used to obtain Eq. (6.31).
The collinear divergence once again manifests itself as a factor of 1/e. Finally, Wy
is obtained by inserting Eq. (7.18) into Eq. (7.5).

Next we calculate the contribution of 4#*¢ — ¢¢ to the longitudinal structure
function, W;. Contracting Eq. (3.11) with P#P?, we obtain

v 1 1 d Ery
Wi= PP W= oS [ SR T (7.19)
P z

where . . :
A (7.20)

and we’ve used py = yP. W}: is obtained by contracting the virtual photon index
of v*g — ¢q with py, squaring, and integrating over the ¢§ phase space.



Denoting the v*¢ — ¢§ amplitude M, where u is the photon index, we find

PhMy = (=igie) (~ige) B (p3) [fa ST T | v (00 (20
=(-z'q,~e)(—z'gs)ﬁ(p3)[ Pt + 252 ] 0 (p0) () (7.21)

. where we've used p2 = p? = 0, and pushed p4 and 153 past v¥ (via Eg. (6.4)) in
order to use psv(ps) = U(p3) 363 = 0. Upon squanng and sumn:.ung over gluon
spins (—g#¥), the square of each term vanishes, since p2 = p? = 0. Only the cross
term survives, yielding

* 1
PP MuM; = —gle’ g TrTAT 2 (~4ps - po) (- Trisbrbsty
= g} g TrTATA8s. (7.22)

The factor 1/tu has been cancelled by the numerator, so there are no collinear
divergences, and we may calculate in N = 4 dimensions henceforth. Averaging
over the gluon color (STTTATA 1) and spin, we obtain

——— 11 ,
AEMM; = S5dfelsi8s. (7.23)

Since Eq. (7.23) has no angular dependence, the phase space integral, Eq. (7.10),
is simply 1/8n. We therefore obtain (removmg the factor e?)

(7.24)

Wi =g¢?

where we've used Eq. (7.16) to eliminate s in favor of Q% and z. Finally, Wy is
obtained by inserting Eq. (7.24) into Eq. (7.19).

Now that we’ve calculated Wr and Wy, we can insert them into Eq. (7.4) to
obtain Fj. Taking the limit ¢ — 0, we find

1-eF= Zfﬁg—; [ dyg(y)z
X “22 + (1 - z)z] (—}g%l__é% +1n-49-1-r2-1—:€) +6z(1 —z)] .
(7.25)

We now compare this with our definition of the quark distribution functions,
Eq. (7.1), to obtain ¢ (z,Q?) at O (a,). Since 4*g — ¢7 contributes equally to the
quark and antiquark distribution functions, we obtain

q(z,Q%) =g ()

X “z2+(1—z)2 ( l—I-,I:‘—((ll_—ze))--i-an—?-.]‘;z)+6z(l—z)J.
(7.26)




The first term, ¢g (z), is the zeroth-order result, and is called the “bare” distri-
bution function. The “renormalized” distribution function, ¢ (a:, Qz), is what one
observes experimentally. Since the QCD correction to ¢o (z) is infinite (due to
the collinear divergence), qo (z) itself must be infinite in order to yield a finite
renormalized distribution function. This conclusion is acceptable, since the bare
distribution function is not observable. This situation is analogous to the renor-
malization of bare coupling constants in field theory.

The quark distribution function, which at zeroth order in QCD is independent
of @2, becomes dependent on In Q? at O (a,). This weak @? dependence has been
observed experimentally, and is referred to as a scaling violation. We will return
to the topic of the Q? dependence of the distribution functions when we discuss
the Altarelli-Parisi equations in section 9.

8. pp— W+ + X: INITIAL GLUONS

We can now combine the results of the last two sections to obtain the QCD
correction to pp — W+ 4+ X due to the presence of gluons in the proton. These
gluons enter in two ways; as corrections to the subprocess cross section gg — W™,
and as corrections to the quark distribution functions. Each of these corrections
is collinearly divergent, but these divergences will cancel when combined.

