Sensibilità delle distribuzioni in rapidità delle J/ ψ nello spettrometro di muoni di ALICE alle PDF nella regione di $x < 10^{-5}$

> D. Stocco¹ e E. Vercellin¹ R. Guernane² (Produzione del fondo correlato)

> > ¹Università/INFN Torino ²LPC Clermont-Ferrand

24 Ottobre 2006

Outline

Introduzione

• Quarkonia: panoramica

2 PDF

- Introduzione
- Regioni cinematiche
- Osservabili sperimentali

Simulazioni

- Tecnica
- Input
- Risultati

三日 のへで

(本間)と 本語(と) 本語(と

Outline

Introduzione

• Quarkonia: panoramica

2 PDF

- Introduzione
- Regioni cinematiche
- Osservabili sperimentali

3 Simulazioni

- Tecnica
- Input
- Risultati

<ロ> <四> <回> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Quarkonia in collisioni Pb-Pb

- Quarkonia pesanti: stati legati $c\overline{c}$ e $b\overline{b}.$
- "Hard probes" del deconfinamento:
 - Coppia Q ar Q prodotta nelle prime fasi della collisione $(au \sim 1/m_Q)$
 - Formazione legame sensibile al mezzo attraversato.

Quarkonia in collisioni p-p

Quarkonia in collisioni p-p sono importanti

- come riferimento per le collisioni Pb-Pb:
 - insieme alle collisioni p-A per la comprensione di effetti dovuti alla materia nucleare ordinaria.
- Intrinsecamente:
 - studi dei meccanismi di produzione, descritti da modelli (CSM, CEM, nrQCD).

Quarkonia nell'esperimento ALICE

- Quarkonia rivelati nei decadimenti in:
 - Onium $\rightarrow e^+e^-$
 - Onium $\rightarrow \mu^+\mu^-$
- e^+e^- rivelati tramite TRD.
- J/ ψ dal decadimento di mesoni B rivelati grazie all'informazione sul vertice (ITS+TPC).

Massa invariante di e^+e^- in 7.5 × 10⁷ collisioni Pb-Pb.

(本間) (本語) (本語) (三) [1]

Quarkonia nell'esperimento ALICE

- Quarkonia rivelati nei decadimenti in:
 - Onium $\rightarrow e^+e^-$
 - Onium $\rightarrow \mu^+ \mu^-$
- e^+e^- rivelati tramite TRD.
- J/ψ dal decadimento di mesoni B rivelati grazie all'informazione sul vertice (ITS+TPC).

Massa invariante di e^+e^- in 7.5 × 10⁷ collisioni Pb-Pb.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Quarkonia nell'esperimento ALICE

- Quarkonia rivelati nei decadimenti in:
 - Onium $\rightarrow e^+e^-$
 - Onium $\rightarrow \mu^+\mu^-$
- e^+e^- rivelati tramite TRD.
- J/ ψ dal decadimento di mesoni B rivelati grazie all'informazione sul vertice (ITS+TPC).

Massa invariante di e^+e^- in 7.5 × 10⁷ collisioni Pb-Pb.

(本間) (本語) (本語) (三) [1]

Spettrometro di muoni di ALICE

(本間) (本語) (本語) (三) [1]

Outline

• Quarkonia: panoramica

2 PDF

- Introduzione
- Regioni cinematiche
- Osservabili sperimentali

3 Simulazioni

- Tecnica
- Input
- Risultati

三日 のへで

- **< 同 > < 同 >** -

Funzioni di distribuzione

• Teorema di fattorizzazione: separazione dei contributi perturbativi da quelli non perturbativi:

$$\sigma(AB \to X) = \int \int \mathrm{d}x_1 \mathrm{d}x_2 f_{i/A}(x_1) f_{j/B}(x_2) \hat{\sigma}_{ij}$$

- I contributi non perturbativi (universali) delle PDF sono ricavati da interpolazioni di dati sperimentali.
 - CTEQ
 - MRST

 Necessità di coprire regioni cinematiche sempre più ampie.

