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POWHEG

Positive Weight Hardest Emission Generator

A method for interfacing NLO calculations with Shower Monte Carlo’s (SMC)

It generates the hardest emission first, with NLO accuracy, independently of
the SMC (P.N. 2004), and (as the name says) with positive weights.
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Motivations for NLO+SMC

Comparisons of data with NLO result require now correcting for:

• Detector effects

• Underlying event

• Hadronization

All these effects are estimated using a SMC generator;

None of this is needed if NLO+SMC is implemented.
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Status of POWHEG
Up to now, the following processes have been implemented in POWHEG:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008)

• hh→H , hh→HZ/W (Hamilton,Richardson,Tully, 2009;)

• hh→ t + X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)

• hh→Z + jet, Preliminary (Alioli, Oleari, Re, P.N., 2009)

• VBFHiggs, Preliminary, (Oleari,P.N., 2009).

• The POWHEG BOX, Preliminary, (Alioli, Oleari, Re, P.N., 2009)
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Outline

• What NLO+SMC calculations do in general

• Examples: MC@NLO and POWHEG

• Towards automation: the POWHEG BOX.

• Perspectives and Conclusions
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NLO+SMC basics
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Hardest emission in a Shower Monte Carlo
For illustration: assume there is only one radiating line.
SMC formula for hardest emission (P.N. 2004):

dσ = B(ΦB)dΦB







∆t0
MC + ∆t

MC RMC(Φ)

B(ΦB)
dΦr

MC�
d∆t

M C







• t is the radiation transverse momentum

• B(ΦB)dΦB: Born differential cross section

• ∆t0
MC : No radiation probability down to the cutoff t0

• ∆t
MC : No radiation probability down to the scale t

• RMCdΦr
MC : SMC’s real cross section, ≈B
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Hardest emission in NLO+SMC: must be NLO accurate

It has the form:

dσ = B̄
s
(ΦB)dΦB

[

∆t0
s + ∆t

s Rs(Φ)

B(ΦB)
dΦr

]

+ [R(Φ)−Rs(Φ)] dΦ

where R⇒Rs in the soft and collinear limit,

B̄
s
(ΦB) = B(ΦB)+







V (ΦB)�
infinite

+

∫

Rs(Φ) dΦr�
infinite





�
finite

Imagine that soft and
collinear singularities in RMC

are regulated as in V .

and

∆t
s = exp

[

−
∫

tl

Rs

B
dΦrθ(t(Φ)− tl)

]
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Accuracy

Small t:
Rs(Φ)

B(ΦB)
dΦrad ≈ αs(t)

2π
P (z)

dt

t
dz

dφ

2π
,

Also: B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small t.

Large t: ∆→ 1, dσ = B̄ ×
Rs

B
dΦ + (R −Rs)dΦ≈R dΦ,

so: large t accuracy is preserved.

NLO accuracy: since ∆t0 +
∫

∆t
Rs(Φ)

B(ΦB)
dΦr = 1, integrating in dΦr at fixed ΦB

∫

δ(Φ
B
− Φ̄

B
)dσ =

[

B̄ +

∫

(R −Rs)dΦr

]

ΦB=Φ̄B

=

[

B + V +

∫

RdΦr

]

ΦB=Φ̄B

So: NLO accuracy is preserved for inclusive quantities.
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In MC@NLO: RsdΦr = RMCdΦr
MC

Furthermore: the phase space parametrization ΦB , Φr⇒Φ is the one
of the Shower Monte Carlo. We have:

B̄
s
(ΦB)dΦB�

provided by MCatNLO

S event







∆t0
s + ∆t

s Rs(Φ)

B(ΦB)
dΦr�

generated by HERWIG







+ [R(Φ)−Rs(Φ)] dΦ�
provided by MCatNLO

H event
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Recipe for MC@NLO

• Compute total cross section for S and H events:

σS =

∫

|B̄M C

(ΦB)|dΦB, σH =

∫

|R−RM C |dΦ

• Chose an S or H event with probability proportional to σS, σH

• For an S event:

− generate Born kinematics with probability

|B̄M C(ΦB)|=

∣

∣

∣

∣

B(ΦB) +

[

V (ΦB) +

∫

RM C(Φ) dΦr
MC

]
∣

∣

∣

∣

− Feed the Born kinematics to the MC for subsequent shower
with weight ± 1, same sign as B̄

M C

(ΦB) (mostly + 1).

• For an H event:

− generate Radiation kinematics with probability |R−RM C |.
− Feed to the MC (with weight ± 1, same sign asR−RM C)
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Issues:

• Must use of the MC kinematic mapping (ΦB , Φr
MC)⇒Φ.

• R−RM C must be non singular: the MC must reproduce exactly the
soft and collinear singularities of the radiation matrix element. (Many
MC’s are not fully accurate in the soft limit)

• Negative weights in the output (not like standard MC’s).
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In POWHEG: RsdΦr = RF (Φ)

where 0 6 F (Φ) 6 1, and F (Φ)⇒ 1 in the soft or collinear limit.