Let’s begin by calculating the QCD correction to pp — W1+ X due to the cor-

‘rection to the quark distribution functions, which was calculated in the previous
section. The zeroth-order cross section for pp — W+ + X, Eq. (4.12), was calcu-
lated in N = 4 dimensions. Since the QCD correction to the quark distribution
functions is collinearly divergent, we must recalculate it in NV = 4 — 2¢ dimensions.
Using Eq. (6.7), we obtain

= 3_W(l--e)sz / %L [q01 (21) By (r0/2) + T (21) v (/1)) (81)

where T9 = M3, /S. We've placed a subscript on the distribution functions and ¢
to denote that they are zeroth order in QCD.

The QCD correction to og due to the correction to the quark distribution funec-
tions is obtained by replacing each (é)o in Eq. (8.1) with Eq. (7.26). Let’s concen-
trate on a particular distribution function in Eq. (8.1), say gy, (70/z1). Eliminating
it via Eq. (7.26), we obtain Eq. (8.1) with Gg; (r0/z1) replaced by §; (ro/z1, @Q%),
plus the QCD correction term

™ a la dz dzx
O] =—— / 1/ —zqoa(wl)g(wz)
™ rn/zy %

x“22+(1—z)2]< i%%—_:-%ﬂan - )+6z(1—z)] (8.2)




where 7o

(83)

z= .
T1X2

Using s = 717295, this may be written

Lai—3" Yan [ (¢1) 9 (z2)
1 = — 504 / dl‘l] dzy qoi (z1) g (22
12 "zw & Jn ro/=1

x < [[z2+(1-z)2] (—%fl%f%+mf—:1;z> +6z(1—z)]. (8.4)

We now turn to the QCD correction to the subprocess cross section ¢g — W+
due to initial gluons. This correction arises via the subprocess gg — W¢, which
was calculated in section 6. Using the usual parton-model formalism, the hadronic
cross section due to this subprocess is

oy = 2 /r:: dzy /1:/::1 dzo
% [g0i (1) g (z2) + Goi (1) ¢ (z2) + (21 & 2)] 6 (99 —» WTq)  (85)

where the proton contributes a parton of momentum fraction z; and the antipro-
ton a parton of momentum fraction z;. Let’s concentrate on the first parton
combination in Eq. (8.5), qoi (1) ¢ (z2). Inserting Eq. (6.34) for & into Eq. (8.5),
we obtain

- o 1 1
o1 = -1-2-0{3;:—‘;; Z/ d:l?l/ dx? qo; (1'1)9(-'172)

0 mo/z1

L[ 2 ol 10-¢  MEA-7") 3 . 3.
XS'[[T +0@ T)](HGF(I—ZG)-*-ID 4r T tegtTog"

(8.6)
where 7 = M} /s. Using s = 21225 and 79 = M, /S, we find
2
oMy _ D (8.7)
5 1%

i.e., 7 in Eq. (8.6) and z in Eq. (8.4) are the same. We shall use 7 henceforth in

place of z.
We now add the two contributions to ¢y, Egs. (8.4) and (8.6). The collinear
singularities cancel, as anticipated, and we are left with the finite result

- ol 1
o= Z ay— / d:b'lf dzy qoi (z1) g (22)
;

12 " xw o /21

1 5. o M} 03 .9,
x;[[72+(1-r)2]1n—é—2v£(1—T)+§—5T+-2-7'2 (8.8)




where s = #1225, T = M#,/s = ny/z1z2, and 1p = MZ, /S, as usual.

Equation (8.8) was derived by replacing gy; (70/21) in Eq. (8. 1) with g; (10/z1,Q%),
and by considering only one of four parton combinations in Eq. (8.5). Replacing
the other partons in Eq. (8.1) with g (z,Q?), and considering the other parton
combinations in Eq. (8.5), we obtain :

= %%%Zf dml/m/,; dm25(m1x2~rg)
[Qz' (wl,Q )ij («'Ezsz) +; (5‘31: 2) g (w2, Qz)]
-l—-—as—-2/ dl‘l[ dz [g0i (21) 9 (22) + Toi (z1) g (22) + (21 > 72))]
/%1

9.
2"

x % [[%2+(1— #) ]ln&(l—r)—kﬂ-—&r—l—
. (8.9)
The first term is the zeroth-order cross section, Eq. (8.1), with go (z) replaced by
g (z,Q?). The second term represents the O (a;) correction to pp — W+ 4 X due
to the presence of gluons in the proton.
Before evaluating this cross section numerically, we need to discuss the In M7, / Q*
term in the O (a;) term in Eq. (8.9).

