Stefano Frixione

Update on MC@NLO

MCWS, Frascati, 24/10/2006

SF & B. Webber, JHEP 0206(2002)029 [hep-ph/0204244] SF, P. Nason & B. Webber, JHEP 0308(2003)007 [hep-ph/0305252] SF, E. Laenen, P. Motylinski & B. Webber, JHEP 0603(2006)092 [hep-ph/0512250]

MC@NLO 3.2 [hep-ph/0601192]

Recent activities:

- \blacktriangleright Spin correlations in $t\bar{t}$ t and single-top production
- \blacktriangleright Wt channel for single-top production
- \blacktriangleright Improvements to Higgs production
- \blacktriangleright Interface to HERWIG++ (ISR only)
- Dijet production

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

Spin correlations: definitions

In the production process

$$
a+b \longrightarrow P(\longrightarrow d_1+\cdots+d_n)+X
$$

there are

- \blacktriangleright Decay s.c.: if there is a non-trivial dependence on $(d_i \cdot d_j)$
- Production s.c.: if there is a non-trivial dependence on $(d_i \cdot a)$, $(d_i \cdot b)$, $(d_i \cdot X)$

MC@NLO always implements decay s.c. through HERWIG

Production s.c. are available in v3.2 for dilepton, H , WH , ZH , W^+W^- processes

Production s.c. are now also included in tt and single-top processes

Production spin correlations

The standard way: compute the matrix elements for

$$
a + b \longrightarrow (P \longrightarrow) d_1 + \dots + d_n + X
$$
 Full ME

This full-ME strategy is implemented in MC@NLO for:

- Single-V production $(V = W, Z, \gamma, Z/\gamma)$
- \blacktriangleright VH production $(V=W,Z)$

For large-multiplicity final states this may not be convenient, since

- \triangleright ME must be integrated and unweighted
- \blacktriangleright The integration time increases and the unweighting efficiency decreases (for MC@NLO, typically ε =10-40%) by increasing the number of final-state particles

For $W^+W^-, \, t\bar t$ and t production we have implemented an alternative strategy: hit-and-miss

Hit-and-miss

Whatever the behaviours of the decay products, the momenta of the decaying particles will not change

 \Longrightarrow The full ME's must be bounded from above by the undecayed ME's, times a suitable constant. Find this bound and do hit-and-miss

Advantages

- Only the undecayed ME's will be integrated: no further loss of time
- \blacktriangleright Unweighting is a two-step procedure: first get the P's momenta, then the d's momenta with hit-and-miss

Vector bosons (tested and running)

$$
\frac{d\sigma_{l_1\bar{l}_1...l_n\bar{l}_n}}{d\Phi_{2n+k}} \le \left(\prod_{i=1}^n \frac{2\,F_{V_i}^2\, (V_{V_i l_i} + A_{V_i l_i})^2}{\Gamma_{V_i}^2}\right) \, \frac{d\sigma_{V_1...V_n}}{d\Phi_{n+k}}
$$

Top (tests done – not yet released)

$$
\frac{d\sigma_{b_1l_1\nu_1...b_nl_n\nu_n}}{d\Phi_{3n+k}} \leq \left(\prod_{i=1}^n \frac{4g_W^4 \left|V_{tb}\right|^2 (k_{t_i}\cdot k_{l_i})(k_{b_i}\cdot k_{\nu_i})}{\left((q_i^2 - m_W^2)^2 + (m_W\Gamma_W)^2\right)m_t^2\Gamma_t^2}\right) \frac{d\sigma_{t_1...t_n}}{d\Phi_{n+k}}
$$

${\sf Results}$ for W^+W^-

- Virtual effects appear to be unimportant
- The effect of spin correlations is strictly dependent on the observable
- Released with v3.1

Thanks to Bill Quayle and Volker Drollinger for testing ^a preliminary version

Spin correlations in $t\bar{t}$ $\bm{\nu}$ **In the contract of the contract**

All single-inclusive distributions have this pattern

Almost all correlations display a similar behaviour

"Large" is here confortably small. Will this stay true after acceptance cuts?

