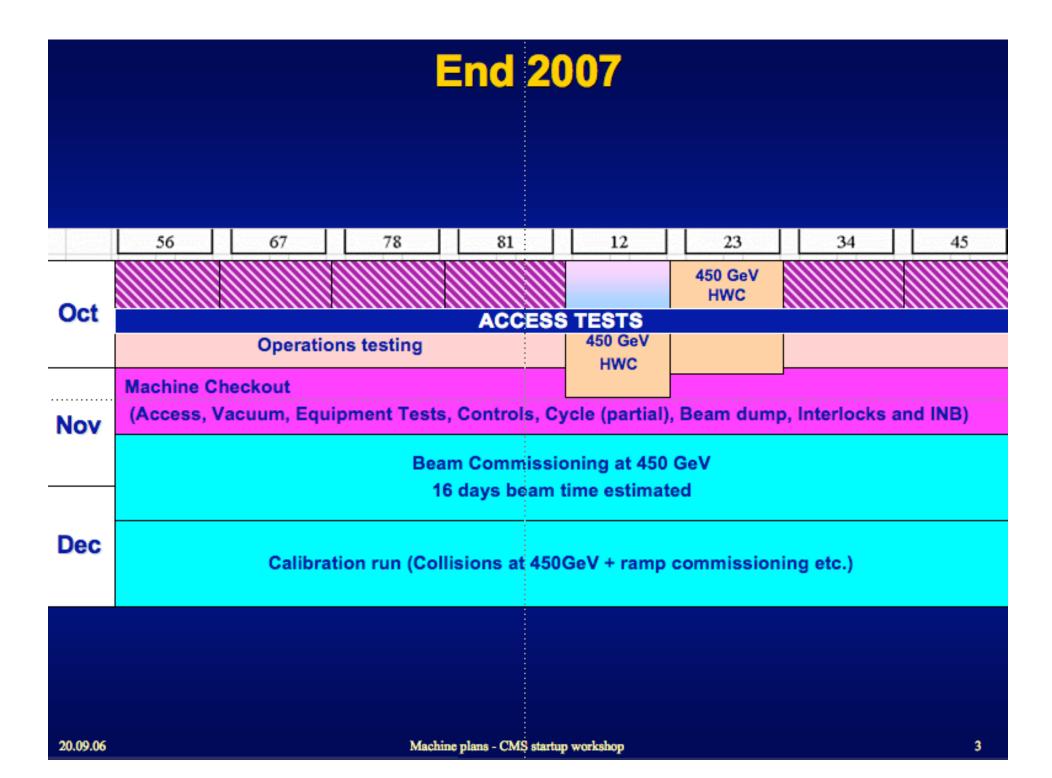
IL RUN DEL 2007 A 900 GeV

References:

M.Lamont CMS startup workshop

http://indico.cern.ch/conferenceDisplay.py?confld=5774


W.Scandale CSN1 Trieste

http://www.infn.it/csn1/riunioni/agenda/2006/18-09-2006/

D.Green Fermilab-CERN Hadron Colliders Physics SS 2006 http://vmsstreamer1.fnal.gov/VMS_Site_03/Lectures/HCPSS/index.html

L Hinchliffe IBN

http://www-conf.slac.stanford.edu/ssi/2006/lec_notes/Hinchliffe072806.pdf

Time

	Phase	Ве	am time [days]	Beam
1	First turn		4	1 x Pilot
2	Establish circulating beam		3	1 x Pilot
3	450 GeV – initial		3	1 x Pilot++
4a	450 GeV - consolidation		1-2	1 x Pilot++
4b	450 GeV – system commissioning		2-3	1 x Pilot++
5a	2 beam operations		1	2 x Pilot++
5b	Collisions		1-2	2 x 1 x 10 ¹¹ →
			16 days	

Given an operational efficiency of 60%, this gives an elapsed time of about 26 days. CAVAET: MACHINE AVAILABILITY

Some opportunities for parallel development and parasitic studies...

Calibration Run 2007

- 6 weeks beam time
- 3 weeks beam commissioning
 - Essentially single beam, low intensity for the most part
- 3 weeks collisions
 - Single bunch initially, with staged increase to 156 x 4 x 10¹⁰ (+)
 - Luminosities: 1.3 10²⁸ to 2.6 10²⁹ cm⁻²s⁻¹ (+)
 - Interleafed with low intensity single beam MD
 - Initial ramping tests to 1.1 TeV etc.

450 GeV pilot physics

Sub-phase	Bunches	Bun. Int.	beta*	Luminosity	Time	Int lumi
first Collisions	1 × 1	2 × 10 ¹⁰	18 m	4 × 10 ²⁷	12 hours	0.15 nb ⁻¹
repeat ramp - same conditions	-	-	-	-	2 days @ 50%	0.3 nb ⁻¹
multi-bunch at injection & through ramp - collimation	-	-	-	-	2 days	-
physics	12 x 12	3 × 10 ¹⁰	18 m	1 × 10 ²⁹	2 days @ 50%	8 nb ^{-l}
physics	43 x 43	3 × 10 ¹⁰	18 m	3.8 × 10 ²⁹	2 days @ 50%	30 nb ⁻¹
commission squeeze – single beam then two beams, IR1, IR5	-	-	-	-	2 days	-
measurements squeezed	-	-	-	-	2 day	-
physics	43 x 43	3 × 10 ¹⁰	10 m	7 × 10 ²⁹	3 days - 6 hr t.a 70% eff.	75 nb ⁻¹
commission squeeze to 2m collimation etc.	-	-	-	-	3 days	-
physics	43 × 43	3 × 10 ¹⁰	2 m	3.4×10^{30}	3 days - 6 hr t.a 70% eff.	0.36 pb ^{-l}
commission 156 x 156	-	-	-	-	1 day	
physics	156 x 156	2 × 10 ¹⁰	2 m	5.5 × 10 ³⁰	2 days - 6 hr t.a 70% eff.	0.39 pb ^{-l}
physics	156 x 156	3 × 10 ¹⁰	2 m	1.2 × 10 ³¹	5 days - 5 hr t.a 70% eff.	2.3 pb ^{-l}
					29 days total	

