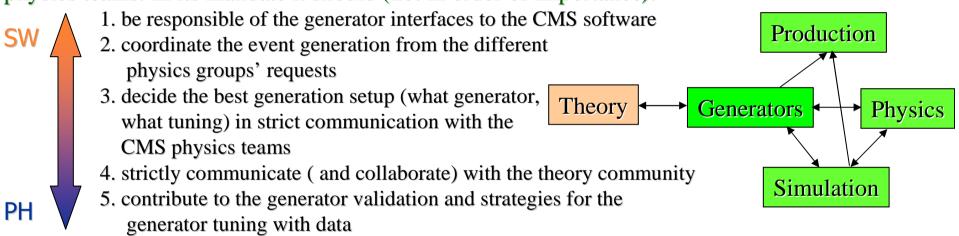

Event generation in CMS

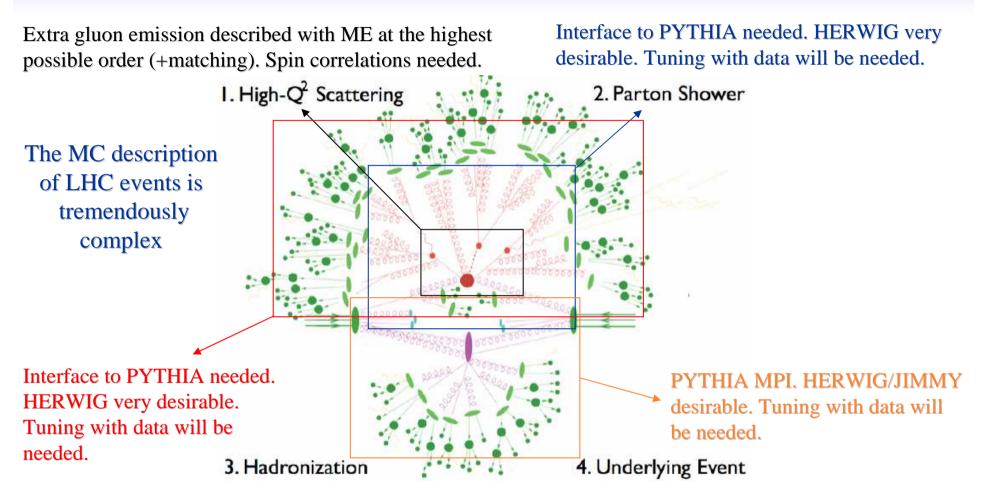
Frascati, Monte Carlo Workshop, February 2008


Generators in CMS

- Organizational issues
- Interfacing a generator to the CMS software

Introduction: the generator team and CMS

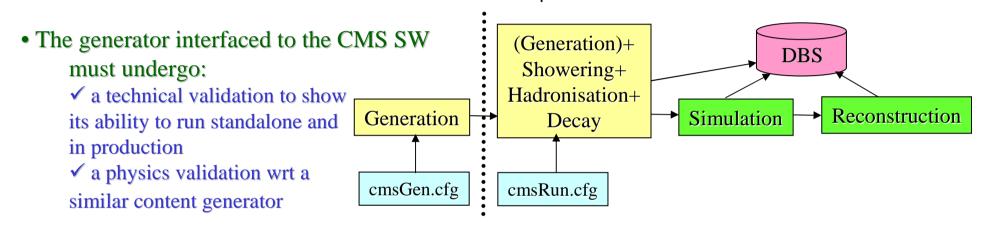
2008 is a crucial year for completing all choices related to Monte Carlo productions. It will be the year of the first MC generation for data taking.


The PH-CMS generators' team does not provide a mere technical support to the other CMS physics teams. In its mandate it should (not in order of importance):

This work implies quite a lot of software and quite a lot of physics.

This team should also represent the natural window towards the theory world. Conversely: theory should communicate to CMS in preference via our group.

