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Shower Monte Carlo programs

1. Large library of hard events cross sections (SM and BSM)

2. Dress hard events with QCD radiation

3. Models for hadron formation

4. Models for underlying event, multi-parton collisions, minimum bias

5. Library for (spacetime) decays of unstable particles

The name SHOWER from item 2.

The hope (and the experience) is:
the “Models” part is the same at all energies, and process independent

Once tuned at some energy, the SMC is predictive for all other energies.

HEP experiments feed this kind of output through their detector simulation
software, and use it to determine efficiencies for signal detection and to
perform background estimates. Analysis strategies are set up using these simu-
lated data.
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• In HEP (i.e. collider physics) not many questions can be answered
without a Shower Monte Carlo (SMC). Heavily used since 1980’s

• SMC’s are forever (well, as long as HEP lives).
Even if QCD was solved exactly, it is unlikely that complex
high energy phenomena will be described better than in SMC models.

• SMC models have long been neglected in theoretical physics:
Emphasis on QCD tests required more transparent theoretical methods.
After LEP, QCD testing is less important.
With LHC, QCD modeling is a primary issue: recent SMC revival.

• Thinking in terms of Shower algorithms gives us an easy to grasp,
intuitive understanding of complex QCD phenomena
(and a practical way to verify our ideas).
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Shower basics: Collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections
factorize near
collinear limit

|Mn+1|2dΦn+1� |Mn|2dΦn
αs

2π

dt

t
Pq,qg(z)dz

dφ

2π

t : hardness (either virtuality or pT
2 orE2θ2 etc.)

z = k0/(k0 + l0) : energy (or p‖, or p+) fraction of quark

Pq,qg(z) = CF
1 + z2

1− z
: Altarelli−Parisi splitting function

(ignore z→ 1 IR divergence for now)
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If another gluon becomes collinear, iterate the previous formula:

θ ′, θ→ 0
with θ ′> θ

|Mn+1|
2dΦn+1� |Mn−1|

2dΦn−1×
αs

2π

dt′

t′
Pq,qg(z

′)dz′ dφ′

2π
×

αs

2π

dt

t
Pq,qg(z)dz

dφ

2π
θ(t′− t)

Collinear partons can be described by a factorized integral ordered in t.

For m collinear emissions:

(

αs

2π

)m
∫

θm in

dθ1

θ1

∫

θ1

dθ2

θ2
� ∫

θm−1

dθm

θm
∝

logm 1

θm in
2

m!
≈

(

αs

2π

)m logmQ2

Λ2

m!

where we have taken θmin ≈Λ/Q; (Leading Logs) This is of order 1!

Typical dominant configuration at very high Q2
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Besides q→ qg, also g→ gg,
g→ qq̄ come into play.

Typical configurations: intermediate
angles of order of geometric average
of upstream and downstream angles.

Each angle is O(αs) smaller than its
upstream angle, and O(αs) bigger
than its downstream angle.

As relative momenta become smaller
αs becomes bigger, and this picture
breaks down.
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For a consistent description:
include virtual corrections to same LL approximation

One can show that the effect of virtual corrections is given by

• Let α(µ)� α(t) in each vertex, where t is the hardness of the
vertex (i.e. hardness of the incoming line)

• For each intermediate line include the factor

∆i(th, tl)= exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





where th is the hardness of the vertex originating the line, and tl is the
hardness of the vertex where the line ends.
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Sudakov form factor

∆i(th, tl) = exp



 −
∑

(jk)

∫

tl

th dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





As tl becomes small the exponent tend to diverge, and ∆i(th, tl) approaches 0.
In fact, because of αs(t), we must stop at t0 & ΛQCD.
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Proof of effect of virtual corrections

V (µ, t, t1, t2) ∆(µ, t1)

t

t2

t1

Γ(µ, t)

Effective (RG invariant) splitting vertex:

V 2(µ, t, t1, t2) = Γ2(µ, t)�∆(µ, t)∆(µ, t1)∆(µ, t2)

dom inated by hardest scale!