9. ALTARELLI-PARISI EQUATION

Equation (8.9) is our result for the O (a;) correction to pp — W+ + X due to
the presence of gluons in the proton. The collinear divergences, which appear as
terms proportional to 1/¢ in Eqgs. (8.4) and (8.6), have cancelled, leaving a finite
result.

In section 5 we argued that collinear divergences lead to factors of In E?/m?,
where E is the relevant mass scale and m is a quark mass. Instead of regulating
the collinear divergences with a quark mass, we used dimensional regularization.
Thus 1/e corresponds to Inm?, and In E? is the source of-the In M#,/Q* term in
our final result, Eq. (8.9). Thus the In M2, /Q? term is associated with the collinear
divergences.

The variable Q% corresponds to the v1rtual1ty of the photon in deep inelastic
scattering, which is used to measure the quark distribution functions ¢ (:1: Q).

Typically, Q% ~ (1-10 GeV) so ln M%,/ Q? is a fairly large factor. Therefore,
the terms proportional to asIn M- /Q? are sufficiently large to invalidate the use
of perturbation theory.

Fortunately, there is a way around this problem. The Q? dependence of the
parton distribution functions is calculable perturbatively, and by evolving g (z, Q%)
to ¢ (m,M%,) we can eliminate the In M3,/Q? term in Eq. (8.9). The expansion
parameter is then simply o, and perturbation theory is vald.



To obtain the Q? dependence of the quark distribution functions at O («,),
we differentiate the QCD-corrected expression for the quark distribution function,
Eq. (7.26), with respect to In Q2. This gives

d n o [tdy 2 2 '
(@) = 5 [ Lew [+ -] (9.1)
where z = z/y. It is conventional to define the “splitting function”
Py (2) = 3 [+ 1= 2] (92)
in which case Eq. (9.1) may be written
ld
Y T

The subscript gg on P is to denote that this splitting function refers to quarks
coming from gluons splitting, ¢ — ¢7, as in Flg 8.
Integrating Eq. (9.3) from In@? to In MW, we obtain

MW

QZ
Replacing the ¢ (:n, Qz) with ¢ (x, MW) in the zeroth-order cross section for pp —
W+ + X via Eq. (9.4), we find that the In M, 2, /Q? term is eliminated, leaving

7 a l
c= _3_;;"5:2_/ d:r:lf o dzo § (2122 — 7o)
[Qi (mlvMW) QJ (32’ MW) +7q q; ('T'laMI?V) q; ($2:M3V)]

g S [t [ dmlanteote) +Tuens e + oy oo

¢ (2, My) = q(a,Q%) + Yy [ra-a. 04

x-}[[-?%(l—f-)]1n(1—+)+§—5f+gf] (9.5)

where s = 21228, ¥ = To/z122, and Ty = M{,/S. This is our final result for the
O (as) expressmn for pp — W+ 4+ X including the effects of initial gluons.

Although we've managed to eliminate the In M, 2, /Q?* term from the cross sec-
tion, it has reappeared in our expression for ¢ (z, M%), Eq. (9.4). Thus the expan-
sion parameter in Eq. (9.4) is a, In M}, /Q?, which again means that perturbation
theory is invalid. However, we can sum the leading logarithms, i.e., terms of or-
der ol In" M%,/Q%, to all orders in perturbation theory. This is a.ccornphshed
by replacing the zeroth-order gluon distribution function, g(y), in the evolution
equation, Eq. (9.3), with ¢ (y, Q@?). Thus the solution to

4 _ as (@%)
danzq(“”Qz) on /1_ » 9 (¥,Q%) Pyg (y) (9.6)




incorporates the effects of leading logarithms. Eq. (9.6) is known as an Altarelli-
Parisi equation. We have also replaced a; with s (@?) in Eq. (9.6). The running of
o, with Q7 is also due to summing logarithms, but these logarithms are associated
with ultraviolet divergences, and are unrelated to the collinear logarithms which
are summed by the Altarelli-Parisi equation. Since we have been calculating at
first non-zero order in «; and g (y), the Q? dependence of these variables has not
appeared explicitly. A more thorough treatment of the Altarelli-Parisi equations
may be found in the lectures by Frank Paige.