Desiderata for a Monte Carlo tool



Other desirable features, from the experimentalist's viewpoint:

- output in the Les Houches standard format
- as much complete as possible coverage of SM phase space
- user friendly inclusion of new physics signals
- support 🕲

Generators in CMS(SW)

• CMS have preference for the generators integrated in the experiment software, that can directly be used in production. Methods also exist to start from an externally produced parton level (LHE) file CMS production

- The physics program at the LHC is very rich:
 - ✓ pp General purpose: Pythia6, Herwig6, (Pythia8, Herwig++), Sherpa
 - ✓ pp HLO: Alpgen, MadGraph, Helac, Sherpa
 - ✓ pp NLO: MCatNLO
 - ✓ pp Others: CompHEP, TopRex, Phantom
 - ✓ Diffractive physics: Pomwig, Exhume, EDDE
 - ✓ Decayers: EvtGen, Tauola, Photos
 - ✓ Heavy Ions: Hydjet, Pyquen
 - ✓ Detector specific: Cosmic muons, particle guns, beam halo, beam-gas
 - ✓ New physics specific: Charybdis

Interfaced generators

Plethora of generators for the very rich physics program of CMS. The list is not exhaustive.

<u>Generator</u>	View CVS	Documentation	Responsible	<u>Status</u>	
Pythia6	Pythia6Interface	View Twiki	Julia Yarba	ready	
Herwig6	Herwig6Interface	View Twiki	Fabian Stoeckli	ready	
ALPGEN	AlpgenInterface	View Twiki	Maurizio Pierini, Maria Spiropulu	ready	
MadGraph	MadGraphInterface	View Twiki	Maria Hansen, Dorian Kcira	ready	
CompHEP	CompHEPInterface	View Twiki	Sergey Slabospitsky, Dimitri Konstantinov, Lev Dudko	in progress	
MC@NLO	MCatNLOInterface	View Twiki	Fabian Stoeckli	ready	
TopRex	TopRexInterface	View Twiki	Sergey Slabospitsky	advanced (but no doc)	
StaGen	StaGenInterface	View Twiki ?	Sergey Slabospitsky	advanced (but no doc)	
Charybdis	CharybdisInterface	View Twiki Halil Gamsizkan		advanced (but no doc)	
Hydjet	HydjetInterface	View Twiki	Camelia Mironov	in progress	
Pyquen	PyquenInterface	View Twiki	Camelia Mironov	in progress	
EvtGen	EvtGenInterface	View Twiki	Aniello Nappi, Roberto Covarelli	in progress	
Phantom	MadGraphInterface	View Twiki	Sara Bolognesi	ready	
ResBos	ResBosInterface	View Twiki	NN	??	
Cosmic Muon Generator	Generator CosmicMuonGenerator View Twiki Philipp Biallass		Philipp Biallass	ready	
Beam Halo Muon Generator	BeamHaloGenerator	View Twiki	Emmanuelle Perez	advanced (but no doc)	
Beam Gas Generator	BeamGasGenerator?	View Twiki	NN	??	
Pythia8	Pythia8Interface	View Twiki	Mikhail Kirsanov	in progress	
Herwig++	Herwig++Interface	View Twiki ?	Oliver Oberst	??	
ExHume ?	ExHumeInterface	View Twiki	Antonio Vilela Pereira	ready	
Pomwig	PomwigInterface	View Twiki	Antonio Vilela Pereira	ready	
EDDE	EDDEInterface	View Twiki	Andrei Sobol et al. in p		
SHERPA	to come	View Twiki Validation	Martin Niegel, Markus Merschmeyer, Altan Cakir	in progress	

2007 Monte Carlo production

The 2007 Monte Carlo production (with full detector simulation) is approaching the end, will serve for the next round of analyses. Organized in:

• A SM event "cocktail" (100M events), processed ad the Tier-0, covering the bulk of the SM processes

Min bias (20 Mevt) QCD jets (25 Mevt) and γ+jets (5 Mevt) Electrons/muons from b-decays (20 Mevt) Drell-Yan and Onia (10 Mevt) W/Z (plus jets) (15 Mevt) Top (5 Mevt)

PYTHIA, pthat bins for QCD

ALPGEN, matched production

• Many "signal" samples (order of 100M), processed at the Tier-2, covering all Higgs and BSM physics signal, as well as SM redundancy and tails

Made with PYTHIA, ALPGEN, MC@NLO

For the 2008 productions we plan to make much more use of MC@NLO and MadGraph. New (in the sense of their use in CMS) generators must be validated first...