Choosing µ = t (using ∆(t, t)≈ 1)

V 2(µ, t, t1, t2)= V 2(t, t, t, t)∆(t, t1)∆(t, t2)

V (t, t, t, t) is the three level vertex with α→α(t).
The form ∆(t, t1) follows from RG arguments.

In fact: ∆i(t, t1) = exp



 −
∑

(jk)

∫

t1

t dt′

t′

∫

dz
αs(t′)

2π
Pi,jk(z)





Sudakov

form factor

consistent with KLN cancellation of IR singularities, and with RG.
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Final Recipe

• Consider all tree graphs.

• Assign ordered hardness parameters t to each vertex.

• Include a factor
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
at each vertex i→ jk.

• Include a factor ∆i(t1, t2) to each internal line with a parton i, from
hardness t1 to hardness t2.

• Include a factor ∆i(t, t0) on final lines (t0: IR cutoff)
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Most important: the shower recipe can be easily
implemented as a computer code!

Shower Algorithm:

• Generate a uniform random number 0 < r < 1;

• Solve the equation ∆i(t, t
′) = r for t′;

• If t′< t0 stop here (final state line);

• generate z, jk with probability Pi,jk(z), and 0 < φ < 2π uniformly;

• restart from each branch, with hardness parameter t′.

12



Probabilistic intepretation: branching probability of line of flavor i

dP (t1, t)= exp



 −
∑

(jk)

∫

t

t1 dt′

t′

∫

dz
αs(t

′)

2π
Pi,jk(z)



�
∆(t1,t)

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π

break up t1, t into small subintervals:

dP (t1, t) =











∏

m









1−
∑

(jk)

δt

tm

∫

dz
αs(tm)

2π
Pi,jk(z)�

No em ission prob . in tm,tm+δt



















αs(t)

2π
Pi,jk(z)

δt

t
dz

dφ

2π�
em ission prob . in t,t+δt

So: the probability for the first branching at hardness t is the product of the
non-emission probability ∆(t1, t) in all hardness intervals between t1 and t,
times the emission probability at hardness t.
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(more or less) obvious consequences:

• The total branching probability plus the no-branching probability is 1;

mathematically

∫

t0

t1

dP (t1, t
′)=

∫

t0

t1

d∆i(t1, t
′) = 1−∆i(t1, t0)

• The Sudakov form factor ∆i(t1, t) is the no-branching probability

from scale t1 down to the scale t.

• The branching probability is independent of what happens next

(because the total probability of what happens next is 1).

This property is often called unitarity of the shower. It is a consequence of the

Kinoshita-Lee-Nauenberg theorem: collinear divergence must cancel in the

inclusive cross section.
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COLOUR AND HADRONIZATION

SMC’s assign colour labels to partons.

Only colour connections are recorded (as in large N limit).

Initial colour assigned according to hard cross section.

Colour assignements are used in the hadronization model.

Most popular models: Lund String Model, Cluster Model.

In all models, color singlect structures are formed out of colour connected par-
tons, and are decayed into hadrons preserving energy and momentum.

15



Implementation

• Origin: Fox+Wolfram (1980)

• COJETS Odorico (1984)

• ISAJET Page+Protopopescu (1986)

• FIELDAJET Field (1986)

• JETSET Sjöstrand (1986)

• PYTHIA Bengtsson+Sjöstrand (1987), Skands+Sjöstrand
PYTHIA 8 Mrenna+Skands+Sjöstrand (2007)

• Ariadne Lönnblad (1991)

• HERWIG Marchesini+Webber (1988)
Marchesini+Webber+Abbiendi+Knowles+Seymour+Stanco (1992)
HERWIG++ Bahr+Gieseke+Gigg+Grellscheid+Hamilton+Platzer
+Richardson+Seymour+Tully (2003)

• SHERPA Gleisberg+Hoche+Krauss+Schalicke+Schumann+Winter
(2004)
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Accuracy

Collinear Soft-Collinear Soft-large Nc Soft
PYTHIA Leading Partial No No
HERWIG Leading Leading No No

ARIADNE Partial Partial Leading No
PYTHIA 6.4 Partial Partial Leading No
SHERPA Leading Partial No No

One can realistically aim at:

Leading Collinear, Leading double log, Leading soft in large Nc limit

(Soft effects for finite Nc require matrix exponentiation in the Sudakov FF)

Not much progress in shower accuracy since the 80’s.
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New developements

• Interfacing ME (Matrix-Elements) generators with Parton Showers
(CKKW matching (Catani, Krauss, Küen, Webber), MLM matching)

• Interfacing NLO calculations to Parton Showers
(MC@NLO (Frixione, Webber), POWHEG (PN))

Several other approaches have appeared:

• Kramer, Mrenna, Soper (e+e−→ 3 partons)

• Shower by antenna factorization (Frederix,Giele,Kosower,Skands)
(toy implementation for H → gg )

• Shower by Catani-Seymour dipole factorization (Schumann)

• Shower with quantum interference (Nagy,Soper)

• Shower by Soft Collinear Effective Theory (Bauer,Schwartz)

Until now, complete results for hadron colliders only from
MC@NLO and POWHEG
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NLO+Shower

LO-ME good for shapes; uncertain absolute normalizations.

αs
n(2µ)≈αs

n(µ)(1− b0αs(µ)log(4))n≈αs(µ)(1−nαs(µ))

For µ = 100GeV, αs = 0.12;
Normalization uncertainty:

W + 1J W + 2J W + 3J

± 12% ± 24% ± 36%

To improve on this, need to go to NLO

• Positive experience with NLO calculations at LEP, HERA, Tevatron

(we TRUST perturbative QCD after LEP!)

• NLO results are cumbersome to use: typically made up of an n body

(Born+Virtual+Soft and Collinear remnants) and n + 1 body (real
emission) terms, both divergent (finite only when summed up).

• Merging NLO with shower: a natural extension of present approaches
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MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use MC kinematics

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already there:
Vector Bosons, Vector Bosons pairs,
Higgs, Single Top.
Heavy Quarks
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POWHEG

Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies only affect next-to-hardest emissions;
no matching problems

• As the name says, it generates events with positive weight
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How it works (roughly)

In words: works like a standard Shower MC for the hardest radiation, with
care to maintain higher accuracy.

In a standard MC, the hardest radiation cross section is

dσ = dΦn B(Φn)



 ∆tI ,t0�
No radiation

+ ∆tI ,t
αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π�
radiation





• tI is the maximum hardness allowed initially

• ∆tI ,t in the no-radiation probability with hardness > t

SMC algorithm reconstructs from Born kinematics Φn and radiation variables
t, z, φ, the full n + 1 body phase space Φn+1 (momentum reshuffling)
We say that Φn is the underlying Born configuration of Φn+1 according to
the mapping defined by the MC algorithm
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Steps to go NLO:

(Φn, t, z, φ)⇔Φn+1 � (Φn, Φr)⇔Φn+1, dΦn+1 = dΦn dΦr

B(Φn) � B̄(Φn)= B(Φn) +





 V (Φn)
�INFIN ITE

+

∫

R(Φn, Φr) dΦr

�INFIN ITE




�
FIN ITE !

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
� R(Φn, Φr)

B(Φn)
dΦrad

POWHEG cross section:

dσ = dΦnB̄(Φn)

[

∆t0
+∆t

R(Φn+1)

B(Φn)
dΦr

]

, ∆t = exp







−

∫

θ(tr − t)
R(Φn, Φr)

B(Φn)
dΦr�

FIN ITE b ecause of θ function







with tr = kT(Φn, Φr), the transverse momentum for the radiation.

In the collinear limit, kt
2 must be of the order of t.
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How does it work: dσ = dΦn B̄(Φn)

[

∆t0 + ∆t
R(Φn+1)

B(Φn)
dΦr

]

,

For small kT , the factorization theorem yields

R(Φn+1)

B(Φn)
dΦrad ≈

αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
and

B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small kT .
For large kT , ∆→ 1,

dσ = B̄ × R

B
≈R× (1 +O(αs)),

so large kt accuracy is preserved. Integrating in dΦr at fixed Φn

∫

δ(Φn − Φ̄n)dσ = B̄(Φ̄n)

So NLO accuracy is preserved for inclusive quantities.
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Example of mapping Φn+1⇔ (Φn,Φr): Z pair production

Φ2 variables: choose Mzz, Yzz and θ, where

• Mzz: invariant mass of the Z Z pair

• Yzz: rapidity of Z Z pair

• θ: go in the (longitudinally) boosted frame where Yzz = 0.
go to the Z Z rest frame with a transverse boost
In this frame θ is the angle of a Z to the longitudinal direction.