F (Φ) = 1 is also possible, and often adopted.

The parametrization ΦB, Φr⇒Φ is within POWHEG, and there is complete

freedom in its choice.

B̄
s
(ΦB)dΦB�
POWHEG







∆t0
s + ∆t

s Rs(Φ)

B(ΦB)
dΦr�

POWHEG







+ [R(Φ)−Rs(Φ)] dΦ�
POWHEG

All the elements of the hardest radiation are generated within POWHEG

Recipe

• POWHEG generates an event, with t= tpowheg

• The event is passed to a SMC, imposing no radiation with t > tpowheg.
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Improvements over MC@NLO:

• Positive weighted events: R−Rs = R(F − 1) > 0!

• Independence on the Shower MC: The hardest emission is generated by
POWHEG; less hard emissions are generated by the shower.

• No issues with SMC inaccuracies
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MC@NLO and POWHEG yield the exact total NLO cross section;

However, differential distributions are affected by induced higher order terms:

dσ = dΦBB̄
[

∆t0 + ∆t
Rs

B
dΦr

]

+(R−Rs)dΦ, B̄ = B +
[

V +
∫

Rs dΦr

]

• The expression for ∆t1,t = exp
[

−
∫ R

B
dΦr θ(kT − t)

]

generates

terms of all orders, and suppresses the distributions at small pT .

• Most important: the square bracket term in B̄ , multiplied by Rs/B,
generates NNLO terms. For large t:

dσ = dΦBB̄

[

∆t0 + ∆t
Rs

B
dΦr

]

+ (R−Rs)dΦ⇒







(

B̄

B
− 1

)

Rs�
NNLO

+ R







dΦ

(in NLO corrections are positive, it typically enhances the distributions).
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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Z pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for most observables considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA
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Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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Higgs boson via gluon fusion at LHC
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Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip?
(Some have (wrongly) argued that the dip is filled by the hardest pT spectrum)
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Hard pT spectrum: POWHEG vs. NNLO vs. NNLL

dσ = B̄ dΦB

{

∆t0 + ∆t
R

B
dΦr

}

≈
B̄

B
R dΦB dΦr = {1 +O(αs)}�

≈2 for here !

R dΦ

Large enhancement because of the large K factor in Higgs production.

Higher pT spectrum because of the choice Rs = R.
(Better agreement with NNLO this way)
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Use the flexibility in POWHEG to choose Rs� R

Rs = R
h2

kT
2 + h2

Agrees with NLO
at high pT .

However ...
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No dips arise in the jet rapidity distributions:

So: extra radiation at high kT and dips are unrelated issues in POWHEG.

30



Why is there a dip in MC@NLO?

For large kT :

dσ =
B̄

M C

B
RM C dΦBdΦr

M C + [R −RM C ]dΦ

= RdΦ�
no dip

+

(

B̄
M C

B
− 1

)�
O(αs),

large for H iggs!

× RM C�
Herw ig dip

dΦ

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

but is large in processes with large K-factors.

Can we test this hypothesis? Replace B̄MC(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with B̄
MCreplaced by B

No visible dip is present! (see also Hamilton,Richardson,Tully, 2009)
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Summary of MC@NLO and POWHEG comparisons

• Fairly good agreement on most distributions

• Areas of disagreement can be tracked back to NNLO terms, arising
mostly because of the use of an NLO inclusive cross section
(the B̄ function) to shower out the hardest radiation.

• In POWEG, since the hardest radiation is generated by POWHEG itself,
one has the flexibility of tuning the magnitude of these NNLO terms.

• For MC@NLO, these NNLO terms can generate unphysical behaviour
in physical distributions, reflecting the dead zones structure
of the underlying shower Monte Carlo.
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Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

The framework has been tested in processes already implemented, like
single vector boson production and single top production

The new processes hh→Z + 1jet, and the VBF higgs production, have
been implemented in this framework.
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The POWHEG BOX

A computer code framework, such that, given the Born cross section, the finite
part of the virtual corrections, and the real graph cross section, one builds
immediately a POWHEG generator. More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Strategy
Use the FKS framework according to the general formulation of POWHEG given
in FNO2007 (Frixione, Oleari, P.N. 2007). FKS details hidden in the BOX:
we use FKS, but the user does not need to understand it.
(Attempts to use the Catani-Seymour method did not work ...)
It includes:

• Combinatorics

• The phase space for ISR and FSR, according to FNO2007.

• The calculation of soft and coll. limits of the real cross section
(to implement accurately the subtraction method)

• The calculation of the soft and collinear remnants

• The calculation of B̄

(spinoff: general NLO implementation using the FKS method)

• The generation of radiation

• Writing the event to the Les Houches interface for user processes
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Combinatorics
The different singular regions of R must be treated separately.
The BOX, given the Born and Real flavour processes, generates all regions.

