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Talks given at the CMS week 12/12/07
P. Schuster:
Preparing for new physics at the LHC with On-shell 
Effective Theories
S.A. Koay:
A tale of two particles

Hep-ph/0703088 (N.Arkani-Hamed et al.)
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Physics 
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Present
History

Specific predictions : 
(e.g. tt → bW bW → blν blν , …)

Analysis (the search)

topologies
kinematics range
distinguishing features

cross-sections
masses

couplings
…

…

fit

observation
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data
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non-SM
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What next?

Interpretation?
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searches
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Little Higgs

Model X
BSM models ~ O( )
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all models ×

parameter spaces

New-Physics 
searches

Large degeneracies in 
predictions for the LHC

across 
models

within model 
parameter 
space

data

BSM models ~ O( )
SUSY

Little Higgs
Model X
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all models ×

parameter spaces

New-Physics 
searches

Large degeneracies in 
predictions for the LHC

across 
models

within model 
parameter 
space

data

Full scan:

Computationally 
daunting

BSM models ~ O( )
SUSY

Little Higgs
Model X
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all models ×

parameter spaces

New-Physics 
searches

data

njet

nW

HT…

α1

tan β

ln γ…

α2 δ
ξ

Intermediate characterization?

Full Models

Pure-Experimental
Observations



9

data

OSET 1
OSET 2

OSET 3

all models ×

parameter spaces

New-Physics 
searchesOSETs in

O S E  T s   ≡
observation-inspired 

skeleton models
observation

n- he
ll

ffe
cti

ve
he

or
y



10

data

OSET 1
OSET 2

OSET 3

all models ×

parameter spaces

New-Physics 
searchesOSETs in

observation

O S E  T s   ≡
observation-inspired 

skeleton models

n- he
ll

ffe
cti

ve
he

or
y

Still with predictive power



11

data

OSET 1
OSET 2

OSET 3

New-Physics 
searchesOSETs in

observation

all models ×

parameter spaces

O S E  T s   ≡
observation-inspired 

skeleton models

n- he
ll

ffe
cti

ve
he

or
y

Still with predictive power

Summaries of
(part of) full models



12

data

New-Physics 
searchesOSETs in

observation

O S E  T s   ≡
observation-inspired 

skeleton models

n- he
ll

ffe
cti

ve
he

or
y

Summaries of
(part of) full models

Still with predictive power

OSET 2

OSET 3

OSET 1

Model A

Model B



13

the languageOSETs

Full model calculation

*

spins
couplings
off-shell states
…
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the language

Full model calculation Parameterization

spins
couplings
off-shell states
…

branching ratios

*

~ constant

Effective TheoriesOS

*
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the languageOn-Shell

Full model calculation Parameterization

spins
couplings
off-shell states
…

branching ratios

*

all lines 
on-shell

~ constant

Effective Theories



16

A SUSY example

on- and off-shell masses
several couplings
control both kinematics and rates

Production contributions:
Associated q-g: intermediate q and g
Same sign q: g and 4 neutralinos

Model Parameterization

“blobs” represent dynamics
that are parameterized by one 
rate and possibly an additional 
shape parameter
Off-shell particle do not appear, 
their effects present in the rates

gauginos do not appear in 
the OSET~~

~
~
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Another SUSY example
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How can we manage to approximate the ME?
If the matrix element |M|2 varies smoothly over energy, 

while parton luminosities fall rapidly about threshold 

reproduces well the kinematics of the hadron production
This is indeed true for the gluino pair-production

Another SUSY example
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Another SUSY example



20

Introduce dimensionless energy and angular variables

s0 is the minimum possible value of sˆ
b2

34 is the relative velocity of the products
θ* is the scattering angle in the center-of-mass frame. 
ξ ∝ z-component of momentum of the particles in the 
center-of-mass system 

to parameterize corrections to constant |M|2:

Parametrization scheme
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Near threshold one term of the expansion dominates:

PDF Ecm and ycm
homogeneity properties

Inclusive pT shape invariant 
under X q ξ p → X q
Inclusive ylab shape invariant 
under X q ξ p → ξ p

Parametrization scheme

p=0 usually dominates
Cascade decays wash out dependence
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Parametrization scheme

p-wave dominated

Contact interaction
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M
A
R
M
O
S
E
T

In this framework an OSET is defined by:
A spectrum of new particles w/ given masses
The UEM(1) and SUC(3) gauge quantum numbers
Observable production and decay modes