Regioni cinematiche

• La variabile x di Bjorken può essere messa in relazione con variabili macroscopiche del sistema:

$$M^{2} = \hat{s} = x_{1}x_{2}s \qquad \qquad y = \frac{1}{2}\ln\left(\frac{E+p_{z}}{E-p_{z}}\right) = \frac{1}{2}\ln\left(\frac{x_{1}}{x_{2}}\right)$$

$$\Downarrow$$

$$x_1 = \frac{M}{\sqrt{s}}e^y$$
 $x_2 = \frac{M}{\sqrt{s}}e^{-y}$

Per J/ ψ a 14 TeV: $|y| > 3 \Leftrightarrow x < 10^{-5}$.

- Bassi valori di x raggiungibili con:
 - energie nel centro di massa elevate
 - piccole scale
 - rapidità elevate

- \Rightarrow Acceleratore
- \Rightarrow Tipo di particella
- \Rightarrow Caratteristiche rivelatore

Regioni cinematiche

• La variabile x di Bjorken può essere messa in relazione con variabili macroscopiche del sistema:

$$M^{2} = \hat{s} = x_{1}x_{2}s \qquad y = \frac{1}{2}\ln\left(\frac{E+p_{z}}{E-p_{z}}\right) = \frac{1}{2}\ln\left(\frac{x_{1}}{x_{2}}\right)$$

$$\Downarrow$$

$$x_{1} = \frac{M}{\sqrt{s}}e^{y} \qquad x_{2} = \frac{M}{\sqrt{s}}e^{-y}$$

Per J/ ψ a 14 TeV: $|y| > 3 \Leftrightarrow x < 10^{-5}$.

• Bassi valori di x raggiungibili con:

- energie nel centro di massa elevate
- piccole scale
- rapidità elevate

- \Rightarrow Acceleratore
- \Rightarrow Tipo di particella
- \Rightarrow Caratteristiche rivelatore

<ロ> <四> <回> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Regioni accessibili ai quarkonia nello spettrometro

• Calcoli LO.

 Bassi valori di x ⇒ scarsità di dati sperimentali ⇒ estrapolazioni ⇒ maggiori differenze tra i modelli.

 ▶
 ₹
 ₹
 ₹
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$
 \$

- 4 同 ト 4 ヨ ト 4 ヨ

Outline

Introduzion

• Quarkonia: panoramica

2 PDF

- Introduzione
- Regioni cinematiche
- Osservabili sperimentali

3 Simulazioni

- Tecnica
- Input
- Risultati

→ @ ▶ < E ▶ < E ▶ E = 9 < 0<</p>

Il contesto: Color Evaporation Model

- La descrizione del meccanismo di produzione di quarkonia si basa su modelli teorici (CSM, nrQCD, ecc.).
- Nei calcoli seguenti si sono adottate le previsioni del Color Evaporation Model (CEM).

$$\sigma_{C}^{CEM} = F_{C} \sum_{i,j} \int_{4m_{Q}^{2}}^{4m_{H}^{2}} \mathrm{d}\hat{s} \int \mathrm{d}x_{1} \mathrm{d}x_{2} f_{i/A}(x_{1}, \mu^{2}) f_{j/B}(x_{2}, \mu^{2}) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s} - x_{1}x_{2}s)$$

- C = tipo di quarkonio.
- A, B adroni collidenti.
- $ij = q\bar{q} \circ gg$.
- F_C frazione di $Q\bar{Q}$ che forma stato legato (non-perturbativo ma universale).

- 4 同 ト 4 ヨ ト - 三 日 - の q ()

Osservabili sensibili alle PDF a piccoli x

- Nel CEM la sezione d'urto totale di produzione di J/ ψ dipende dalle funzioni di distribuzione, ma non solo.
- Un'osservabile migliore è costituita da:

$$\frac{d\sigma_c^{CEM}}{dy} = \frac{F_C}{s} \sum_{i,j} \int_{4m_Q^2}^{4m_H^2} \mathrm{d}\hat{s}\,\hat{\sigma}_{ij}(\hat{s}) f_{i/A}(\sqrt{\frac{\hat{s}}{s}}e^y,\mu^2) f_{j/B}(\sqrt{\frac{\hat{s}}{s}}e^{-y},\mu^2)$$

$$\Downarrow$$

• Nel CEM la forma delle distribuzioni in rapidità delle J/ψ ad y elevate dipende dalle funzioni di distribuzione di gluoni.