Generator validation: an important example

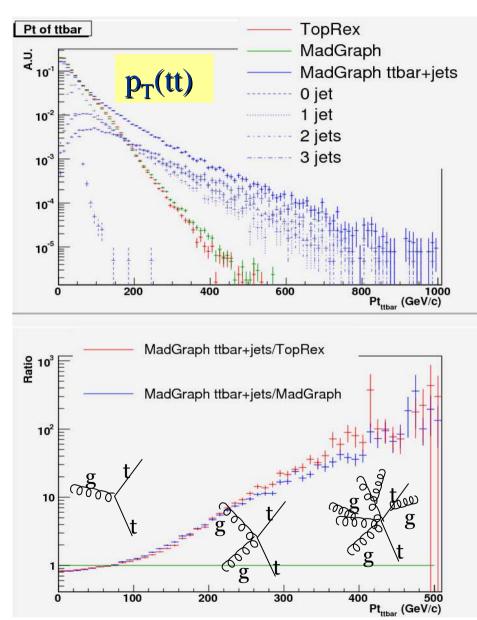
- The importance of matching in tt
- Matched generators vs LO ones

Generation validation for top (SM) physics in CMS

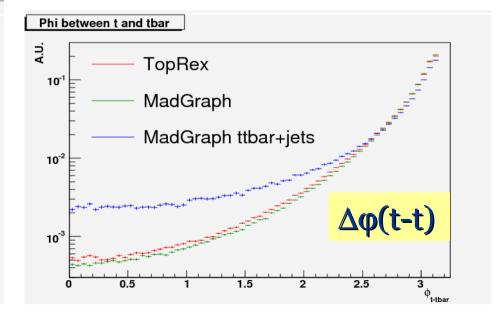
Aim: test generators and validate their physics content (for top pair physics) in the frame of the CMS software. This will test them in the way we use them (debug !) and help understanding their features and make generation choices.

Input parameter settings (cuts, PDFs, scales) as uniform as possible.

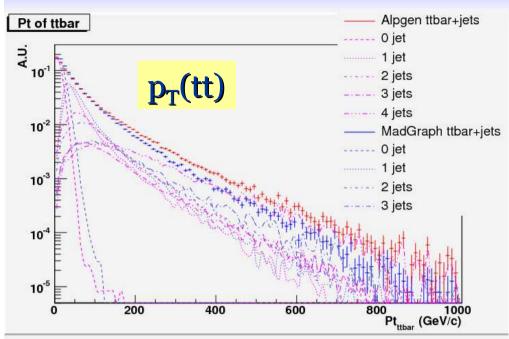
- ✓ LO "standard": TopRex, MadGraph
 - pp \rightarrow tt × tt \rightarrow bf₁f₂bf₃f₄; pp \rightarrow (tt \rightarrow)bf₁f₂bf₃f₄
 - top spin correlations included
- ✓ LO 6 fermions: Phantom, MadGraph
 - pp \rightarrow bf₁f₂bf₃f₄
 - interferences properly included
- ✓ HLO with ME-PS matching: ALPGEN, MadGraph
 - pp \rightarrow ttNj, N=0,...3+; tt \rightarrow bf₁f₂bf₃f₄; j=u,d,s,g
 - matching scheme implemented
 - inclusion of leading higher order terms
 - top spin correlations included


✓ NLO: MC@NLO

- pp \rightarrow ttg ; tt \rightarrow bf₁f₂bf₃f₄
- NLO description
- spin correlations added for all top final states


Work being completed: further statistics from MC@NLO and HELAC.

