

ATLAS Commissioning

Roberto Ferrari Montecarlo Workshop Frascati – 20 Febbraio 2008

ATLAS Detector

ATLAS Detector

- 3 sottosistemi principali + sistema magnetico:
 - Sistema magnetico
 - Solenoide centrale
 - Toroidi barrel e endcap
 - Tracciatore Interno:
 - Pixel
 - Silicon Tracker (SCT)
 - Transition Radiation Tracker (TRT)
 - Calorimetria:
 - Calorimetro Elettromagnetico (LAr)
 - Calorimetro Adronico (Tile)
 - Spettrometro per Muoni:
 - Barrel
 - EndCap

Performance di progetto

MAGNETS	4 magnets: 3 large air-core toroids (to minimize mult.scattering) 1 solenoid (B=2T) in inner cavity
TRACKER	Si pixel + strips TRD (straw tubes with radiator) \rightarrow particle ID $\sigma/p_T \sim 5x10^{-4} p_T (GeV) \oplus 0.01$
EM CALO	<mark>Lead/Liquid Argon</mark> σ/E ~ 10%/√E + 0.007
HAD CALO	Fe-scint. Tiles 10 λ σ/Ε ~ 50%/√Ε ⊕ 0.03
MUON	Air core toroids,precision and trigger chambers $\sigma/p_T \sim 3 \%$ at 100 GeV,10% at 1 TeV, stand-alone

ATLAS superconducting magnets

- Hybrid of 1 Central Solenoid, 1 Barrel and 2 End Cap Toroids
 - 2T magnetic field for inner detector (solenoid) and ~1T for the muon detectors (toroids)
 - 20 m diameter x 25 m long
 - 10000 m³ field volume
 - 170 t superconductor
 - 700 t cold mass
 - 1320 t magnets
 - 7000 t detector
 - 90 km superconductor
 - 20.5 kA at 4.1 T
 - 1.6 GJ stored energy
 - 4.7 K conduction cooled
 - 9 yrs of construction 98-07

- The largest system of toroids ever built !

Central Solenoid Barrel Toroid End-cap Toroids

Central Solenoid

Provides 2T field with a stored energy of 38 MJ for the inner tracker Integrated design within the barrel LAr em calorimeter cryostat Minimize material before EM calorimeter

- Inserted into the LAr cryostat in Feb. 2004
- Tested at full current (8 kA) in July 2004

August 2006: Solenoid fully operational

automatic deselect X212_005010_78100

May 2006: \rightarrow Cooled at 4 K

July – August 2006: \rightarrow fully commissioned in-situ up to 8.0 kA

Operation current at 7.73 kA for 2.0 T field

Commissioning studies:

2006.08.01 20:58:42 INFO

- **3 Fast Dump** Tmax = 100 K
- Max. 8.0 kA (with iron)

Tracciatore Interno

<u>6.2m</u>

_2.1m

Pixel Detector

- 50 x 400 µm pixel
- \bullet risoluzione 12 x 100 μm
- 80M canali

Semi-Conductor Tracker (SCT)

- 80 µm pitch
- risoluzione 16 x 580 µm
- 6.2M canali

Transition Radiation Tracker (TRT)

- 4mm Ø straw, lunghe fino a 1.5m
- risoluzione 170 μm
- 298k canali

Integrazione SCT+TRT

barrel integration: february 2006

endcapC september 2006endcapA november 2006

Cosmic data was taken at SR1 for the combined barrel and one of the combined endcaps,

ATLA

SCT/TRT Cosmics Test on Surface

2006 combined SCT & TRT barrel cosmic run:

- 22% SCT, 13% TRT barrel
- No B-field
- ~400k events

TRT barrel, Local χ^2 : the algorithm converges 0.05

ATLAS Commissioning improves residuals by 10-20%

Installazione SCT/TRT

SCT+TRT barrel, august 2006

Barrel had to be fully tested before end-caps could be installed!

