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POWHEG

Positive Weight Hardest Emission Generator
A method for interfacing NLO calculations with Shower Monte Carlo’s (SMC)

It generates the hardest emission first, with NLO accuracy, independently of
the SMC (P.N. 2004), and (as the name says) with positive weights.



Motivations for NLO4+SMC

Comparisons of data with NLO result require now correcting for:
e Detector effects
e Underlying event
e Hadronization

All these effects are estimated using a SMC generator;

None of this is needed if NLO+SMC is implemented.



Status of POWHEG

Up to now, the following processes have been implemented in POWHEG:

hh— ZZ (Ridolfi, P.N., 2006)

ete~ — hadrons, (Latunde-Dada,Gieseke, Webber, 2006),
ete™ —tt, including top decays at NLO (Latunde-Dada,2008),

hh— QQ (Frixione, Ridolfi, P.N., 2007)

hh— Z /W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson, Tully, 2008;)

hh— H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008)
hh— H, hh— HZ /W (Hamilton,Richardson, Tully, 2009;)
hh—t+ X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)
hh— Z + jet, Preliminary (Alioli, Oleari, Re, P.N., 2009)
VBF Higgs, Preliminary, (Oleari,P.N., 2009).

The POWHEG BOX, Preliminary, (Alioli, Oleari, Re, P.N., 2009)
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Outline

What NLO+SMC calculations do in general
Examples: MC@NLO and POWHEG
Towards automation: the POWHEG BOX.

Perspectives and Conclusions



NLO+SMC basics



Hardest emission in a Shower Monte Carlo

For illustration: assume there is only one radiating line.
SMC formula for hardest emission (P.N. 2004):

RMC ((I))

= B(® 0)) AMC AMC— (I)MC
do ( B)d B to +\ t B((I)B) d T
ATE

e { is the radiation transverse momentum
e B(®p)dPp: Born differential cross section
e A} No radiation probability down to the cutoff ¢

e AM°: No radiation probability down to the scale ¢
o RMCIDNC: SMC's real cross section, ~ B — a(t)P( Ydzdt %

th / MC
¢ :exp[ —/ at / st ] :exp[ —/ il d@ycl
t t1 B




Hardest emission in NLO+SMC: must be NLO accurate

It has the form:

S RS(®>

do = BS((I)B)CZ(I)B [Afo —+ At B((I)B)

where R = R? in the soft and collinear limit,

B%(®5)=B(®5) + V(<I>B)+/ (D) dD,

infinite  N— - —
infinite

-

ﬁ?l?ce
and

At = eXp[ —dq) 9

t;

dd ] [R(®) — R*(®)] d®

Imagine that soft and
collinear singularities in RM¢

4 are regulated as in V.
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Accuracy

 R(®) _as(t) dt ; dé
Small ¢: 55 APraq = — P(Z)szﬁ,

Also: B~ B x (1+0O(ay))
Thus: all features of SMC's are preserved at small ¢.

Large t: A—1, do=Bx"2d®+(R— R,)d®~Rd®,
so: large t accuracy is preserved.

NLO accuracy: since Ay, + f Atg(fidcb — 1, integrating in d®, at fixed ¢,

/5(c1>B—cI>B)da:[B+/ (R—Rs)dér] :[B+V+/RdCI>T]

So: NLO accuracy is preserved for inclusive quantities.



In MCONLO: R*dP, = RM°dP)©

Furthermore: the phase space parametrization ® 5, ®,.= ® is the one
of the Shower Monte Carlo. We have:

B (®5)d®p

. WV
provided by MCatNLO

S event

R*(®)

A+ AL 4D,

A -

B(®p)

4

generate‘cfby HERWIG
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+ [R(®) — R*(®)]d®

A -

. TV
provided by MCatNLO
H event



Recipe for MC@NLO

Compute total cross section for S and H events:
O_S:/ |BMC((I)B)|d(I)Ba O-H:/ |R _ RMC|d(I)

Chose an S or H event with probability proportional to og, o
For an § event:

— generate Born kinematics with probability

|B“C<<1>B>|:'B<<I>B>+[v<<1>3>+ [ree(@aaic]

— Feed the Born kinematics to the MC for subsequent shower
with weight + 1, same sign as B"" (®g) (mostly + 1).