Slice of combinatorics output for VBF Higgs production:

1 flavour structure yielding 3 regions
Round bracket surrounds emitter

For example, the second contribution equals:

R2 = R

1

d5 6

1

d4 6
+

1

d5 6
+

1

d0 6

, dij→ 0 when i‖j; doj→ 0 when pT
(j)→ 0

and is singular only when 6 (the gluon) is collinear to 5 (anti-charm)
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Phase space mappings

R is separated into terms (with definite flavour structure) that are singular
in a single region: Rαr

. For each Rαr
the full phase space Φ is parametrized in

terms of an underlying Born phase space ΦB and a radiation phase space Φr.
It is required that in the singular limit ΦB coincides with the phase space
of the underlying Born process.

2 kinds of mappings: FSR and ISR, given in FNO2007 paper.
ISR: FKS phase space mapping (introduced in Mele, Ridolfi, PN 1991 for ZZ)
FSR: variant of FKS, different kinematics, same remnants.
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The B̄ calculation
For each underlying Born flavour configuration fB there is a single B̄fB

:

B̄ fb(ΦB) = [B(ΦB)+ V (ΦB)]
fb

+
∑

αr∈{αr|fb}

∫

[dΦr R(Φ)]
αr

The Rαr
appearing here have singularities regulated by + prescriptions in the

FKS framework (collinear remnants are not shown here.)

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [	 ]αr
means that everything inside is relative to the αr singular term:

R is Rαr
, and the parametrization (ΦB , Φr) is the one appropriate to

the αr singular region
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Radiation
Sudakov FF also carries an fb index:

∆fb(Φn, pT) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)







or

∆fb(Φn, pT)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)

}

The Sudakov form factor is a product of elementary Sudakov form factors
associated with each radiation region. Technically, one generates radiation
by generating a kT with each elementary form factor, and choosing the one
with the largest kT at the end.
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POWHEG BOX prospects

The aim of the project is to provide a framework to build implementations
of NLO corrections in POWHEG.

Programming details, in a well written code, are understood by reading the
code. Program organization and algorithms must instead be documented.

We are writing up a description of the POWHEG BOX, that, together with the
source code, should be sufficient for a user to learn how to use, and even
modify it.
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Conclusions

• NLO accuracy with Shower MC has become a reality in recent years.

• The POWHEG method is progressing, with new processes being
included

• Progress in understanding agreement and differences
between MC@NLO and POWHEG

• A path to full automation of POWHEG implementations of arbitrary
NLO calculations is open

• Many interesting problems remain to be addressed: interfacing POWHEG

to CKKW style showers; CKKW at NLO, etc.
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Backup slides
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Flavour and singularities separation

There are several allowed flavour assignments in the n body process.
B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specific flavour structure, and is singular in only one
singular region. In FKS one writes

Rαr = Rfr
×Sαr

,
∑

αr

Sαr
= 1
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The S factors in the FKS formalism are defined as

Si =
1

Ndi
, Sij =

1

Ndij
h

(

Ei

Ei + Ej

)

,

where N is define so that
∑

αr
Sαr

= 1,

di =
(

s
√

Ei/2)a(1− cos2θi)
b, dij = (EiEj)

a(1− cos θij)
b,

lim
z→0

h(z) = 1, lim
z→1

h(z) = 0, h(z)+ h(1− z)= 1.

For example:

h(z)=
(1− z)c

zc + (1− z)c

So, the Si factors single out the region where parton i is collinear to either
initial state line, or is soft, while Sij single out the region where parton i

is collinear to parton j or is soft.
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The underlying Born
This is a basic concept in the POWHEG formalism;
To each region αr we associate an underlying Born flavour configuration fb,
obtained as follows:

• If the singular region is associated to a parton becoming soft, then
the parton must be a gluon, and it is simply removed to get the
underlying Born configuration

• If the region is associated to two parton becoming collinear, then,
in order for the region to be singular, the two partons must come
from the splitting of another parton. The two partons are removed,
and are replaced by the single parent parton with the appropriate
flavour

Notice that in a shower Monte Carlo one first generates the Born process
(i.e. the underlying Born configuration) and then lets one initial or final line
undergo collinear splitting. Here we look at each singular region of the real
matrix element, and ask from which underlyng Born process it could have
been produced via a shower.
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The underlying Born kinematics
To each kinematic configuration for the full radiation phase space Φ, one
associates an underlying Born kinematics ΦB and a set of radiation variables
Φr = (y, z, φ). For initial state radiation ΦB is obtained by going with a
longitudinal boost to the frame where the system recoiling against radiation
has zero longitudinal momentum. In this frame one boosts the recoil system
in the transverse direction, so that its transverse momentum becomes zero

The radiation variables are y = cos θ, θ being the angle between the radiated
parton and the positive rapidity incoming parton, ξ = 2E/ s

√
, where E

is the energy of the radiated parton, and φ is its azimuth.
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For final state radiation, the splitting partons are merged by summing their
3-momenta in the partonic CM frame. The 3-momentum is scaled, and the
recoil system is boosted so that momentum and energy are conserved.

The radiation variables are y = cos θ, θ being the angle between the radiated
partons, ξ = 2Ei/ s

√
, φ is the azimuth of the ij plane relative to kMi + kMj.

(This differs from FKS kinematics , where φ is relative to kMj).
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