Actually, Eq. (9.6) is only part of an Altarelli-Parisi equation; there is also
a term due to quarks emitting gluons, which we will encounter in section 11.
There is also an Altarelli-Parisi evolution equation for the gluon distribution func-
tion, ¢ (:z:, Qz). Thus, to obtain a complete set of parton distribution functions
at Q% = MZ,, one begins with input distribution functions at Q?, taken from
experiment, and uses the Altarelli-Parisi equations to evolve them. Since the
Altarelli-Parisi equations are coupled integro-differential equations, they must be
solved numerically. This is exactly what is done for us in the parton distribution
function sets listed at the end of section 4.

We may evaluate the O () correction to pp — W+ + X due to initial gluons
in Eq. (9.5) by using the aforementioned distribution functions and performing the
z1 and z3 integrations numerically. We evaluate the quark and gluon distribution
functions in the O (a,) correction term at Q? = MZ,, just as in the zeroth-order
term, to sum leading collinear logarithms. Similarly, we evaluate o, at Q% = M2,
to sum ultraviolet logarithms.

Evaluating the cross section at the Tevatron energy, V.S = 1.8 TeV, we find
that the O (a;) correction due to initial gluons is only about 7% of the zeroth-
order cross section, and is negative. At first sight, the sign of the correction is
startling; after all, the cross section for gg — W ¢ is certainly positive. However,
the correction to the quark distribution function, Eq. (7.26), makes a negative con-
tribution to the cross section when we replace g (z) with ¢ (a:, Qz) This negative
contribution outweighs the positive contribution from gg — Wq.

The correction to pp — W 4+ X due to the presence of gluons in the proton is
thus rather modest. We now tum to the correction due to real and virtual gluon
emission, which is numerically more important.

10. ¢7 —» W+g AND ¢ — W+ (ONE LOOP)

‘We now begin the second half of our calculation of the QCD corrections to
pp — WT 4+ X ; the effect of virtual gluons and gluon radiation. These two types of
corrections must be considered together because they are each infrared divergent,
but their sum is infrared finite. Virtual gluon and gluon radiation corrections to
g7 — W are shown in Fig. 4(a); the corresponding corrections to v*¢ — ¢ are
shown in Fig. 5(a). Due to lack of space and time, we will not be able to treat
these corrections with the same detail as we treated the corrections due to initial



W+

Figure 9: Feynman diagrams for ¢g — Wtg.

gluons in sections 6-9. We will therefore concentrate on the concepts, and leave
the calculational details to the interested reader.

Let’s begin with a study of the infrared and collinear divergences which we
will encounter in this calculation. Consider the first diagram in Fig. 9, which
contributes to ¢ — W+g. The denominator of the quark propagator is

1 1
(pr—ps)? —2E1Es(1—cosd) (10.1)

as we showed in section 5. We immediately recognize the familiar collinear sin-
gularity as § — 0. There is also a singularity when the gluon energy vanishes,
B3 — 0. This is an infrared singularity, and we refer to the gluon as “soft”, since
it carries little energy. (The reader may object that the same infrared singularity
should appear in the process gg — Wq, which we treated in section 6, because
the denominator of the quark propagator in that case is identical to Eq. (10.1).
The reason we did not encounter an infrared singularity in that case is that the
spinor of the final-state quark, u (p3), vanishes as E3 — 0, i.e., as p3 — 0 (for a
massless quark). Thus the potential infrared singularity is cancelled by the quark
spinor - there is no divergence associated with a soft quark.)

Consider now the virtual gluon correction to ¢g — W, shown in Fig. 10. The
loop integral associated with the first diagram is proportional to

1 1
dk = f d*k . (102
/ k2 (k + p1)° (k — pa)’ k% (k% + 2k - p1) (k% — 2k - p) (10.2)
If the virtual gluon is soft, i.e., £ — 0, the integrand may be approximated by

-1
k22k -p12k-pa’

(10.3)

Since there are four powers of k in the denominator, the d*k inﬁegral is logarithmi-
cally divergent as ¥ — 0. This infrared divergence cancels the infrared divergence




Figure 10: Feynman diagrams for the one-loop corrections to
qq — W+,

due to the emission of a real, soft gluon. Infrared divergences are also discussed
in the lectures by Frank Paige.