In terms of on-shell particles
A parametrized ME |M|2 for each vertex

MARMOSET is a Pythia based Monte Carlo tool which implements
the parametrization in X and ξ variables

BLOBS

2 → 1 Resonant production
2 → 2 Pair or associated production
2 → 3 Production
1 → n Decay
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C
M
S

O
S
E
T
s

@

Results of new 
physics searchesPhrase/answer structural questions:

Quantum numbers
Mass hierarchy
Decay modes

Case studies, usage examples
Guidelines, cautions, caveats, issues, …
Maps for BSM model → OSET

Systematization of:
OSET construction
Goodness of “OSET fit”

Framework for a first understanding of BSM signals
(complementary to full-model searches)

theorist experimentalist
communications

More flexible/manageable complexity than full model

Model topologies → signatures, discriminating variables
Model constraints → further analysis directions

Training exercises
Data challenges 
Workshops
…
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OSETs in new-physics analyses

OSET 1 OSET 2

OSET 3

first
discovery

OSET-suggestedsearch
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OSETs in new-physics analyses

×

OSET 1 OSET 2

OSET 3

first
discovery

OSET-suggestedsearch …

=  lots      of coding (?)lots
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t

t
t

t

duplo

duplo

OSET hypothesis

“ ”The Monte-Carlo scripting language

Quantum numbers / mass

Decay mode

duplo :   charge=0 color=0 mass=

duplo

g g > duplo duplo : matrix 1

t tbar>

800New particle

Production mode
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QCD

tt+jets

W+jets

HT ≡ ∑ scalar ET of electrons, muons, jets

Energy scale < 500 GeV to 1 TeV~

Pseudo-data

pseudo-data 
– SM background

expectations

SIGNAL ≡

Case Study:    Jets  +  MET   channel

GeV

ev
en

ts
 / 

10
0 

G
eV

ev
en

ts
 / 

10
0 

G
eV

GeV
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b

b

b

b

W
W

p

p

Case Study:    Jets  +  MET   channel

+ jets
+ significant ET

“Most salient” final state
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t
t
t
t

Too many leptons
Not enough missing energy

t
b

t t

b
b

b t

t4 final state has too many leptons

(Some) Attempted OSETs

Massive missing energy particle required

:

:

Implied for model consistency

q q
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octet

Neutral
(stable)

Charged

3rd gen.
partners

1st, 2nd gen.
partners

SUSY:
“Higgsino”

800 GeV

600 GeV

200 GeV

OSET DeductionActual Model

g (563 GeV)~

q (805 GeV)~

b, t (650 GeV)~ ~

h (197 GeV)~

W (1 TeV)

b t h ~ 89%~~~b h~2~

l (irrelevant)
~

<0.2%

S
U

(2
)

< 7.2%
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Where did OSETs come in?

+  O(many)

Monte Carlo “scripting” : Effortless
Wait-less to simulate hypotheses

What made (quick) model-deduction possible?
Standard Model → BSM constraints
(charge conservation, small rate of flavor violation, …)

Minimal addition of new content (a negotiable assumption)

O
S
E
T o l o g y @ CMS

Number of parameters (masses, branching ratios, …) << full model
Hypothesized topologies       new signatures and searches
Factorization into subsets of salient signatures
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OSET Process OSET Model BSM Physics

+
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Masses=200,600,…

Masses=200,600,…

Mass of particle 1

M
as

s 
of

 p
ar

tic
le

 2 +

+
+

+

Model A

Model B

Model C

- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

- Extract best-fit model 
parameters for a 
given set of mass 
hypotheses

- Compare mass hypotheses to 
locate most likely spectrum

- Compare distinct models

Upper-bound: Fit to signal: Goodness-of-fit:
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- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

Upper-bound:

HT

signal

OSET A

Suppose that we think “signal” consists of 
25% events from a model like OSET A.

If we overlay the shapes of the HT
distribution (OSET A scaled to 25% number 
of signal events), they would look like this.

Compute a “constrained distance” (χ2

or the Poisson equivalent) in only those 
bins where the OSET A prediction 
exceeds the number of signal events.



35

- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

Upper-bound:

HT

signal

OSET A

Compute a “constrained distance” (χ2

or the Poisson equivalent) in only those 
bins where the OSET A prediction 
exceeds the number of signal events.

