W, Z measurements from early data with CMS

M. Malberti INFN Milano Bicocca

Workshop sui Monte Carlo, la Fisica, le Simulazioni

Frascati, 18-20/02/2008

- Introduction
- Inclusive cross section measurements (e, μ)
 - efficiency measurements
 - events selections and background estimation
 - acceptance studies
- Summary

Introduction

- "early data" \rightarrow assume an integrated luminosity $\sim 10-100 \text{ pb}^{-1}$
 - instantaneous luminosity $\sim 10^{32}$ cm⁻² s⁻¹
- W, Z (\rightarrow leptons) measurements with early data
 - large and high purity samples thanks to the high production cross section and clean experimental signature

Process	σ x Br [pb]	$\varepsilon \times A$ (estimate)	Events 10 pb ⁻¹
Z → II	2000	25%	5000
$W \rightarrow I_V$	20000	35%	70000
ttbar → Iv +X	370	1.5%	< 100
Jet E⊤> 25 GeV	3 · 10 ⁹	100%	3 · 10¹⁰ x p.f.
Minimum bias	10 ¹¹	100%	10 ¹² x p.f.

- "Standard candles" for detector calibration/understanding and first physics measurements
 - inclusive cross sections measurements
 - monitor collider luminosity
 - constrain Parton Distribution Functions (looking at σ_{TOT} , W rapidity,...)

Inclusive cross section measurement

- compare the measure to theory or reverse the relation for
 - Iuminosity measurement
 - constraining PDFs
- with large LHC datasets, main uncertainties are non-statistical
 - Iuminosity (5-7%), systematics (2-3%)
 [see also D0 Note 4750; arXiv:hep-ex/0508029]

- Efforts to define methods to measure most of the parameters from the data themselves and to minimize the dependence on MC
 - $\epsilon = trigger$ and offline lepton efficiencies \Rightarrow from data
 - N^{bkg} = expected background \Rightarrow from data and MC
 - A = acceptance \Rightarrow from MC

Efficiency measurement from data

The Tag&Probe method

• Use $Z \rightarrow ee(\mu\mu)$ events to provide an unbiased, high purity electron (muon) sample to measure the efficiency of a particular selection

<u>TAG</u>: electron (muon) selected with tight criteria

<u>PROBE</u> : electron(muon) candidate with loose selections depending on the efficiencies under study

- tight tag selections + kinematic cuts to ensure a high purity sample

 $\epsilon = \frac{\# \text{ probes passing the selection}}{\# \text{ all probes}}$

- map efficiencies as a function of $p_{T,} \eta$, Φ for phyisics analysis
- critical issues of the method
 - residual background contamination (QCD, W+jets) to be subtracted
 - check of correlations and dependencies on the selections applied

Muon efficiency with "Tag&Probe"

CMS AN 2007/031

M.Malberti

19/02/08

Efficiency:Tag&Probe vs W \rightarrow Iv

• apply efficiency measured with $Z \rightarrow II$ to $W \rightarrow Iv$

- efficiency mapped in **p^T,**η bins to account for <u>different kinematic</u> <u>distributions</u> of leptons from Z and W
- good agreement between "Tag&Probe" efficiency and MC truth in W→lv
 - from comparison between "Tag&Probe" efficiency and MC efficiency in W→lv performed as a function of E^T and in η slices

19/02/08

Events selection and backgrounds $Z \rightarrow II$

Selections:

- two well reconstructed isolated leptons with opposite charge within detector acceptance (|η|<2.4)
 - lepton ID based on simple but robust cuts
- hight pt (well above trigger thresholds)
- invariant mass (70 GeV<M<110 GeV)</p>

Main Backgrounds

- Z→ττ, ttbar, W+jets
- true or misidentified leptons from dijet events
- almost negligible background contamination (~ few ‰) after all selections

2 0 007 AN CMS Ч \mathbf{m} O 0 0 \mathbf{N} AN SMC

6

Backgrounds from data in $Z \rightarrow II$

 subtraction of residual background needed for a correct estimation of efficiencies with T&P and cross sections

Different techniques under investigation

(1) <u>"Charge Correlation" Method</u>

- look at "same-sign"(SS) and "opposite-sign"(OS) events
- N(SS)=N(OS) under the assumption of no charge correlation in lepton pairs from hadronic events
- need to take into account charge mismeasurement probability in signal and possible non-negligible charge correlations