There is also a collinear divergence associated with this loop integral. If & ~ pq,
which implies k% — 0, then the integrand of Eq. (10.2) is approximately propor-
tional to

-1
k? k2 2p1 - p2’
The integrand is again logarithmically divergent. There is also a collinear diver-
gence for k ~ ps. These collinear divergences do not cancel with those from real,
collinear gluon emission. Rather, they are all cancelled by similar collinear diver-
gences present in the QCD corrections to the quark distribution functions, exactly
as we saw for initial gluons in section 8.

The loop integrals associated with the loop daagrams in Fig. 10 are also ultra—
violet divergent. However, the sum of the diagrams is ultraviolet finite, due to a
Ward identity which relates the ultraviolet divergences. Thus we need only deal
with infrared and collinear divergences. As before, these will be handled by using
dimensional regularization.

The correction to the ¢§ — W vertex due to virtual gluons, shown in Fig. 10,

(10.4)

is

. . g
! 32.\/—7 (1 —7s)

oot () =0 (32 s

where the first term in brackets is the zeroth-order vertex. The 1/e term in the
QCD correction is due to the collinear divergence. The 1/e? term is due to the
product of an overlapping collinear and infrared divergence. The overlap occurs
because the infrared limit, ¥ — 0, is a special case of the collinear limit, k£ ~ p
(or k ~ p2). The factor of 4/3 is a color factor, TAT#4 = %1, where 1is a 3 X 3
unit matrix in color space.

Notice that the QCD correction to the gg — W™ vertex in Eq. (10.5) contains
a factor (—1)°. Expanding this factor in powers of ¢, we find

Re(—1)'=1-— -;-ezﬂ'z (10.6)



where we’ve used the identity
z‘=e‘1”=1+elnz+%e2ln22+--- (10.7)

for z = —1: The reason we take the real part in Eq. (10.6) is that when we square
Eq. (10.5) to obtain the cross section, the O (a,) correction will come from the
interference of the loop correction and the zeroth-order term. Since the latter is
real, only the real part of the loop correction will survive.

Replacing the (—1)° factor in Eq.(10.5) with the expansion in Eq. (10.6) gen-
erates a term proportional to 72. The expansion

2
1’(1+e)1"(1——e)=1‘+%—62+--- (10.8)

also generates a 72 term. We therefore obtain

iT# = —~i—Ly# (1 s)

2v2

asd { 4m \* T(1—¢) 2 3 2 2)]
"[”m(w{,) r(l_-ze)(‘zf‘z 8+3m ) (109)

Using this QCD-corrected vertex to calculate the spin- and color-averaged cross
section, as in section 4, we obtain

N 2 a
O’=-3—E6(8—Mgv)
asd {47 \* T(1—¢) 2 3 22)]
X[1+27"3(M3V) F—2g\ & ¢ 8+37r (10.10)

where the first term in brackets is the zeroth-order cross section and the second
term is the O (a,) QCD correction. :

The QCD correction to ¢§ — W due to real gluon emission is shown in Fig. 9.
The squared amplitude for this process can be obtained from that of gg — Wy,
Eq. (6.18), via the replacements s — ¢, ¢ — u, and u — s, and multiplying by an
overall minus sign. The cross section is

. wzaas4(4w)c T'(l—-¢)1

3aw2r3 \ M) T(1-2¢)s
2 . 21472 oy (In(1=7) 1472
><[626(1—7')—-6(1_7,_)++4(1+1')( =7 ), 2—Inf
(10.11)

where 7 = M% /s, as always. The relation

. IR 1 . 1 In(1 -7
R e Rl =)
+ +

7 Lo (10.12)

1-7

+ €




’Y* ,Y* v -
j%;r“ " }‘“ * EW“

q q q

Figure 11: Feynman diagrams for the one-loop corrections to

T — g

was used to derive Eq. (10.11), where the “plus prescription” is defined by

1 1
[ ats@h@ = [ drg@he —r). (10.13)
0 0

The ( ), terms are therefore finite at 7 =1, 1.e., s = M, which corresponds to
the soft-gluon limit. The infrared divergence is contained in the 1/¢? term, which
is the product of an overlapping infrared and collinear divergence. This overlap
occurs because the infrared limit, p3 — 0, is a special case of the collinear limit,
p3 ~ p1. The 1/¢ term in Eq. (10.11) corresponds to a pure collinear divergence.