Matched ME-PS vs standard generation+PS


Spectacular differences in transverse variable connected to global radiation

- Large effects at high $p_T(tt)=p_T(radiation)$
- Average p_T(tt)~60-70 GeV !
- 40% probability that a tt system recoils against a radiation larger than 50 GeV
- \rightarrow effect on reconstruction
- \rightarrow Mandatory to use the same strategies for physics backgrounds like W/Z+Njets

ALPGEN vs MadGraph matched

ALPGEN and MadGraph differ by at most 50% on the p_T prediction (several orders of magnitude away from the PS description)

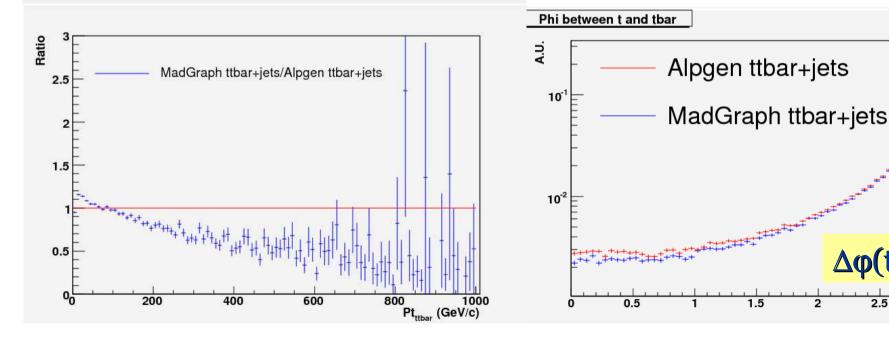
Important to estimate these effects for the analyses:

- Effect of renormalisation and factorisation scales on the predictions
- Effect of the chosen ME-PS matching scale