Walter Scandale 37

450 GeV - Performance

			Reasonable	Maximum
k _b	43	43	156	156
i _b (10 ¹⁰)	2	4	4	10
β* (m)	11	11	11	11
intensity per beam	8.6 1011	1.7 10 ¹²	6.2 1012	1.6 1013
beam energy (MJ)	.06	.12	.45	1.1
Luminosity (cm ⁻² s ⁻¹)	2 10 ²⁸	7.2 10 ²⁸	2.6 10 ²⁹	1.6 10 ³⁰
event rate ¹(kHz)	0.4	2.8	10.3	64
W rate ² (per 24h)	0.5	3	11	70
Z rate ³ (per 24h)	0.05	0.3	1.1	7

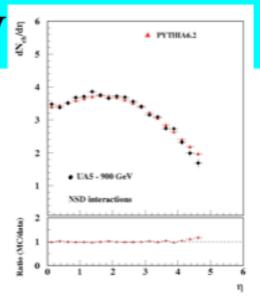
Several days

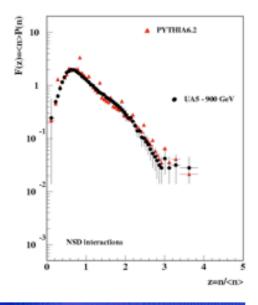
- 1. Assuming 450GeV inelastic cross section
- 2. Assuming 450GeV cross section $W \rightarrow lv$
- 3. Assuming 450GeV cross section $Z \rightarrow U$

40 mb

1 nb

100 pb

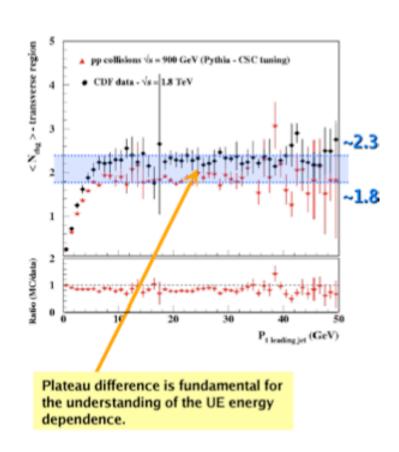

From 10²³ to 10²⁷ /(cm²sec)


L for 1 month run (10 ⁶ sec)	Integrated L	Trigger	Process	Comments
1023	100 mb ⁻¹	None σ _I ~ 50 mb	Inelastic non-diff	Input to tweak Pythia
1024	1 μb ⁻¹	Setup Jet	Inelastic non-diff	Calib in azimuth
1025	10 μb ⁻¹	Jet $\sigma(gg) \sim 90 \mu b$ $\sigma(ggg) \sim 6 \mu b$	g+g -> g+g g+g -> g+g+g	Establish JJ cross section
1026	100 μb ⁻¹	Jet	g+g -> g+g g+g -> g+g+g	Dijet balance for polar angle – Establish MET
10 ²⁷	1 nb-1	Jet Setup Photon $\sigma(q\gamma) \sim 20 \text{ nb}$	$g+g \rightarrow g+g$ $g+g \rightarrow g+g+g$ $q+g \rightarrow q+\gamma$	Dijet masses > 2 TeV, start discovery search. J+γ calib

CERN-FNAL Hadron Collider Physics Summer School, Aug. 9-18, 2006

Minbias at 900 GeV

- This is new physics as there are only ppbar results at this energy
- Measure pt and rapidity
- **Debug tracking**



Underlying event at 900 GeV

- Jet underlying event
- Least understood parts of Monte Carlo

Bottom and Charm

	14	TeV	900 GeV
Total LHC bb cross section	500	μb	25 µb
Total LHC inelastic σ	70	mb	40 mb
bb $\rightarrow \mu 6(5) X$	4000	nb	60 nb
bb → μ6(5) μ3 X	200	nb	2 nb
bb \rightarrow J/ ψ (μ 6(5) μ 3) X	7	nb	0.1 nb
pp \rightarrow J/ ψ (μ 6(5) μ 3) X	28	nb	1 nb
$pp \rightarrow \Upsilon$ ($\mu6(5)$ $\mu3$)	9	nb	1.7 nb

^{*)} pT cuts for 14TeV are $\mu 6~\mu 3$ and for 900 GeV $\mu 5 \mu 3$ For both muons $|\eta|{<}2.5$

Spunti per la discussione

Fisica dei "minimum bias"

```
 - gg \rightarrow gg(g) p_T \text{ spectra \& jet algorithms} 
- qg \rightarrow qγ calibrazioni sui jet e calorimetria 
- gg →QQ con Q=c,b (vertici, b-tag ) 
- gg →J/ψ, Υ,...
```

- Qual e` lo stato dell'arte dei MC per la fisica pp a 900 GeV I codici attuali (PYTHIA?) sono sufficientemente accurati per comprendere i rivelatori? Sappiamo gia` ora quali sono i punti deboli (ad es. produzione di HF, spettri in pT di tracce/jet/γ)
- C'e` della fisica non scontata che si puo` fare con 3 pb⁻¹ a 900 GeV?