SCT+TRT endcap, may 2007

SCT (EndCap-A) Performance

Average Temp = 25.3 ± 1.5 °C Uniform across detector No hotter areas

Temperature

SCT (EndCap-A) Noise

- Outers: 1753 e
- Middles: 1681 e
- Inners: 1172 e
- Short Middles: 1009

• SR1 Temperature = 15°C

- Outers: 1675 e
- Middles: 1609 e
- Inners: 1121 e
- Short Middles: 960 e
- Data agree with temperature difference

No Increase in noise when Barrel Operational

SCT Tracking with Cosmics

~9 million triggers taken in 'physics' mode, including ~450k cosmics triggers

TRT in Milestone Week 5 (1)

TRT in Milestone Week 5 (2)

Trigger from scintillation counter (2ns jitter) and tile calorimeter

TRT in Milestone Week 5 (3)

One stack.

All stacks

 $\sigma \sim 300 \ \mu m$. Expected $\sim 220 \ \mu m$

Possibly due to threshold/Gas Gain issue (ArC02 gas)

L1 and L2 Pixel Assembly

Pixel Layer2, half shell

Pixel Layer2, once clamped, outside

Pixel Layer2, once clamped, inside

Pixel Layer1&2, once clamped + services

Pixel Cosmics Test on Surface

Test of one full Endcap ~150k cosmic tracks Noise occupancy below 1E-8 < 1% bad channels

20

Installazione Pixel

Inserimento nell'ID il 26 giugno 2007

Installazione ID completa

Inizio 2008:

ID operativo

Allineamento iniziale con cosmici

Stato Tracciatore

- Rivelatori completamente installati da giugno 2007
- TRT e SCT cablati e commissionati
- Cablaggio Pixel iniziato il 5 febbraio
 - Termine previsto per inizi aprile
 - Certificazione prevista per fine aprile
 - Catena di lettura DAQ completamente testata (generazione di pattern casuali nella elettronica di lettura)
- Canali morti/rumorosi < 1%

... some concern

- Sorgente principale di preoccupazione (e di ritardo):
 - corrosioni e rotture a connessioni nel circuito di raffreddamento
 - ==> elementi critici ("evaporative heaters") già sostituiti e spostati in zone meglio accessibili

Calorimetri a LAr e a Tile

ECAL: Accordion Pb/LAr Barrel: |η|<1.475

HCAL:

Tile: Fe/Scintillator |η|<1.7 HEC: Cu/LAr 1.5<|η|<3.2 FCAL: Cu/W/LAr 3.1<|η|<4.9

Barrel Calorimeters (LAr + Tiles)

November 4th 2005: moved to the center of ATLAS

All components installed (detectors, cryogenics, services,..)

End-Caps LAr and Tile Calorimeters

End-cap Side C : assembled in the cavern by January 2006 End-cap Side A : assembled in May 2006

Main end-cap LAr activities: EC-A:

- Since August 06 installation of FE electronics
- November 2006 start cool down
- February 2007 start cold operation EC-C:
- Since April 06 installation of FE electronics,
- February 2007 start cool down
- April 2007 start cold operation

Completed end-cap calorimeter side C, just before insertion

Lar Status

- All cryostats filled and operated continuously for several months
- Liquid purity stable and well below 0.5 ppm
- Calorimeter Temperature very stable, average within +-10 mK.
- All back-end electronics available in the readout

Lar Commissioning

- Pedestal (noise) stability within ~0.05 ADC
- Calibration pulse stability < 1%

LAr Commissioning with Cosmics

- Data taking on week-ends and M. weeks
- Rate: 15 ev/min, Tile triggered
- About 500k events registered since Aug 06

 Optimize timing, intercalibration, uniformity

Most probable value vs η

Nov: EC Toroid destroys cryoline of LAr End-cap C

60

8.0 14

LULL

Tile Hadronic Calorimeter

- Commissioning with laser:
 - pulse all PMT at the same time
 - test full readout chain
 - equalize arrival time
- Charge injection:
 - inter calibrate electronics chain

Tile Commissioning with Source

- Hydraulically moved
 Cs source of ~10 mCi
- Dedicated calibration run, with source traversing each one of 463k tiles
- Tune HV setting and inter-calibrate response of each readout channel

Tile Commissioning with Cosmics

Energy

•

Time of flight measurements •

Some more minor fun ...