1.5

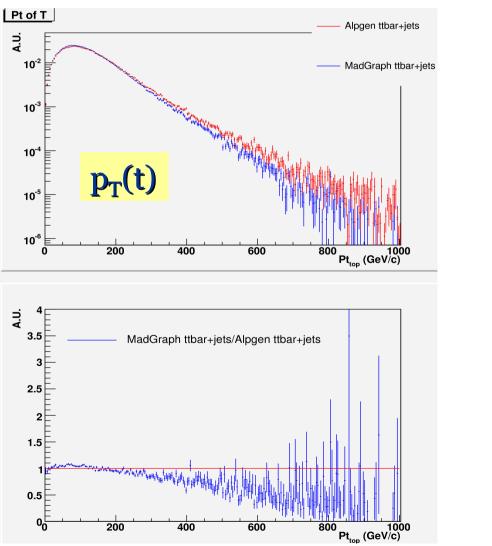
1

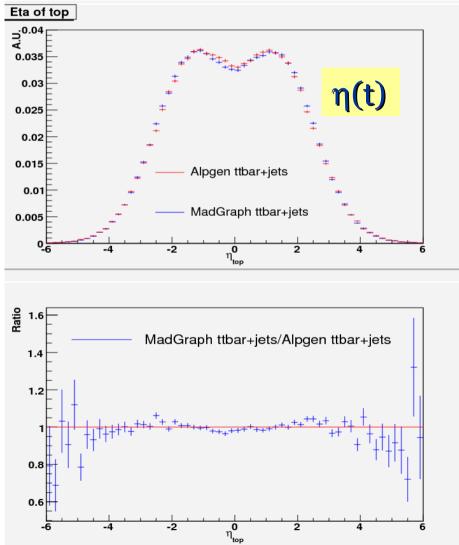
 $\Delta \phi(t-t)$


2.5

з

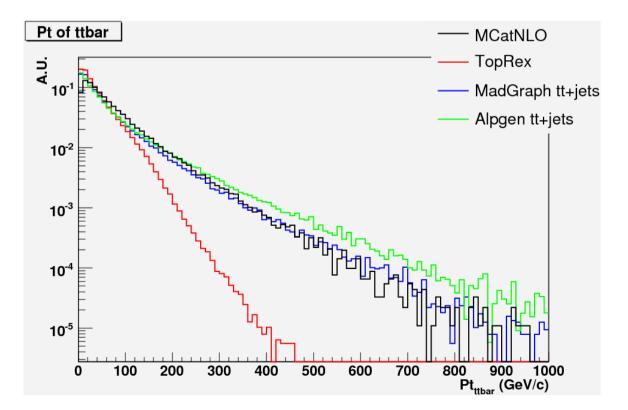
, t-tbai


2


• Comparison with MC@NLO

ALPGEN vs MadGraph matched

Excellent description of other variables for top physics Residual differences due to different generator input settings and scales chosen?


Comparison with MC@NLO: anticipation

Comparisons to MC@NLO ongoing in CMS. Work just started. Different conceptual problems in interpreting the results:

- Non perturbative part treated by HERWIG/JIMMY
- Should compare to a matched tt0j(exc)+tt1j(inc) production

Still a very important step in understanding high p_T radiation and increase our confidence in the process description. It can also give indications of:

- Relative importance of first emission in the description of the process
- Indication of systematic errors associated to the description of radiation.

Only 130K MCatNLO events processed so far. Indications of agreement to matched tools in the tail...

Roadmap towards physics

• Plans for next Monte Carlo generation

Next generation in CMS

- The next Monte Carlo production in CMS (starting in May) should bring us to the interpretation of the first data (hopefully).
- CMS is currently planning to focus on:

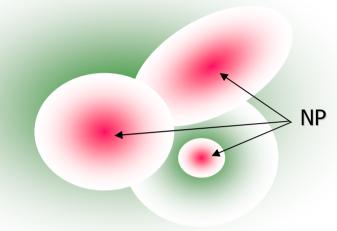
 \checkmark a full simulation production of the order of 100M events. This production corresponds to the first weeks of data taking, where the main component is QCD+MB

 \rightarrow test of the computing flow and basic object reconstruction

 \rightarrow understanding of the first days/weeks of data with startup simulation conditions \checkmark a fast simulation production of the order of 1G events, corresponding to 3-6 months of data taking ay 20% efficiency and 300 Hz rate to storage

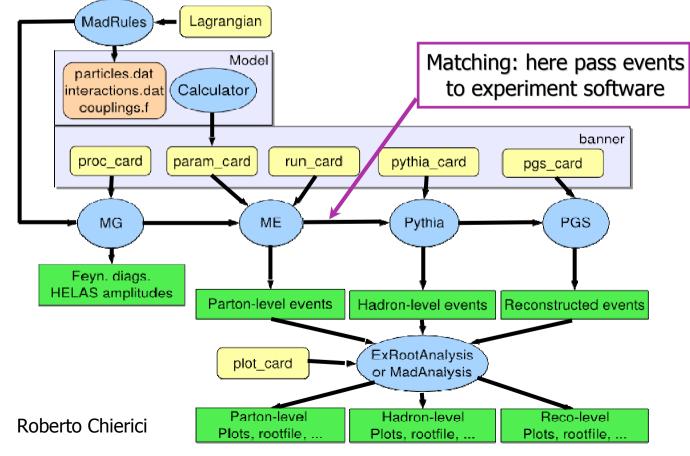
 \rightarrow full SM coverage for training the analyses

• Huge effort ongoing to provide all needed validation (technical mostly) in such a way that all needed generators and corollary packages will be ready for this effort.