Φr variables:

• x = Mzz/s, (s is the invariant mass of the incoming parton system)
x→ 1 is the soft limit

• y: cosine of the angle of the radiated parton to the beam direction
in the partonic CM frame.

• φ: radiation azimuth.
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Few tricks to do it

B̄(Φ) = B(Φ) + V (Φ) +

∫

dΦr [R(Φ, Φr)−C(Φ, Φr)]

Seems to need one Φr integrations to get weight of each Φ point.

In fact, write

B̃(Φ, Φr) = N [B(Φ) + V (Φ)] + R(Φ, Φr)−C(Φ, Φr) , N =
1

∫

dΦr

.

so that

B̄(Φ)=

∫

B̃(Φ, Φr)dΦr .

Use standard procedures (SPRING-BASES, Kawabata; MINT, P.N.)
to generate unweighted events for B̃(Φ̄, Φr)dΦrdΦ̄.
discard Φr (same as integrating over it!).
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Radiation: ∆(Φ, pT) = exp

[

−
∫

R(Φ, Φr)

B(Φ)
θ(kT(Φ, Φr)− pT)dΦr

]

,

Look for an upper bounding function;

R(Φ, Φr)

B(Φ)
≤U(Φ)= N

αS(kT)

(1− x)(1− y2)

Generate x, y according to

exp

[

−
∫

U(Φ)θ(kT(Φ, Φr)− pT)dΦr

]

accept the event with a probability

R(Φ, Φr)

B(Φ)U(Φ)
.

If the event is rejected generate a new one for smaller pT , and so on
(This procedure reconstructs the exact emission probability).
In the Z Z case, an event is generated with about six calls ro R(Φ, Φr).
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Interfacing to SMC’s

For a pT ordered SMC, nothing else needs to be done.
Use the standard Les Houches Interface for User’s Processes (LHI):
put partonic event generated by POWHEG on the LHI;
Run the SMC in the LHI mode.
The LHI provides a facility to pass the pT of the event to the SMC (SCALUP).
As far as the hardest emission is concerned, POWHEG can reach:

• NLO accuracy of (integrated) shape variables

• Collinear, double-log, soft (large Nc) accuracy of the Sudakov FF.
(In fact, corrections that exponentiates are obviously OK)

As far as subsequent (less hard) emissions, the output has the accuracy of
the SMC one is using.
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For angular ordered SMC’s (i.e. HERWIG):

Angular ordering accounts

for soft gluon interference.

Intensity for photon jets = 0

Intensity for gluon jets = CA

instead of 2CF + CA

Consistent with a boosted jet pair, in the case of a photon jet.
In angular ordered SMC large angle soft emission is generated first.
Hardest emission (i.e. highest pT) happens later.
Difficult to correct it explicitly.
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Recipe for angular ordered showers

• Generate event with harderst emission

• Generate all subsequent emissions with a pT veto
equal to the hardest emission pT

• Pair up the partons that are nearest in pT

• Generate an angular ordered shower associated with the paired parton,
stopping at the angle of the paired partons:
Truncated shower, (P.N., 2004)

• Generate all subsequent (vetoed) showers
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Example of truncated shower: e+e−

Nearby partons: 1,2

Truncated shower: 1,2 pair,

from maximum angle to θ

1 and 2 shower from θ to cutoff

3 showers from maximum to cutoff

The truncated shower reintroduces coherent soft radiation from 1,2 at
angles larger than θ (Angular ordered SMC’s generate those earlier).