For an H event:
— generate Radiation kinematics with probability |R — R"¢|.
—  Feed to the MC (with weight + 1, same sign as R — R"“)
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Issues:
e Must use of the MC kinematic mapping (@5, ®M¢) = @.

e [ — R" must be non singular: the MC must reproduce exactly the
soft and collinear singularities of the radiation matrix element. (Many
MC's are not fully accurate in the soft limit)

e Negative weights in the output (not like standard MC's).
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In POWHEG: R°d®, = RF(®P)

where 0 < F'(®) <1, and F/(®) =1 in the soft or collinear limit.
F(®)=1 is also possible, and often adopted.
The parametrization @z, ¢,.= ® is within POWHEG, and there is complete

freedom in its choice.

55 R(P)
S S @T
B (@f)d@g ot Al ( (I)B)d
POWHEG - -~ -
POWHEG

+ [R(®) — R%(D)] dP

- 4

~
POWHEG

All the elements of the hardest radiation are generated within POWHEG

Recipe

e POWHEG generates an event, with ¢ =?,ouneg

e The event is passed to a SMC, imposing no radiation with ¢ >t 5uneg:.
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Improvements over MC@NLO:
e Positive weighted events: R — R;,=R(F —1) > 0!

e Independence on the Shower MC: The hardest emission is generated by
POWHEG; less hard emissions are generated by the shower.

e No issues with SMC inaccuracies
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MC@NLO and POWHEG yield the exact total NLO cross section;
However, differential distributions are affected by induced higher order terms:

do=d®,B| Ay, + A5dD, |+ (R—R,)d®,  B=B+[V+] R,do,]

e The expression for A, :exp{ — % d®,.0(kr — t)} generates
terms of all orders, and suppresses the distributions at small p7.

e Most important: the square bracket term in B, multiplied by R./B,
generates NNLO terms. For large t:

RSd(I)r] +(R—R,)d®= (g— 1)R3+R 4P

do = d(I)BB[AtO + At§

-

NNLO

(in NLO corrections are positive, it typically enhances the distributions).
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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/ pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production
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Good agreement for most observables considered
(differences can be ascribed to different treatment of higher order terms)
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108

Bottom pair production
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B mesons
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Very good agreement For large scales (77, tt production)
Differences at small scales (bb at the Tevatron)

POWHEG more reliable in extreme cases like bb, cé at LHC
(yields positive results, MCE@NLO has problems with negative weights)
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/ production: POWHEG+HERWIG vs. MC@NLO
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Z production: rapidity of hardest jet (TEVATRON)
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Higgs boson via gluon fusion at LHC
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Jet rapldlty in h productlon
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Dip in MC@NLO inerithed from even deeper dip in HERWIG
(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger E cuts:
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1.00

— e

0.70
0.70

0.50

0.50

‘_,___,.—.'-t-—-.‘__

0.30

0.20

siscone
pit>10

do/dy;e [P\
\ad] (H£-*'£)p/op

0.10 0.10
0.07 L 0.07
0.05 v - . : . 2 N 0.05
Yjet
Questions:

Why MCONLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip?
(Some have ( ) argued that the dip is filled by the hardest p; spectrum)
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Hard pr spectrum: POWHEG vs

. NNLO vs. NNLL
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Large enhancement because of the large K factor in Higgs production.

Higher pr spectrum because of the choice R,=R.

(Better agreement with NNLO this way)
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Use the flexibility in POWHEG to choose Rs# R
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No dips arise in the jet rapidity distributions:
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So: extra radiation at high k7 and dips are unrelated issues in POWHEG.
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Why is there a dip in MC@NLO?

For large k:

> M C
do = % RYC d®,d®)° + [R — R"¢]d®

B ~ ..
no dip N ’, Herwig dip

o(as),

BMC
= Rd® + ( —1) X RM° do
=~

large for Higgs!

So: a contribution with a dip is added to the exact NLO result;
The contribution is O(asR), i.e. NNLO!

but is large in processes with large K-factors.