What cannot be renounced (our current choice):

✓ General purpose: Pythia6, Herwig

- ✓ HLO: Alpgen, MadGraph
- ✓ NLO: MCatNLO
- ✓ Decayers: EvtGen, Tauola, Photos
- ✓ Desired asap: Sherpa, Pythia8


Generation strategy

- Take care of the SM as correctly as possible
 - \rightarrow Satisfactory ME description
 - \rightarrow Interface to showering, fragmentation, dec⁻
 - \rightarrow Tuned underlying event
 - → Best PDFs, accurate tuning of input parameter settings
- Add generator redundancy in crucial portions of phase space
 - \rightarrow HLO vs NLO
 - \rightarrow Different interface to showerings prepare to tune w.
 - \rightarrow Different settings to study systematics (tunings, PDFs,...)
- Add new physics samples
 - \rightarrow Main SUSY and BSM points to train analyses
- Determine tails
 - \rightarrow Study what tails are most interesting
- The use of an as much coherent as possible set-up will ease enormously the tasks of the analyses, disentangling detector effects from the physics input to the generation

MadGraph-MadEvent flow

- An interesting proposal was push forward by the MG-ME team, proposing to provide theoryvalidated LHE files and corresponding binaries to the experiments for Monte Carlo productions.
- Need to agree on the file contents (processes, cuts, settings, ...)
- Can treat SM, BSM and exotic models on the same footing, without giving up the nice features of ME-PS matching.

SM: QCD and vector bosons

in collaboration with F. Maltoni and the MG team

Process	Stars	Coup	olings	Phase space region	Matching Banner Event files		Remarks		
jets (2)	2	QCD	only pt(at least 1)>X or pt(at least 2)>Y or pt (at least 3)>Z or pt (at least 4)>K		0,1,2,3,4+ lig		ight jets are u,d,c,s,g; Need to veto the first gluon splitting into bb in the PS		
bb~ + jets	1	QCD	only pt(at lea	ast 1)>X or pt(at least 2)>Y or pt (at least 3)>Z or pt (at least 4)>K	0,1,2,3+	ma	massive b; Need to veto the first gluon splitting into bb in the PS		
bb~ bb~+ jets	1	QCD	only pt(at lea	ast 1)>X or pt(at least 2)>Y or pt (at least 3)>Z or pt (at least 4)>K	0,1+		massive b		
Process		Stars	Couplings	Phase space region	Matching Ba	nner Event files	Remarks		
W (-> I v)+ je	ts	3	EW=2 + QCD	all	0,1,2,3,4+		W=W+,W- ; I=(e,mu,tau)		
Z /a* (-> I+I-)+ j	jets	3	EW=2 + QCD	m(I+I-)>50 GeV	0,1,2,3,4+		photon is included ; I=(e,mu,tau)		
Z (-> vv)+ je	ts	2	EW=2 + QCD	pt(Z)>100 GeV	0,1,2,3,4+				
V (-> I I')+ QQ~ + 1 EW jets		EW=2+QCD	all	0,1,2+		V=W+,W-,Z ; I=(e,mu,tau,v), (Z->vv included) Q=b			
a + jets		1	EW=1 + QCD	pt(a)>20 GeV, abs(eta(a))<2.5, DeltaR(a,jet)>0.3	0,1,2,3,4+		photon		
a + QQ~ + jets		1	EW=1 + QCD	pt(a)>20 GeV, abs(eta(a))<2.5, DeltaR(a,jet)>0.3	0,1,2+		photon; Q=b		
VV(-> 4I)+ je	VV(-> 4I)+ jets		EW=2+QCD	all	0,1+		V=W+,W-,Z I=(e,mu,tau,v)		
VV (-> 4I) + Q	Q~	1	EW=1 + QCD	all	no		V=W+,W-,Z I=(e,mu,tau,v), Q=b		
aV(-> 2I)+ jet	ts	1	EW=2+QCD	all	0,1+		V=W+,W-,Z I=(e,mu,tau,v)		
a a + jets	a + jets 1 EW=2+QCD		EW=2+QCD	pt(a)>20 GeV, abs(eta(a))<2.5, DeltaR(a,jet)>0.3	0,1,2+		photon		
a a + QQ∼ + je			pt(a)>20 GeV, abs(eta(a))<2.5, DeltaR(a,jet)>0.3	no		photon; Q=b			
v v v		3	EW=3	all	no		V=W+,W-,Z		
a a a		3	EW=3	pt(a)>20 GeV, abs(eta(a))<2.5, DeltaR(a,jet)>0.3	no				