Dipendenza delle distribuzioni in rapidità dalle PDFs

L'integrale nella finestra di accettanza (2.5 < y < 4.0) è normalizzato a 1

Caso analogo per Υ

L'integrale nella finestra di accettanza (2.5 < y < 4.0) è normalizzato a 1

 Le Υ sono sensibili ad una regione di x in cui le differenze tra PDFs sono contenute.

Outline

Introduzione

• Quarkonia: panoramica

2 PDF

- Introduzione
- Regioni cinematiche
- Osservabili sperimentali

Simulazioni

- Tecnica
- Input
- Risultati

• La simulazione della statistica richiesta a LHC richiederebbe tempi di calcolo molto elevati.

∜

Fast simulation

- Parametrizzazione della risposta del rivelatore al singolo muone.
- Due fasi:
 - - Generazione di quarkonia da distribuzioni in rapidità e impulso trasverso
 - Assegnazione di una probabilità d rivelazione a seconda dei parametri cinematici della particella generata.

ELE NOR

(人間) トイヨト イヨト

Input della simulazione

- Sezioni d'urto Prompt dal CEM.
- + Produzione diretta (σ_{dir})
- + Feed-down da risonanze di massa superiore

		$\sigma \times BR_{\mu^+\mu^-}$	σ_{dir}/σ
\Rightarrow	Υ	28 nb	0.52
	J/ψ	3.18 µb	0.62

• Sezioni d'urto differenziali:

Sorgente	Tipo	Quarkonia	Dettagli
CEM	$\mathrm{d}\sigma/\mathrm{d}y$	ψ prompt	
ΡΥΤΗΙΑ	$\mathrm{d}\sigma/\mathrm{d}y$ $\mathrm{d}\sigma/\mathrm{d}p_\mathrm{t}$	ψ da B	$\sigma_{b\bar{b}}$ =0.51 mb

Input della simulazione: da Tevatron a LHC

Fondo

Quarkonia attesi

Scenario di presa dati in collisioni p-p:

- $\mathcal{L} = 3 \times 10^{30} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$
- $t = 10^7 \, {
 m s}$

Qı	Quarkonia attesi				
	Υ	29×10 ³			
	Ϋ́	7.2×10 ³			
	Υ″	4.5×10^{3}			
	J/ψ	3×10 ⁶			
	ψ'	0.078×10^{6}			
_	Ψ	0.070×10			

<ロ> <四> <回> <豆> <豆> <豆> <豆> <豆> <豆> <豆</p>

Distribuzioni in $p_{\rm t}$ e rapidità

Confronto con la simulazione

- I dati simulati includono le J/ψ dal decadimento del B.
- L'accuratezza dei dati che saranno presi a LHC sembra essere sufficiente per...

 \ldots fornire utili informazioni sulle funzioni di distribuzioni dei gluoni nella regione di bassix

▲ 同 ▶ → 三 ▶

Sommario

Conclusioni

- L'esperimento ALICE presenta ottime potenzialità per la rivelazione dei quarkonia:
 - nel barile centrale ($p_t \ge 5 \text{ GeV}/c$, |y| < 0.6, vertice secondario).
 - $\bullet\,$ nella regione in avanti ($p_{\rm t} \geqslant 0~{\rm GeV}/c,~-4 < y < -2.5)$
- La statistica attesa nello Spettrometro di Muoni è sufficiente per misure delle distribuzioni in p_t e y (utilizzabili per studi dei meccanismi di produzione).
- Da una semplice analisi (basata sul CEM e includente alcune approssimazioni) risulta che la forma delle distribuzione in rapidità delle J/ ψ prompt nella finestra di accettanza dello Spettrometro sia sensibile alle distribuzioni di gluoni a bassi *x*.

Prospettive

 Verifica della sensibilità alle PDFs nell'ambito della nrQCD (integrata in PYTHIA 6.324 e attualmente in corso di convalida ad opera di GENSER+PYTHIA+LHCb).