Spin correlations in $t\bar{t}$ $t\,$ II

These are the only cases in which I've found non-negligible effects

Spin correlations are not the whole story: for $\Delta\phi$, NLO effects are clearly visible

Observables can be designed to specifically target spin correlations \longrightarrow

Spin correlations in $t\bar{t}$ $t\,$ III

I NLO corrections again visible and in agreement with parton-level fixed-order results

These kinds of observables are difficult to define in practice: need to know the rest frames of the $t\bar{t}$ \bar{t} system, of the t and of the \bar{t}

Spin correlations in single top

- \blacktriangleright For single-top, "large" is large indeed: the production proceeds through W exchange which effectively polarizes the top
- The effects are visible in single-inclusive observables (at variance with $t\bar{t}$)

MC@NLO: reminder

MC@NLO generating functional (simplified notation)

$$
\mathcal{F}_{\text{MCCNLO}} = \int_0^1 dx \left[\mathcal{F}_{\text{MC}}(S, x) \frac{\alpha_s [R(x) - BQ(x)]}{x} + \mathcal{F}_{\text{MC}}(S, 0) \left(B + \alpha_s V + \frac{\alpha_s B[Q(x) - 1]}{x} \right) \right]
$$

- \blacktriangleright The form of $Q(x)$ is dictated by the parton shower MC@NLO is interfaced to. For HERWIG, it is a Θ function \longrightarrow dead zone
- \blacktriangleright We may, however, replace the Θ function in HERWIG with a smoother function, in order to reduce border effects. This can be done easily *without* modifying the code
- This also allows one to study matching ambiguity
- Never done in practice so far, border effects being invisible

Results (for ^a toy model)

Very smooth transition across the dead zone border (good control beyond NLO)

Border effects in Higgs production

Pointed out by the Wisconsin group (ATLAS)

- Affects hardest-jet p_T
- \blacktriangleright New version stops HERWIG shower at $\alpha m_H\leq p_T\leq m_H/\sqrt{2}$, with p_T generated according to a probability function $\mathcal{P}(\alpha m_H) = 1$, $\mathcal{P}(m_H/\sqrt{2}) = 0$
- **IFALLET This also allowed us to change the scale of** α_S **in the MC counterterms** \implies negative weights went down to 5% (were 8%)

On MC@NLO code

Time for the inclusion of ^a new process is spent:

- ◆ 80% for the pure-NLO computation
- ◆ 15% for MC counterterms and LHI-related code
- \triangle 5% debugging

The structure of the MC counterterms is modular

 $\mathcal{M}^{(\text{{\tiny MC}})} = \mathcal{K}^{(\text{{\tiny MC}})} \mathcal{M}^{(b)}$

Kernels $\mathcal{K}^{\text{\tiny{(MC)}}}$ now fully worked out for <code>HERWIG</code>

Work in progress (Seyi Latunde-Dada) on the computation of $\mathcal{K}^{(MC)}$ for HERWIG++. ISR now done

W production with MC@NLO/HERWIG++

We know that old-style ME corrections distort the p_T spectrum

- We see that by adding the full NLO MEs one improves the agreement to data
- \blacktriangleright This is without specific tuning. Also, it is not yet known how to include a k_T -kick into $\mathsf{HERWIG++}{}$ (affects lowest- $p_{\scriptscriptstyle T}$ bins)

Conclusions

- ◆ The addition of spin correlations (to be officially released with the next version) adds interesting features in top physics – we are beginning to study phenomenology implications
- We have seen in the case of Higgs production that by limiting MC radiation one has beneficial effects. Presumably will have an impact on jet shapes in $t\bar{t}$ production (to be tested soon)
- This is ^a very well known technique in matched computations based on analytical resummations
- $HERWIG++$ has started producing results. More will follow