SM: top and Higgs

in collaboration with F. Maltoni and the MG team

Process	Stars	Couplin	ngs	Phase space region	n Matching	Banner	Event files	Remarks				
tt + jets	3	QCD or	nly	all	0,1,2,3+			top	o decays into ev	erything. Done with DECAY		
tt + bb~	3	QCD or	nly	all	no			top	o decays into ev	erything. Done with DECAY		
tjb	3	EW=2, Q0	CD=1	all	no			t-channel, b m	nassive, no top o	lecay		
tj	3	EW=2, Q0	CD=0	all	no			t-channel, no t				
tb	3	EW=2, Q0	CD=0	all	no			s-channel, b massive, no top decay				
tW	3	EW=2, Q0	CD=1	all	no					tW-channel, no top decay		
tWb	3	EW=2, QCD=2		all	no			tW-channel, b	-massive, doub-	res diagram subtraction, no top decay		
F	Process Sta		Star	s Couplings	Phase spac	e region	Matching	Banner	Event files	Remarks		
Hig	Higgs + jets 2		2	QCD only	all		0,1,2,3+			HEFT, mh=120,140,160,180,200		
Hig	Higgs + 2 jets 3		3	EW only	all		no matching	g		mh=120,140,160,180,200		
tt∼ + Higgs		3	QCD=2,EW=1	all		no			mh=120			
V (-> I I')	V (-> I I') + Higgs + jets		2	EW=3 + QCD	all		0,1,2					

- All samples will be validated individually by the MG team (matching, sanity checks) and given in a format that can be run in the CMS production.
- SUSY and BSM working points will be added as well when agreed upon.
- Ongoing brainstorming to see what is the best way to generate events, the experimental community believes an event admixture will be very helpful
 - \checkmark how to properly mix events?
 - \checkmark how to best bias the huge QCD cross-section
 - Roberto Chierici

Other ideas/activities towards physics

The effort of Monte Carlo validation with new tools in CMS is started and must continue. Pythia8, Herwig++, Sherpa just to mention a few examples.

- from basic sanity checks to physics validation for all supported models
- from local to global validation
- convenient framework are under evaluation

Work in view of interpreting first data. Strategies and tools for understanding and tuning Monte Carlo must be put in place now in collaboration with the physics teams and with theory.

- analysis dependence on different scales
- analyses sensitivity to MPI models
- PDF constraining
- tuning of radiation and fragmentation parameters
- UE-MB tuning see Paolo's talk

Need to set in place tools/frameworks where needed.

Strategies for assessing theory systematic need also to continue. Extra MC generations must always be accounted for this: for most/all of the analyses we cannot afford and rely on just one generator.

Conclusions

Summary

This is a crucial year for Monte Carlo production in CMS.

We want to organize the Monte Carlo production in such a way to favour a consistent (same generator) and coherent (same settings, full phase space coverage) configuration for the reference generation.

The SM reference should have matched HLO contributions for high multiplicity/p_T physics, maintaining a good description of the softer part. The CMS preference goes for tools also able to easily implement new physics models.

Favour generator redundancy in our production for cross-checks and first evaluation of analyses' sensitivity to systematic effects.

Prepare for tuning with data, define the best use of the first data to constrain the SM description in the Monte Carlo (MB, radiation, scales, PDFs,...)

Keep very much alive the level of communication with a) theory groups, b) ATLAS and c) LCG

Exciting years are in front of us, it is in good part upon the work in the generator team now to shape the way how CMS will do physics. At the startup and not only.