Truncated shower are generally needed in angular ordered MC;
They are not a specific problem of POWHEG.
They are now being implemented in HERWIG++ (as of next release)
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Status
Up to now, the following processes have been implemented:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008; Herwig++)

• hh→ t + X (single top) NEW! (Alioli, Oleari, Re, P.N., 2009)

• Truncated showers have being studied in the e+e− → hadrons work
(Latunde-Dada,Gieseke,Webber, 2006), and are being included in the
HERWIG++ framework (Bahr,Gieseke,Gigg,Grellscheid,Hamilton,
Latunde-Dada,Platzer,Richardson,Seymour,Sherstnev,Webber)
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Examples: Z production: POWHEG vs. HERWIG vs. NLO

HERWIG alone fails ar large pT ; NLO alone fails at small pT ;

POWHEG works in both regions;
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA
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Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and tt̄ + jet at NLO vs. MC@NLO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG distribution as in ALPGEN (Mangano,Moretti,Piccinini,Treccani,Nov.06)
and in tt̄ + jet at NLO (Dittmaier, Uwer, Weinzierl) : no dip present.

37



Higgs boson via gluon fusion at LHC
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Higgs boson via gluon fusion at LHC
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POWHEG vs. NNLO vs. NNLL

dσ = B̄(Φn)dΦn

{

∆(Φn, pT
m in)+ ∆(Φn, pT)

R(Φn, Φrad)

B(Φn)
dΦr

}

≈
B̄(Φn)

B(Φn)
R(Φn, Φr)dΦr = {1+O(αs)}R(Φn+1)dΦn+1

Better agreement with NNLO this way.
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Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG
We understand the cause; we keep it because yields results closer to NNLO;
we have enough flexibility to get rid of it, if we want!
Go back to the POWHEG cross section:

dσ = B̄(Φn)

[

∆t0
+∆t

R(Φn+1)

B(Φn)
dΦr

]

, ∆t = exp

[

−

∫

θ(tr − t)
R(Φn, Φr)

B(Φn)
dΦr

]

Break R = Rs + Rf, with Rf finite in collinear and soft limit, define

dσ ′ = B̄
s
(Φn)

[

∆t0

s + ∆t
sRs(Φn+1)

B(Φn)
dΦr

]

+ Rf(Φn+1)dΦn+1

with:

∆t
s = exp

[

−

∫

θ(tr − t)
Rs(Φn, Φr)

B(Φn)
dΦr

]

.

Easy to prove that: dσ ′ is equivalent to dσ.
In other words, the part of the real cross section that is treated with the
Shower technique can be varied.
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Rs = R
h2

kT
2 + h2

Rf = R
kT

2

kT
2 + h2

Agrees with NLO
at high pT .
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No new features (dips and the like) arise in the other distributions:

So: high kT cross section and dips are unrelated issues.
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Why is there a dip in MC@NLO?

Write the MC@NLO hardest jet cross section in the POWHEG language;
Hardest emission (P.N., 2004) can be written as

dσ = B̄
HW (Φn)dΦn�

S event







∆t0

HW + ∆t
HW RHW (Φn+1)

B(Φn)
dΦr

HW�
HERW IG shower







+

[

R(Φn+1)−RHW (Φn+1)�
H event

]

dΦn+1

B̄
HW (Φn) = B(Φn) +







V (Φn)�
infin ite

+

∫

RHW (Φn, Φr) dΦr�
infin ite





�
fin ite

(Imagine that soft and collinear singularities in RHW are regulated as in V !).
Like POWHEG with Rs = RHW! But now Rf = R−RHW can be negative!
This formula illustrates why MC@NLO and POWHEG are equivalent at NLO!
But differences can arise at NNLO ...
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For large kT :

dσ =

[

B̄HW(Φn)

B(Φn)
RHW(Φn+1)+ R(Φn+1)−RHW(Φn+1)

]

dΦn dΦr
HW

= R(Φn+1)dΦn+1�
no dip

+

(

B̄HW(Φn)

B(Φn)
− 1

)�
O(αs), but large for Higgs

RHW(Φn+1)�
Pure Herwig dip

dΦn+1

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

Can we test this hypothesis? Replace B̄HW(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with BHWreplaced by B

No visible dip is present! (more studies needed to clear the issue ...)
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Single Top (PRELIMINARY!)
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Prospects
The following processes are being worked on

• Single top production (Alioli Oleari, Re, P.N.): the code is there,
studies and comparisons in progress

• hh→Z/W + 1jet (Alioli, Oleari, Re, P.N.)