- Both for Lar and Tile, several components needed retrofitting/refurbishing:
 - High voltage power supplies
 - Low voltage power supplies (MTBF still an issue for LAr: looking for backup solution)
 - Front end electronic board (work on going)

Refurbishment Progress Chart

Spettrometro a muoni

Toroidal Magnetic Field

Large volume air core system: strong bending powel with minimal multiple scattering

Barrel toroid tested at 20.5 kA End-caps tested at 10 kA (not in final position)

Barrel Magnet Toroid cooling down

- All magnet services connected and operational (vacuum, power, cryogenic)
 - Vacuum < 5 10⁻⁵mbar reached
- Started on 3 July, takes 5 weeks nominally
- Finally cooled down at 4.7K on 30th August

38

Phase I (27 Sep - 14 Oct) :<u>0-300A</u>

Barrel Magnet Toroid tests

Cleaning: Large platforms removed

- Test of toroid inductance, resistances, fine tuning of coil cooling, identification of quench heaters etc.
- Check of cabling, identification of all sensors
- Phase II (16 Oct 26 Oct) : <u>1-5kA</u>
- Cleaning: Detector area, completely
 - Magnet Safety test : 3h test duration at 20kA of the power circuit, toroid not connected
 - The 8 BT coils are powered in series on 1 power supply
 - Power supply adjustments, slow and fast dumps, quench heater tests, check of coil mechanics
 - Fast dump tests: first 25 October
 - First readings of mechanical sensors, tie rods, fixed points

18-19 November: 24 h test of Toroid Barrel

06:00:00 08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00 20:00:00 22:00:00 00:00:00 02:00:00

Current

0.57

∎nıng

Cosmic ray data taking with muon sector 13

1M events collected

The first track with magnet on triggered by the RPCs!!

8-Nov-2006 21:11:24.04

ATLAS BT MCS

08:00:00 10:00:00 1

CL1 PT1000

ECT-A&C cooling down in parallel

- First cool down of ECT A&C in parallel completed within 5 weeks
- No problems: thermal shield runs at 50-60 K, cold mass at 4.6 K

10 kA Slow and Fast Dump

- 0-10-SD and 0-10-FD by quench detector
- T_max cold mass ~35 K, T_conductor ~50 K
- All coils do not quench simultaneously, delays to be checked at 21kA

- Toroid behaved fine and past 15 kA!
- At 14.8 kA toroid moved unexpectedly towards TC/ECC and a slow dump was manually triggered, what happened?

Test configuration and forces

Configuration

- ECT tested in provisional position to allow repair access to ID
- Much smaller gap to iron in TC
- This position was considered safe, expected friction force >68 t (0.2x340t)

Forces at 15 and 21 kA?

- Measured ~20 t
- Calculated ~20 t at 15kA
- and 40 t at 21kA , so << 70 t safe!
- Still not understood why it moved

Tests >10kA postponed to final configuration in May 08

Final configuration

Muon Chambers

The high momentum resolution is achieved with 3 layers of high precision tracking chambers arranged in 3 cylindrical layers (barrel) or perpendicular to the beam (end cap wheels).

Trigger chambers make part of the LVL1 trigger in ATLAS providing BC identification, muon pT triggers selection and second coordinate information

	Function	Resolution (RMS) in			Chambers	Chan	Coverage
		z/R	ф	tim e		nels	
MDT	Tracking	35 μm (z)	-		1108	339k	η <2.7
CSC	Tracking	40 μm (R)	5 mm	7 ns	32	31K	$2.0 < \eta < 2.7$
RPC	Trigger	10 mm (z)	10 mm	1.5 ns	544	359k	η <1.05
TGC	Trigger	2-6 mm (R)	3-7 mm	4 ns	3588	318k	1.05< η <2.7 (2.4 for trigger)

MDT Installation

Barrel: 701/704 stations installed, 96% precisely positioned; commissioning on-going