Can we test this hypothesis? Replace B"“(®,,) = B(®,,) in MCONLO!
the dip should disappear ...
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MC@NLO with B" “replaced by B

my=120 GeV MC@NILO with B
m,->oo

2.00

— 1.00
) [
B
::E |
| 0.50
®
>
)
N
)
e
0.20 siscone
p?r°t> 10
40
0.10 | 80 GeV

0.05 [ R B R B B (R B B
—4 -2 0 2 4
Yiet—YH

No visible dip is present! (see also Hamilton,Richardson, Tully, 2009)
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Summary of MC@ONLO and POWHEG comparisons

Fairly good agreement on most distributions

Areas of disagreement can be tracked back to NNLO terms, arising
mostly because of the use of an NLO inclusive cross section
(the B function) to shower out the hardest radiation.

In POWEG, since the hardest radiation is generated by POWHEG itself,
one has the flexibility of tuning the magnitude of these NNLO terms.

For MC@NLO, these NNLO terms can generate unphysical behaviour
in physical distributions, reflecting the dead zones structure
of the underlying shower Monte Carlo.
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Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

The framework has been tested in processes already implemented, like
single vector boson production and single top production

The new processes hh — Z + 1jet, and the VBF higgs production, have
been implemented in this framework.
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The POWHEG BOX

A computer code framework, such that, given the Born cross section, the finite
part of the virtual corrections, and the real graph cross section, one builds
immediately a POWHEG generator. More precisely, the user must supply:

The Born phase space

The lists of Born and Real processes (i.e. u5— W™cg, etc.)

The Born squared amplitudes B = [M?, Bi;, Bj ., ., for all rele-

vant partonic processes; I3;; is the colour ordered Born amplitude
squared, B; ,, is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

The Real squared amplitude, for all relevant partonic processes.

The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Use

Strategy

according to the given

in FNO2007 (Frixione, Oleari, P.N. 2007). FKS details hidden in the BOX:
we use FKS, but the user does not need to understand it.

(Attempts to use the method did not work ...)
It includes:
e Combinatorics
e The phase space for ISR and FSR, according to FNO2007.
e The calculation of soft and coll. limits of the real cross section
(to implement accurately the subtraction method)
e The calculation of the soft and collinear remnants
e The calculation of B
(spinoff: general NLO implementation using the FKS method)
e The generation of radiation
e Writing the event to the Les Houches interface for user processes
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Combinatorics

The different singular regions of R must be treated separately.
The BOX, given the Born and Real flavour processes, generates all regions.

Slice of combinatorics output for VBF Higgs production:

c~ s~ ==» H (s5~) c~ g mult= 1
c~ s~ ==> H s~ cC~ <=== uborn
46 56 06
1 flavour structure yielding 3 regions c~ s~ => H s~ (c-) g milt= 1
] C~ 5§~ ==> H s~ c~ <=== uborn
Round bracket surrounds emitter 46 56 06
(c~ s5~) === H 5~ Cc~ (@ mult= 1
c~ s~ ==> H s~ cC~ <=== uborn

46 56 06

For example, the second contribution equals:

1
Ro=R— diﬁ T d;;— 0 when i|j; d,j— 0 when pg‘j>—>0
ds T Ge T d
46 56 06

and is singular only when 6 (the gluon) is collinear to 5 (anti-charm)
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Phase space mappings

R is separated into terms (with definite flavour structure) that are singular

in a single region: R, . For each R, the full phase space ® is parametrized in
terms of an underlying Born phase space ®5 and a radiation phase space P,..
It is required that in the singular limit ® 3 coincides with the phase space

of the underlying Born process.

2 kinds of mappings: FSR and ISR, given in FNO2007 paper.
ISR: FKS phase space mapping (introduced in Mele, Ridolfi, PN 1991 for ZZ)
FSR: variant of FKS, different kinematics, same remnants.
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The B calculation
For each underlying Born flavour configuration f5 there is a single B:
Bi@p) =[B(®p)+V(®p)], + 3 / 00, R(D)],
are{o‘f‘fb}

The R, appearing here have singularities regulated by + prescriptions in the
FKS framework ( )

e {a,|fp} is the set of all singular regions having the underlying Born
configuration with flavour structure f3.

e |[...]o, means that everything inside is relative to the «, singular term:
R is R, , and the parametrization (® 5, ®,.) is the one appropriate to
the «,. singular region
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Radiation