Assuming that OSET A is the correct 
model in this region, how likely are we to 
measure the “constrained distance” that 
we measured (in this pseudoexperiment)?
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- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

Upper-bound:

HT

signal

OSET A

Compute a “constrained distance” (χ2

or the Poisson equivalent) in only those 
bins where the OSET A prediction 
exceeds the number of signal events.

the maximal OSET fraction such that it can explain 
all signal events in the constraining region,

… supposing that there was a total downward 
fluctuation of, say 2σ, down from expectation.

χ2 Probability

OSET A 
fraction



37

- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

Upper-bound:

HT

signal

OSET A

χ2 Probability

OSET A 
fraction

Typically the upper bound 
is not very constraining, 
unless we picked a model 
that is obviously wrong.

But that’s just life.
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Upper-bound:

HT

signal

OSET A

- Determine if a given 
process is important

- Indicate regions that 
require contributions 
from other processes

ET / HT

The upper-bound is usually computed 
simultaneously over multiple distributions
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Upper-bound:
- Determine if a given 

process is important
- Indicate regions that 

require contributions 
from other processes

This is an example summary plot indicating 
the maximal fractions of various hypotheses.

The bands are produced by scanning over 
some possible masses.

z-axis (color 
scale) :

Production 
cross-section 
required to 
produce 
upper-bound 
fraction

U
pp

er
-b

ou
nd

 fr
ac

tio
ns

OSET hypotheses
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- Extract best-fit model 
parameters for a 
given set of mass 
hypotheses

Fit to signal:

+1σ

-1σ

When we have the set of 
most significant processes, 
we can fit for their fractions 
the usual way (minimizing 
distance between signal and 
summed templates).

OSET 1

OSET 2

OSET 3

signal
Fitted 
fractions 
(stacked)

Number of jets
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- Extract best-fit model 
parameters for a 
given set of mass 
hypotheses

Fit to signal: The contours of the Minuit2 fit 
are used as error bars. But pay 
attention to the contour plots 
for they contain more 
information about flat 
directions (similar processes).

di
st

an
ce

 (a
rb

itr
ar

y 
un

its
)

O
S

ET
 1

OSET 2OSET 3

O
S

ET
 2

O
S

ET
 1

OSET 3

Landscape of distance used in the fit — 2D slices (3 OSETS = 3 parameters)
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- Compare mass hypotheses to 
locate most likely spectrum

- Compare distinct models

Goodness-of-fit:

For a specific set of 
mass hypotheses 
(at this point of the 
mass grid): record 
how well we can fit 
the three processes 
to explain signal.

G
oo

dn
es

s-
of

-fi
t

For each particular model:

The goodness-of-fit (for the various processes) 
as we vary the mass parameters can be used 
to locate the most probable mass spectrum.

Mass 1

M
as

s 
2

Contours of 
parabolic fit 
interpolating 
between points 
in (possibly 
coarse) grid

Refine grid after 
roughly locating 
minimum
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- Compare mass hypotheses to 
locate most likely spectrum

- Compare distinct models

Goodness-of-fit:

G
oo

dn
es

s-
of

-fi
t

This procedure has a natural 
generalization to comparisons of 
models, provided we understand 
the number of degrees of freedom.

Mass 1

M
as

s 
2

Model B

Model A

Model C
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45 Is
su

es - Correlated variables

Suppose a naïve graduate student performs a 10-histogram fit with:
ET + HT + HT + HT + HT + HT + HT + HT + HT + HT

Unfairly weighted, wrong degrees-of-freedom count

… but it can happen to you too:

Principal components analysis:

Diagonalize to a de-correlated basis
Remove redundant variables- Non-discriminating 

variables (“garbage”)

HT

leading jet ET

ET+HT

co
rr

el
at

io
n 

co
ef

fic
ie

nt

1

0

leading b-jet ET
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es - Correlated variables

- Non-discriminating 
variables (“garbage”)

OSET 1

OSET 2

OSET 3

Fractions reported by fitter

Number of non-
discriminating plots

Inclusion of non-discriminating 
plots (i.e. where all hypotheses 
have the same shape) tends to 
wash out the information in 
such a way that the fractions 
are biased towards equal 
numbers — unless we have 
perfect (∞ statistics) templates.

Metric for sorting plots according to 
discriminating power — examining the 
trend as we increase template statistics 
provides even more information.