End-caps: installation of small wheels on-going

Small Wheels

JD: Shielding and support disk ~10 m diameter

CSC large and small chambers on each side of the wheel

MDT large and small chambers on each side of the wheel

ATLAS Commissioning

TGC

Small Wheels Test

All detectors working correctly at nominal voltageDead channels: $CSC\&TGC \rightarrow 0.06\%$ MDT $\rightarrow 0.03\%$ CSC noiseMDT tube occupancy

GAS: none has gas leaks TGC <0.1 mb in 5 min at twice the working pressure

ATLAS Commissioning

number of hits

tube number

ATLAS Commissioning

Barrel Commissioning: Sectors

• MDT:

- Sectors from 3 to 8 Commissioned with Cosmic rays
- Sectors 1-2 & 9-10 noise test (missing HV-PS's)
- Sectors 11-12 under test
- Many problems found and solved

Mean Occupancy < 0.1%

MDT DCS

 DCS: All systems in advanced state, but not all yet integrated in Central DCS.

Barrel/EC Commissioning: Calibration Stream

- The Muon Calibration Data Stream provides large samples of muon data extracted before LVL2 decision (Only data in Region Of Interest).
- During Milestone Week 4:
 - Calibration Stream emulated offline, data sent (offline) to Tier2
- During Dec. muon run:
 - Calibration stream extracted online from LVL2

MDT Residuals after calibration

Barrel Commissioning: RPC sector commissioning

- Sectors 3-6 commissioned up to Cosmic rays:
 - Dead strips= 0.2%
 - Disconnected gaps for HV problems 0.6%
 - Disconnected gaps for Gas Leak 0.2%
 - Noisy channels: few units
 - Average Noise 0.4 Hz/cm²
 - LVL1 Timing-In
- Sector 7 & 8 under Cosmic ray test now

EC commissioning: TGC results

- Both trigger & read-out paths working
 - Fibre length measured for each sector

- Trigger Latency measured: 86-90 clk
 - Most data recorded in the Current Bunch Crossing: ATTRINGGERENTIS timed-in

Commissioning with Cosmics

- Trigger by top RPC sectors
 rate ~200 Hz
- Cosmics rays acquired on
 - 10/16 MDT sectors
 - 4-6/16 RPC sectors
- Bad/Dead channels < 0.5%

ATLAS Commissioning

... sofferenze

General common issue: availability of (CAEN) power supplies
 MDT Barrel and EC:

- ▲ EOL chambers commissioning
- RPC & Muon Level 1 Trigger
 - ▲ Commissioning speed
 - ▲ Gas leaks
 - ▲ Gas system commissioning

▲TGC

- Access problems
- Gas system commissioning

TDAQ Commissioning

Level-1 Trigger HLT infrastructure DAQ infrastructure DAQ software Commissioning (Technical) Runs

Trigger/DAQ architecture

DAQ software - control, configuration, monitoring (control network)

- Three major systems
 - Calorimeter Trigger
 - Muon Trigger
 - Central Trigger Processor (CTP)
- Other triggers and signals also integrated by CTP
 - Minimum bias
 - Luminosity triggers
 - Beam Pick-up
- CTP distributes all timing information, (avaliable since 2006, now fully installed)

Level 1 Trigger

Level-1 Muon/Calorimeter Trigger

- Calorimeter trigger installation completed in December 2007
- Muon trigger essentially complete
 - on-detector electronics power supply and gas issues
 - commissioning done sector-by-sector

ATLAS Commissioning

Level-1 Trigger Commissioning

- Calorimeter trigger signals need thorough testing before access disappears
 - About half tested so far
- Muon trigger commissioning sector by sector

 Timing needs to be addressed

₩ ¥2000

-4000

46000 -8000

-8000 -6000 -4000

-2000

2000 4000

Roc Eta strip z [mm]

6000

8000

EC --->

100

50

Technical Runs

- Inject Montecarlo event fragments in the readout buffer
- Send level-1 trigger information to the system
- Data acquisition and monitoring ~ as in real time