While working on hh → Z/W + 1jet, we realized that this process is already
complex enough, so that a general framework for the implementation of a
POWHEG generator for any NLO process can be setup;
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Goal
Build a computer code framework, such that, given the Born cross section, the
finite part of the virtual corrections, and the real graph cross section, one
builds immediately a POWHEG generator.
More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Strategy
Initially, we tried to implement our calculation using the Catani-Seymour sub-
traction approach, because of its wide popularity. This turned out to be too
cumbersome. We realized that we could use the FKS framework, hiding all
FKS implementation details. In other words, we use FKS, but the user needs
not to understand it.
All the needed code is there:

• The phase space for ISR and FSR, according to FNO2006.

• The combinatorics, the calculation of all Rα, the soft and coll. limits

• The calculation of B̃ is completely implemented (coll. and soft rem-
nants included). This is the hardest part of the implementation.

• The calculation of the upper bounds for the generation of radiation

• The generation of radiation

• Writing the event to the Les Houches interface

Lots of testing needed now ...
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This work should be fairly close to a full automation of a POWHEG implemen-
tation for arbitrary processes.
It cannot yet be claimed to be a fully automated procedure: problems may
arise, and so they will (thinking about the Born zeros problem, for example).
It is likely, however, that after dealing with a few complex problems, full
automation will be reached.
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Conclusions

• POWHEG is a viable method for interfacing NLO and SMC

• It is easy to implement, does not require new NLO computations

• Does not require committment to specific SMC implementations

• Its output is as in traditional SMC’s: positive, constant weight events

• Several processes already available, more to come

• We have competitors (the Cambridge group!). Anybody can work on it!

POWHEG is not a code: it is a method.

• We collect and publish material to make it easy for others to
implement POWHEG with their NLO calculation.

• A general framework for implementing arbitrary processes is being
worked on.
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ISSUES

Some topics on general formulation of POWHEG
FNO2007: Frixione, Oleari, P.N. 2007

Extension to the general case only a matter of bookkeeping;
POWHEG is fully general, can be applied in any subtraction framework.

We look in details at POWHEG in

• the FKS (Frixione, Kunszt, Signer)

• the CS (Catani, Seymour) subtraction frameworks.
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Flavour separation
There are several allowed flavour structures in the n body process. A flavour
structure is a flavour assignment to the incoming and outgoing partons.
The B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specific flavour structure, and is singular in only one
singular region. This partition of R is trivial to perform:

• FKS provides specific kinematic functions Sαr
, with

∑

αr
Sαr

= 1 that
suppress all but one singular regions.

• in CS one can use instead Sαr
= Cαr

/(
∑

αr
Cαr

) where Cαr
are the

dipole subtraction terms.
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B̄ carries an fb index;
Sudakov FF also carries an fb index:

∆fb(Φn, pT) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)







or

∆fb(Φn, pT)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)

}

where

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [� ]αr
means that everything inside is relative to the αr singular term:

thus R is Rαr
, the parametrization (Φn, Φr) is the one appropriate to

the αr singular region

The last expression is closer to typical SMC’s, with each emission considered
independently.
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Accuracy of SMC’s

Soft divergences and double log region

z→ 1 (z→ 0) region problematic: for z→ 1: Pqq, Pgg ∝ 1

1− z

Choice of hardness variable makes a difference

virtuality: t ≡ E2z(1− z) θ2
�1−cos θ

pT
2 : t ≡ E2z2(1− z)2 θ2

angle: t ≡ E2 θ2

∫

dt

t

∫

t
√

/E

1− t
√

/E dz

1− z�
v irtua lity:z(1−z)>t/E2

≈
log2 t

E2

4
;

∫

dt

t

∫

t/E2

1−t/E2
dz

1− z�
pT
2 :z2(1−z)2>t/E

≈
log2 t

E2

2
;

∫

dt

t

∫

0

1 dz

1− z�
ang le

≈ log t log Λ

Sizeable difference in double log structure!
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Angular ordering is the correct choice (Mueller 1981)

dθ

θ

αs(pT
2 )

2π
P (z)dz

θ1 > θ2 > θ3�
pT
2 = E2z2(1− z)2 θ2

αs(pT
2 ) for a correct treatment of charge renormalization in soft region.