(2) <u>"Side Bands" Method</u>

(3) fit with background (or signal+bkg.) templates of a discriminating variable

 more sophisticated, may require higher luminosities (i.e. with enough data to model background shapes)

(1) and (2) are simple but robust methods:

- desirable for a start-up scenario
- adequate for the level of background expected in $\sim 10 \text{ pb}^{-1}$

M.Malberti

Events selection and backgrounds $W \rightarrow lv$

19/02/08

Selections

- one well reconstructed lepton within detector acceptance and passing HLT requirements
- lepton isolation
- lepton $p^T > 20 \text{ GeV}$
- transverse mass and/or MET cut + possible jet vetoes to reduce hadronic backgrounds

Electroweak backgrounds

- $W \rightarrow \tau v, Z/\gamma^* \rightarrow II, Z \rightarrow \tau \tau, ttbar (~few %)$
- WW, WZ, ZZ (~negligible)
- can be reliably estimated from MC simulation
- Hadronic backgrounds
 - highest uncertainty
 - can be estimated from data

Background estimation: "Matrix method"

General technique used by CDF and D0

- consider two variables with signal/background discrimination power
 - main assumption: the two variables are largely uncorrelated
 - e.g.: lepton isolation and MET(M^T)
 - look at Var1%Var2
- Simplest approach: assuming that Ba, Bb, Bc are only QCD events, the number of bkg. events Bd in the signal region is deduced by the ratio R

$$Bb Bc Bc Bc Bc Bc Bc Bc Bd = ---- Bd Bd Bd R$$

- "non-QCD" contamination correction in regions a, b, c may be required
- systematics dominated by the validity of the assumption Bb/Ba=Bc/Bd

Results for QCD bkg estimation in $W \rightarrow \mu \nu$ shown for different control regions using 0.5 pb⁻¹

Background estimation from data (I)

- MET distribution in QCD events is almost independent of whether the candidates pass or fail the isolation requirement
- it can then be modeled on ANTI-ISOLATED leptons

Background estimation from data (II)

Acceptance studies

- Comparisons between different generators and predictions (LO vs NLO)
- NLO QCD and EWK corrections
 - MC@NLO+PHOTOS vs RESBOS-A
 - HORACE vs LO MC + PHOTOS
 - using MC@NLO+PHOTOS ⇒ overall theoretical uncertainty on Z → II acceptance at the percent level
- $W \to Iv$
 - LO NLO (MC@NLO) ~ 2 % uncertainty on acceptance

19/02/08

30

40

50

60 70 80 90 Reconstructed p₊ of the muon (GeV)

CMS

Acceptance uncertainty from PDFs

- uncertainty on acceptance in $Z \rightarrow II$ events from PDFs at the 1% level
 - evaluated with CTEQ6.5
 - ~1% difference between CTEQ6.5 central value and other MRST PDF sets

CMSAN2007/031CMSAN2007/026

M.Malberti

19/02/08

- W,Z inclusive cross section measurements will be one of the first measurements with early data
- Efforts to investigate strategies to measure most of the parameters from data and to minimize the dependence on Monte Carlo
- Trigger and offline efficiencies can be measured from data exploiting $Z \rightarrow II$ events
- QCD background estimation (shape and normalization) from data using different methods
- Residual dependences on MC: acceptance determination, electroweak backgrounds

Backup slides

Trigger efficiency - electrons

Figure 3: L1+HLT efficiency versus supercluster E_T .

Figure 4: L1+HLT efficiency versus supercluster η .

Electromagnetic calorimeter reconstruction efficiency as a function of probe track p^{T} : comparison between signal+background and after background subtraction

Muon momentum scale from Z

- effectiveness of the muon
- reconstruction procedure imperfect knowledge of the detector conditions
- studied for 10 pb⁻¹ with different scenarios
 normal detector conditions

 - tracker misalignment
 muon system misalignment
 modified B-field intensity
- correct μ scale as a function of muon kinematics: $p^{T} = k \times p^{T}$ with $k = F(p^{T}, \eta, \phi;$ α...)
- scale corrections improve also systematics on cross section measurements (acceptance uncertainties)