Adding the virtual and real gluon corrections, Eq. (10.10) and Eq. (10.11), we
- obtain the QCD-corrected cross section for ¢g — W,

o=—

= 2
o 2325 -o) (HH )

+4(1+ 4% (ln(1 ))+ PR S LN @H - 8) §(1— %)] (10.14)

1—-7+ 1-7

72 1
s

§(1—7)

where 7 = MZ,/s. The infrared divergences, proportional to 1/ €%, have cancelled,
leaving the collinear divergence, proportional to 1/e. This divergence will cancel
with the collinear divergence present in the QCD correction to the quark distri-
bution functions, a topic to which we now turn.

11. v*¢ — gg AND ~+*Q — Q (ONE LOOP)

We now consider the QCD corrections to the quark distribution functions due
to virtual and real gluon emission. As before, the quark distribution functions are
defined in terms of the form factor Fy, measured in deep inelastic scattering, via
Eq. (7.1).

The virtual-gluon corrections to deep inelastic scattering are shown in Fig. 11.
The diagrams are identical to those of ¢ — W™, Fig. 10, with the W boson
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Figure 12: Feynman diagrams for v*¢ — gq.

replaced by a virtual photon. Thus the correction to the vertex may be obtained
immediately from Eq. (10.5):

iTF = —ie?iv [1+ .2 (Q2> ra ;(61) 322(:)"6) (—632 - —3— —8)] . (111)

The W-boson mass has been replaced by the photon “mass”, ¢* = —Q?. Thus the
(1) factor which was present in Eq. (10.5) does not appear in Eq. (11.1).

The real gluon emission corrections to deep inelastic scattering are shown in
Fig. 12. The first diagram is infrared divergent, and cancels the infrared divergence
(the 1/€* term) in Eq. (11.1). When we add the virtual and real gluon emission
contributions to deep inelastic scattering, we obtain the infrared-finite result for
the correction to the quark distribution functions

¢(2,Q%) = @ (2)
1
22 1 / —dyqo(y)

2r3l—e¢ y )
"[((_11"}'51 -9) (- rr((ll—ze) +id)
+(1+z)(5"—?{2—"’))+ 3(1—z)+ 11'*_'_’; Inz
+3+2z——(§+-ﬂ3—2)6(1.-z)] (11.2)

where z = z/y, as always. The (), notation is defined in Eq. (10.13).
Differentiating Eq. (11.2) with respect to In Q?, we find

d 3 14
FITYAEL (2,Q%) = ;_W]x ?yqo (y) Pyq ('E‘) (11.3)




where the splitting function
1+ 2?

describes a quark coming from guark sphttmg, g — ¢q9. Eq. (11.3) becomes an
Altarelli-Parisi equation, i.e., it sums leading collinear logarithms, when we replace
¢o (y) with ¢ (y, Qz). The full Altarelli-Parisi equation for the quark distribution
function, including both g — q?g“ and ¢ — gg, is thus

et @) =21 [ 6,00, (2) 400,09 P (2))
(11.5)

where P, is given in Eq. (9.2). The running of a, with Q? sums ultraviolet
logarithms, as we mentioned in section 9.

T ts 6(1 )} (11.4)

12. pp — Wt + X: VIRTUAL AND REAL GLUON EMISSION

We can now combine the corrections to g — W and the quark distribution
functions due to virtual and real gluon emission to obtain the O (a,) correction to
pp — W 4+ X. Following steps similar to those in section 8, we obtain

1 1
7= Z/ dﬂ”l/ de [gi (z1,Q%) T (22, Q%) + T (21, Q%) ¢ (%2, Q%))
ij Y0 To/71

w2 a1l .