- Software validation
- Hardware commissioning
- Configuration issue
- Debugging
- Scaling issue

Technical Run Display

ATLAS Integration

- Combined mode running:
 - Milestone #N Weeks every 6-8 Weels
 - M5 in November 07, M6 scheduled for March 08
- Goal:
 - Software and hardware integration
 - Cosmic data taking
 - Monitoring
 - Timing

M5 combined run

- RPC (12.5%): Sectors 5,6
- MDT (~25%): barrel sectors 3-6, 16EIL4 chambers
- TGC: 5/36 stations with final setup in read out and trigger on each side (~14%). First operation on A-side
- Tile: ~55%; LAr: 68%-87%
- Pixel: Readout only, no TRT (but M4 and M5.x in Dec)

- Cosmic trigger:
 - Tile: sub-Hz
 - RPC: few tens Hz
 - TGC: few Hz
 - L1Calo: sub-Hz
 - MBTS: sub-Hz
- Technical triggers:
 - random, fixed frequency from CTP

ATLAS Commissioning

M5 Achievements

End-cap MDT show hits for both RPC and TGC trigger Different T0 is as expected

ATLAS Commissioning

This has of course increasingly been so, and the ACR soon will be staffed permanently when full-time

shift presence starts

ATLAS Commissioning

Non e' finita:

•Full Dress Reharsal: realtime tests of hardware, software, databases, storage media, networks, data flow, data integrity and quality checks, calibrations, etc

"FDR-1 run was a difficult success—data were played through and are now at Tier1 and Tier2 sites:

- Finding problems was the goal; most were overcome
- For FDR-2 expect basics to run more smoothly"

Prossimo futuro ...

Schedule linked to beam pipe closure (T0)

- **Detector**: ~ 5-6 weeks before T0 start closure to final position: close ID, move back calorimeters (-3m), install Small Wheels, position ECT, test magnet system, shielding
- Operation:
- •Keep current mode global commissioning along two lines up to T0-2 months
 - Periodic (~ 2 months) global commissioning (Mx) weeks for integration, operation, training, cosmic runs
 - •System dedicated periods (few days/system) for addressing specific issues
- Move to continuous mode starting at T0-2 months

Commissioning Feb/Mar 08

Month	Date	System	Requirements, remarks	CS	Parallel
February	4-8	DAQ/HLT	Technical Run	yes	FDR, SCT
	9-10				TRT, SCT
	11-13	Tile	Calibration Triggers	yes	SCT; TRT; 13/2 11:00 DAQ/HLT 24h
	14-15	Tile	R/O debugging	Yes	TRT; TDAQ 24h up to 14/1 at 11:00
	16-17				TRT
	18-20	TRT+SCT	Scintillator trigger	Yes	
	21-24	L1Calo, Tile, LAr	Calorimetry days Lar may join if possible	Yes	TDAQ 24h period 20-2. TBC wrt ID progress
	25/2-2/3	Muons+TRT	TRT "comes in" when ready "at times"	Yes	TDAQ 24h period 27-28
March			RPC pointing trigger needed by TRT (wish)	1	Dedicated to HLT
	3-10	M6			
			ATLAS Commissioning		72
... ТО

Move to continuous mode

•[T0 -2 to T0 -1] Assessment month: Check system stability, controls, Data Quality/monitoring.

•[T0 -1 to T0] Semi-continuous Global Cosmic Run (GCR) and problematic detector out for debug.

•[T0 to T0 + 1] Global Cosmic Run; start 24/7

•[T0 + 1 to T0 + 3] ATLAS Run: commissioning with beams, global run with beam/cosmics, timing, 24/7 operation

Conclusioni

Molte attivita' in parallelo per commissioning di rivelatori, sistemi di controllo, trigger, data acquisition, monitoring, ricostruzione

Sottorivelatori vicini alla fine delle attivita' di commissioning individuale

Milestone Week Mx fondamentali per la transizione all' "ATLAS mode"

Raggi cosmici forniscono il modo migliore di calibrare il rivelatore e il sistema di trigger