Theoretical comments on generic Z'

Slava Rychkov (SNS)

Model building

SM Yukawa couplings

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$Q = \left(egin{array}{c} u \ d \end{array}
ight)$$
 $L = \left(egin{array}{c} e \
u \end{array}
ight)$

Consider set of U(1) charges for fermion fields and Higgs:

$$Z_{Q_L}, Z_{dR}, Z_{uR}, Z_{L_L}, Z_{eR}, Z_H$$
 $Z_{Hc} = -Z_H$

Consistency conditions (invariance of Yukawas)

$$egin{aligned} Z_{Q_L} &= Z_H + Z_{dR} = -Z_H + Z_{uR} \ Z_{L_L} &= Z_H + Z_{eR} \end{aligned}$$

•Examples: hypercharge:

B-L:

•Final step: add U(1) gauge boson Z' which gauges this symmetry with an arbitrary couling g(Z'), add by hand mass term

$$M_{Z^\prime}^2(Z_\mu^\prime)^2$$

Comments on SSM

- (uL, dL) necessarily have equal Z' couplings (same for (eL, νL))
- => sequential SM Z' (with couplings equal to those of Z) makes no sense

More precisely: differences between (uL, dL) couplings should be suppressed by $rac{M_Z}{M_{Z'}} o 0 ext{ as } v o 0$

I.e. differences in couplings may appear only due to mixings

ElectroWeak Precision Tests

- •Z-pole data (irrelevant if ZH=0)
- •LEP2 data (4-fermion operators)

The Minimal Set of Electroweak Precision Parameters

hep-ph/0604111

G. Cacciapaglia^a, C. Csáki^a, G. Marandella^b, and A. Strumia^c

U(1)	universal?	Z_H	Z_L	Z_D	Z_U	Z_Q	Z_E	full
B'	yes	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{1}{6}$	1	6.7
B-L	no	0			$-\frac{1}{3}$			6.7
L	no	0	1	0	0	0	-1	6.3
		-						

99% CL bounds on the ratio $M_{Z'}/g_{Z'}$ in TeV