2r a1 3 . oy {1l —7)

il Bl —6—4 el Sol
4 Qasst[(l—-—'f')_,_ 6 1'4-2(1—}—7’)( - N

4 1+72 3 My
14 n? — 7 4+ z6(1-7))2ln L 12.1
+( +37r)6(1 T)+((1_$_)+_+25(1 T)) an ]] (12.1)
where the first term in the large brackets is the zeroth-order cross section. The
collinear divergences of Eqs. (10.14) and (11.2) have cancelled, as expected.
The last term in the O(a;) term above, proportional to ln M2 /Q*, can be

eliminated via the Altarelli-Parisi equation, Eq. {11.3). Integrating Eq. (11.3) from
In Q? to ln M2, we find

Q(maM%f)ZQ(vaz)'*_;_;ln% . dyq(y) QQ<Z> (12'2)

where P, is given by Eq. (11.4). Using this expression to replace ¢ (:c, Qz) with
g (z, M%) in Eq. (12.1), the In M7, /Q? term is cancelled, and we are left with

o= Z/ dz f/ dzo [q,' (xl,M;?V) q; (mz,Mgv) +7; (a:l,M'gV) qj (xg, MFEV)]
™ r1
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+ (1+§7r2)6(1—+)]] - (12.3)

where 8 = 71295, # = T0/7172, and T = M%,/S This is our final result for
the QCD-corrected cross section for pp — W+ 4+ X due to virtual and real gluon
emission.

We may evaluate the cross section in Eq. (12.3) by using one of the sets of
distribution functions mentioned in section 4 and performing the z; and z; inte-
grations numerically. The relation

1 1 T
ORISR EHOIIORIVEIE | a2

is necessary to perform the integration over the “plus” distributions. The change
of variables :

. 0
T o=
1T
1. z1
= —ln — 12.5
y=gh—= (12.5)

may be used to obtain 7 as an integration variable:

1 1 ~In/7o 1 To
/ dzy f dry = ] dy/ dr = (12.6)
0 ro/z1 In /70 0

Performing the required integrations, we find that the O (a;,) correction to
pp — W 4+ X from virtual gluons and gluon radiation at VS = 1.8 TeV is about
33% of the zeroth-order cross section, and positive. Adding this to the negative
7% correction from initial gluons, we find that the O(a;) corrections to pp —
W+ 4+ X at the Tevatron increase the zeroth-order cross section by about 26%.
The corresponding increase at the CERN collider (VS = 630 GeV) is about 30%.
The systematic error in the measured cross section is about 10%, and the statistical
error is much less, since over one thousand events have been observed. The QCD
correction to pp — W+ 4+ X is therefore observable, in principle. Uncertainties in
the parton distribution functions introduce some ambiguity in the calculated cross
section, but hopefully these uncertainties will be reduced to a level where we can
unambiguously observe the QCD correction to pp — W+ + X.

Numerically, the most important term in the O (ay) correction to pp — w4+
X is the #? term in Eq. (12.3). Since this term is proportional to §(1 — 7}, it
arises from the kinematic region s = MVZV, which corresponds to a virtual gluon or

b 1




soft gluon radiation. This 72 term arose in the loop correction to ¢ — W™ from
expanding (—1)° (Eq. (10.6)) and T'(14¢)T' (1 —¢) (Eq. (10.8)) to O (¢?}, and
multiplying by the 1/€? term in Eq. (10.5). Since the 1/¢* term corresponds to an
infrared divergence, we see that the 7% term is related to the infrared region. The
QCD correction to the quark distribution function also contains a 72 term, from
expanding I' (1 + €)' (1 — €) in the loop correction to v*¢ — ¢. Since there is no
factor of (—1)° in this loop correction, the 72 term differs from that of ¢g — W,

Since the 72 term is proportional to § (1 — #), it is proportional to the zeroth-
order cross sectiori. Thus the 72 term corrects the total cross section by a multi-
plicative factor

K=1+-2ZZr (12.7)

which is often called the “K factor.” One factor of 4/3 in Eq. (12.7) is from color
(TATA = % 1) and the other is from summing the various contributions to the 2
term outlined above.

Originally, the entire O («,) correction to the Drell-Yan process was called the
K factor, although this is a misnomer since the correction is not an overall factor.
This correction is often approximated by the numerically dominant #? term, via
Eq. (12.7), which has now come to be called the K factor. Of course, Eq. (12.7)
is only an approximation to the full O {«;) correction to pp — W7+ + X, given by
Egs. (9.5) and (12.3).
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