Extra

<ロ> <回> <回> < 回> < 回> < 回> < 回> < 回< のへの

Rapidità:
$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

Pseudorapidità: $\eta = -\ln \tan \frac{\vartheta}{2}$

x di Bjorken:
$$x = \frac{Q^2}{2\mathbf{P} \cdot \mathbf{q}}$$

Processi del fondo correlato

(日本)(日本)(日本)(日本)(日本)(日本)(日本)

Effetti del disallineamento delle camere

E. Dumonteil, PhD. thesis

<ロト < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pseudo-rapidity coverage	$-0.9 < \eta < 0.9$
Pseudo-rapidity coverage	2π
Radial position	2.9 < <i>r</i> < 3.7 m
Length	Up to 7.0 m
Azimuthal segmentation	18-fold
Radial segmentation	Six layers
Longitudinal segmentation	5-fold
Total number of modules	540
Largest module	$117 \times 147 cm^2$
Active detector area	736 <i>m</i> ²
Radiator	Fibres/foam sandwich, 4.8 cm per layer
Radial detector thickness	$X/X_0 = 15\%$
Module segmentation in ϕ	144
Module segmentation in z	1216
Typical pad size	$0.7 \times 8.8 cm^2 = 6.2 cm^2$
Number of pads	1.16 imes106
Detector gas	Xe/CO ₂ (85%/15%)
Gas volume	27.2 <i>m</i> ³
Depth of drift region	3 cm
Depth of amplification region	0.7 cm
Nominal magnetic field	0.4 T
Drift field	0.7 kV <i>cm</i> ¹
Drift velocity	$1.5 cm \mu s^1$
Longitudinal diffusion	$D_L = 250 \mu m cm^{1/2}$
Transverse diffusion	$D_T = 180 \mu m cm^{1/2}$
Lorentz angle	8

Number of readout channels	1.16×10^{6}
Time samples in r (drift)	20
Number of readout pixels	$2.32 imes 10^7$
ADC	10 bit, 10 MHz
Number of multi-chip modules	71928
Number of readout boards	4108
Pad occupancy for $dN_{ch}/d\eta = 8000$	34%
Pad occupancy in p-p	2×104
Space-point resolution at 1 GeV/c	
in $r\phi$	400 (600) μm for ${ m d} N_{ch}/{ m d} \eta =$ 2000 (8000)
in z	2mm (offline)
Momentum resolution	$\delta p/p = 2.5\% \oplus 0.5\%$ (0.8%)p
	for $dN_{ch}/d\eta = 2000 \ (dN_{ch}/d\eta = 8000)$
Pion suppression at 90% electron efficiency	Better than 100
and p ≥ 3 GeV/c	
Event size for $dN_{ch}/d\eta = 8000$	11MB
Event size for p-p	6 kB
Trigger rate limits for minimum-bias events	100 kHz
Trigger rate limits for p-p	100 kHz

Font: ALICE Physics Performance Report Vol. I, J. Phys. G: Nucl. Part. Phys. 30 (2004)

TRD: quarkonia in collisioni Pb-Pb

- Quarkonia attesi per il 10% degli eventi più centrali, integrati su tutta l'accettanza per $dN/d\eta = 3000$.
- I numeri corrispondono a un intervallo di $\pm 1.5\sigma$ intorno alla massa della risonanza.
- Luminosità: $\mathcal{L} = 5 imes 10^{26} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

State	S (×10 ³)	B (×10 ³)	S/B	$S/\sqrt{S+B}$
J/ψ	110.7	92.1	1.2	245
Υ	0.9	0.8	1.1	21
Υ'	0.25	0.7	0.35	8

Font: ALICE Physics Performance Report Vol. II, J. Phys. G: Nucl. Part. Phys. 32 (2006)

Parametri Spettrometero di Muoni (1)