∆i(t, t
′)= exp



 −
∫

t′

t dt

t

∫

t0
t

√

1−
t0
t

√

dz
αs(pT

2 )

2π

∑

(jk)

Pi,jk(z)





≈ exp



 − ci

4πb0

{

log
t

Λ2
log

log
t

Λ2

log
t0

Λ2

− log
t

t0

}

t′

t


 (cq = CF , cg = 2CA)

Sudakov damping stronger than any power of t.
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With virtuality ordering:
Soft emissions give small virtuality.
At end of shower, large amount of
unrestricted (all angles) soft radiation

But soft gluons emitted at large angles from final state partons add coherently!

large angle, high energy: already ordered in angle

large angle, small energy: should be reordered by angle;

Thus: order in angle
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Issue of truncated showers

Truncated shower are generally needed in angular ordered SMC’s

• Every time the shower is initiated by a relatively complex
matrix element a truncated shower is needed

• CKKW mocks the effect of truncated shower with a trick
(but it misses the correct colour flow)

67



Consider e+e−→ q q̄ g.
Assume θ1 small. Consider gluon emission
with angle θ ≫ θ1, θ≪ θ2.
Coherence requires that the emission strength
is CF (gluon and quark coherently)

In HERWIG: initial angle for gluon radiation is θ1 or θ2 with a 50% probability.
Thus (in the above region) strength is CA/2≈CF (but only in the average!!)

In CKKW: radiation from gluon restricted to θ < θ1, quark radiates with angle
up to θ2. Thus only the quark radiates in the above region, with strength CF .
However, the colour connection is incorrect! Large colour gap in CKKW!

So: coherent showers are always needed when doing ME-Shower matching
with angular ordered showers.
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Caveats in POWHEG
Born zeros

• Singularities in B

• Zeros in B

Both cause problems, but they are easily fixed.
For example, zeros in B: further separate

Rαr
=

kT
2

kT
2 + B

Rαr
+

B

kT
2 + B

Rαr

The first term in non-singular (can be generated directly without Sudakov),
while in the second term the zero in B cancels in the Sudakov exponent.
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Accuracy of the Sudakov Form Factor
POWHEG’s Sudakov FF has the form (with c≈ 1)

∆t = exp

[

−
∫

t

Q2

dkT
2

kT
2

αS(c kT
2 )

π

{

A log
M2

kT
2

+ B

}

]

We know that the NLL Sudakov form factor has the form

∆t
NLL = exp

[

−
∫

t

Q2

dkT
2

kT
2

αS(kT
2 )

π

{(

A1 + A2
αs(kT

2 )

π

)

log
M2

kT
2

+ B

}

]

provided the colour structure of the process is sufficiently simple
(6 3 coloured legs). Can use this to fix c in POWHEG’s Sudakov FF.
(Suggested in (Catani, Webber, Marchesini, 1991) for HERWIG)
> 4 coloured legs: exponentiation only holds in LL,
or LL + (NLL large Nc) if planar colour structures are suitably separated
Summarizing:
POWHEG Sudakov is: always LL accurate,
NLL accurate for 6 3 coloured legs, NLL accurate in leading Nc in all cases.
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for all observable considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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ALPGEN can generate samples of tt̄ + n jets; can be compared to NLO+PS;

expect:
• Disadvantage: worse normalization (no NLO)

• Advantage: better high jet multiplicities (exact ME)

Comparison ALPGEN-MC@NLO carried out in detail
(Mangano, Moretti,Piccinini,Treccani, Nov.06)

ALPGEN:
K = 1.51

MC@NLO:
generated
by shower
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Results as expected but for 1 observable

POWHEG’s distribution as in ALPGEN (i.e., no dip);
Notice: size of discrepancy can be attributed to different treatment
of higher order terms. Is this “feature” really there?
pp→ tt̄ + Jet at NLO (Dittmaier, Uwer, Weinzierl)
agrees with ALPGEN and POWHEG
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Scale dependence
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