Sudakov FF also carries an f; index:

Afb(q)na pT) — EXPy —

[d®, R(®y, ®,)0(kr — p1)],,
> :

f
ar€far fr} B (@)
or
[d®, R(Pr, D,)0(kr — p1)],
Afb((I)mpT): H exp{ Z/ be(cI)) .
ar€{a,|fo} :

The Sudakov form factor is a product of elementary Sudakov form factors
associated with each radiation region. Technically, one generates radiation
by generating a k1 with each elementary form factor, and choosing the one
with the largest &k at the end.
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POWHEG BOX prospects

The aim of the project is to provide a framework to build implementations
of NLO corrections in POWHEG.

Programming details, in a well written code, are understood by reading the
code. Program organization and algorithms must instead be documented.

We are writing up a description of the POWHEG BOX, that, together with the
source code, should be sufficient for a user to learn how to use, and even
modify it.
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Conclusions

NLO accuracy with Shower MC has become a reality in recent years.

The POWHEG method is progressing, with new processes being
included

Progress in understanding agreement and differences
between MC@NLO and POWHEG

A path to full automation of POWHEG implementations of arbitrary
NLO calculations is open

Many interesting problems remain to be addressed: interfacing POWHEG
to CKKW style showers; CKKW at NLO, etc.
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Backup slides
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Flavour and singularities separation

There are several allowed flavour assignments in the n body process.
B and V' contributions are labelled by the flavour structure index f3.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index f,.
Each component Ry, has several singularity regions. We thus write

R:Z Ror

where each R“" has a specific flavour structure, and is singular in only one
singular region. In FKS one writes

R =Ry XSa,, Y Sa =1
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The S factors in the FKS formalism are defined as

1 1 E;
Si=Na Sij—mh(gﬁgj)’

where NV is define so that ) S, =1,

di = (\/EEZ/Q)Q(l — COS291)b, dij = (EZEJ)Q(l — COS Qij)b,
lim A(z)=1, lim h(2)=0, h(z)+h(1l—2)=1.

z—0 z—1

For example:
(1—2)°
264 (1 — 2)°

h(z)=

So, the §; factors single out the region where parton i is collinear to either
initial state line, or is soft, while S;; single out the region where parton ¢
is collinear to parton j or is soft.
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The underlying Born

This is a basic concept in the POWHEG formalism;
To each region ;.- we associate an underlying Born flavour configuration fp,
obtained as follows:

e If the singular region is associated to a parton becoming soft, then
the parton must be a gluon, and it is simply removed to get the
underlying Born configuration

e If the region is associated to two parton becoming collinear, then,
in order for the region to be singular, the two partons must come
from the splitting of another parton. The two partons are removed,
and are replaced by the single parent parton with the appropriate
flavour

Notice that in a shower Monte Carlo one first generates the Born process

(i.e. the underlying Born configuration) and then lets one initial or final line
undergo collinear splitting. Here we look at each singular region of the real
matrix element, and ask from which underlyng Born process it could have

been produced via a shower.
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The underlying Born kinematics

To each kinematic configuration for the full radiation phase space ®, one
associates an underlying Born kinematics ® 5 and a set of radiation variables
®,.=(y,z, ¢). For initial state radiation ® 3 is obtained by going with a
longitudinal boost to the frame where the system recoiling against radiation
has zero longitudinal momentum. In this frame one boosts the recoil system
in the transverse direction, so that its transverse momentum becomes zero

Boost

recoil system

recoil system
incoming parton incoming parton Boost :> incoming parton incoming parton

Y T

radiated parton radiated parton

The radiation variables are y =cos 6, 0 being the angle between the radiated

parton and the positive rapidity incoming parton, £ =2F/./s, where E
is the energy of the radiated parton, and ¢ is its azimuth.
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For final state radiation, the splitting partons are merged by summing their
3-momenta in the partonic CM frame. The 3-momentum is scaled, and the
recoil system is boosted so that momentum and energy are conserved.

The radiation variables are y =cos 6, 0 being the angle between the radiated

partons, £ =2F;/+\/s, ¢ is the azimuth of the ij plane relative to k; + Ej.
(This differs from FKS kinematics , where ¢ is relative to k).
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