Muon detection			
Polar, azimuthal angle coverage	$2\leqslant heta\leqslant$ 9, 2π		
Minimum muon momentum	4 GeV/c		
Resonance detection	J/ψ	Ϋ́	
Pseudo-rapidity coverage	$4.0 \leqslant \eta \leqslant 2.5$	$4.0 \leqslant \eta \leqslant 2.5$	
Transverse momentum range	$0 \leqslant p_{ m t}$	$0 \leqslant p_{\mathrm{t}}$	
Mass resolution	70 MeV	100 MeV	
Front absorber			
Longitudinal position (from IP)	$5030mm \leqslant z \leqslant$	900 <i>mm</i>	
Total thickness (materials)	10λ (carbon-cor	icrete-steel)	
Dipole magnet			
Nominal magnetic field, field integral	0.7 T, 3 Tm		
Free gap between poles	2.972 – 3.956 m		
Overall magnet length	4.97m		
Longitudinal position (from IP)	z = 9.87m (cent	z = 9.87m (centre of the dipole yoke)	
Tracking chambers			
Number of stations, number of planes per station	5, 2		
Longitudinal position of stations	z = 5357, 6860,	9830, 12920, 14221 mm	
Anodecathode gap (equal to wire pitch)	2.1 mm for st. 1; 2.5 mm for st. 2-5		
Gas mixture	80% <i>Ar</i> /20% <i>CO</i> ₂		
Pad size st. 1 (bending plane)	4×6 , 4×12 , $4 \times 24 mm^2$		
Pad size st. 2 (bending plane)	$5 imes 7.5,5 imes 15,5 imes 30 mm^2$		
Pad size st. 3, 4 and 5 (bending plane)	5 $ imes$ 25, 5 $ imes$ 50, 5 $ imes$ 100mm ²		
Max. hit density st. 15 (central PbPb×2)	5.0, 2.1, 0.7, 0.5	5, $0.6 \cdot 10^2$ hits cm^2	
Spatial resolution (bending plane)	\simeq 70 μ m		

Tracking electronics	
Total number of FEE channels	$1.09 imes10^6$
Shaping amplifier peaking time	$1.2 \ \mu s$
Trigger chambers	
Number of stations, planes per station	2, 2
Longitudinal position of stations	$z = 16 \ 120, \ 17 \ 120 \ mm$
Total number of RPCs, total active surface	72, $\sim 150m^2$
Gas gap	single, 2 mm
Electrode material and resistivity	Bakelite TM , $ ho=24 imes10^9$ cm
Gas mixture	$Ar/C_2H_2F_4$ /i-butane/ SF_6 ratio 49/40/7/1
Pitch of readout strips (bending plane)	10.6, 21.2, 42.5 mm (for trigger st. 1)
Max. strip occupancy bend. (non bend.) plane	3%(10%) in central Pb-Pb
Maximum hit rate on RPCs	3 (40) Hz <i>cm</i> ² in Pb-Pb (Ar-Ar)
Trigger electronics	
Total number of FEE channels	$2.1 imes10^4$
Number of local trigger cards	234 + 2

Font: ALICE Physics Performance Report Vol. I, J. Phys. G: Nucl. Part. Phys. 30 (2004)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spettrometro di Muoni: quarkonia in collisioni p-p

- Quarkonia attesi per in 10⁷ s di presa dati.
- I numeri corrispondono a un intervallo di ±1 FWHM intorno alla massa della risonanza.
- Luminosità: $\mathcal{L}=3\times 10^{30}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$

state	S (×10 ³)	B (×10 ³)	S/B	$S/\sqrt{S+B}$
J/ψ	2807	235	12.0	1610
ψ'	75	120	0.62	170
Υ	27.1	2.6	10.4	157
Ύ	6.8	2.0	3.4	73
Ϋ́	4.2	1.8	2.4	55

Probabilità di rivelazione di quarkonia

• Calcolata con la "fast simulation" (include accettanza geometrica, efficienza di ricostruzione e trigger).

Regioni di x esplorati con sistemi di collisioni differenti

• Collisioni p-p @ 14 TeV: statistica elevata ma sovrapposizione esigua con le regioni di x esplorate in Pb-Pb

nrQCD in Pythia

- Elementi di matrice di nrQCD sono implementati in PYTHIA dalla versione 6.324 (Agosto 2005)
- Il codice è attualmente in fase di convalida (collaborazione GENSER+PYTHIA+LHCb).

M. Bargiotti, International Workshop on Heavy Quarkonium, BNL 27-30 June 2006.