Physics studies at the LHC with Phantom

Giuseppe Bevilacqua

Università di Torino

MCWS Frascati October 23, 2006

Phantom 1.0 is ready and has been used for the first preliminary analyses

First event generator for complete $O(\alpha_{EM}^6) + O(\alpha_{EM}^4 \alpha_s^2)$ six-fermion studies at the LHC

Exact tree-level matrix elements

- no *production* × *decay* approach
- pure EW and EW+QCD irreducible background for boson-boson scattering and Higgs search
- complete 6*f* LO predictions for top production

Phantom 1.0 Ballestrero, Belhouari, GB, Maina

Dedicated six-fermion event generator for LHC studies

Extended to $p-\bar{p}$ collisions

All Standard Model processes $\mathcal{O}(\alpha_{EM}^{6}) + \mathcal{O}(\alpha_{EM}^{4}\alpha_{S}^{2})$

f = any fermion \Rightarrow up to 6 quarks in the final state

New Physics (W.I.P.)

alternative models of Electroweak Symmetry Breaking

Some technical features

User friendly

- Huge set of parton-level processes handled by a PERL script
- *One-shot*: unweighted events for *any number* of processes generated simultaneously

Efficient

- fast modular evaluation of amplitudes (PHACT)
- good coverage of phase-space via new *iterative-adaptive* multichannel approach (multichannel ⊕ VEGAS), already used in PHASE 1.0 (Accomando, Ballestrero, Maina)

Les Houches ready

- new Les Houches Event File (LHEF) format MC4LHC-06 [hep-ph/0609017]
- interfaced with pdf's via the Les Houches Accord PDF (LHAPDF) package

Physics potential

 $\mathcal{O}(\alpha_{\scriptscriptstyle EM}^{6})$

Phase 1.0 : $qq' \rightarrow 4q + l\nu$ \hookrightarrow Phantom 0.9 : $qq' \rightarrow \text{all } 6f$

Holds the signal of

- Higgs production via Vector Boson Fusion $qqH \rightarrow qqVV$
- Vector Boson Scattering (VBS) $WW \rightarrow WW, WZ \rightarrow WZ...$
- three-boson production
- triple/quadruple-vertex EW interactions

together with all possible EW irreducible background from a six-fermion point of view.

example: VBS signal

Possible large interferences and gauge cancellations with *pure EW* irreducible background

Physics potential

All *EW+QCD* irreducible background to the previous signals with one gluon exchange (and interferences)

Parton Shower MC does not approximate *all* contributions to the amplitude

Physics studies on Vector Boson Scattering

Typical VBS signature: two forward/backward *tag* jets + two central jets and leptons

 $M_{j_cj_cll}$ = invariant mass of two most central jets + leptons

- holds the information about M_{VV}, i.e. the CM energy in VBS
- *light* Higgs \Rightarrow sharp peak in $d\sigma/dM_{j_cj_cll}$
- *heavy* Higgs or alternative scenario \Rightarrow discrepancies with SM predictions at high $M_{j_c j_c ll}$

Enhance signal

- cut on the pseudorapidity of the two forward/backward jets (η_{jf}, η_{jb})
- cut on the invariant mass of the central jets (M_{jcjc})

Suppress backgrounds

- exploit *b-tagging* + cuts on invariant mass to avoid top contributions
- cut on p_T and pseudorapidity of the lepton pair $(\eta_{l\nu})$
- cut on the invariant mass of leptons + tag jet (M_{jflv}, M_{jblv})

Physics analyses

Preliminary parton-level studies available: semi-leptonic ' l^+l^- ' and ' $l\nu$ ' final states

- $qq' \rightarrow 4q + \mu^+ \mu^- \mathcal{O}(\alpha_{EM}^6)$
- $qq' \rightarrow 4q + \mu \nu_{\mu} \quad \mathcal{O}(\alpha_{EM}^{6}) \text{ and } \mathcal{O}(\alpha_{EM}^{6}) + \mathcal{O}(\alpha_{EM}^{4}\alpha_{S}^{2})$

Analysed models

- Standard Model with light Higgs
- Standard Model with no Higgs (benchmark scenario for New Physics)

$$pp \rightarrow qq' \rightarrow 4q + \mu^+ \mu^-$$

 $\mathcal{O}(\alpha_{\rm \scriptscriptstyle EM}^{\rm 6})$ invariant mass distribution of $\mu^+\mu^-$ + two most central quarks

pure EW Higgs irreducible background amounts to $\sim 5-10\%$

$$pp \rightarrow qq' \rightarrow 4q + \mu^+ \mu^-$$

 $\mathcal{O}(\alpha_{EM}^6)$ invariant mass distribution of $\mu^+\mu^-$ + two most central quarks with *top veto*

 $M_H = 150 \text{ GeV}$

top candidates: events with a *b* and two quarks of the right flavour combination to be produced in a *W* decay $160 \ GeV < M_{bqq} < 190 \ GeV$

$$pp \rightarrow qq' \rightarrow 4q + \mu^+ \mu^-$$

 $\mathcal{O}(\alpha_{\rm \scriptscriptstyle EM}^6)$ predictions in the high-invariant-mass region

$$pp \rightarrow qq' \rightarrow 4q + \mu^+ \mu^-$$

 $\mathcal{O}(\alpha_{\scriptscriptstyle EM}^6)$ predictions in the high-invariant-mass region

Simple requirements of centrality of the final-state bosons enhance the difference between the two models

Effect of requiring a minimum ΔR separation among partons on the number of expected events ($\mathcal{L} = 100 \text{ fb}^{-1}$)

M_{cut}	NoHiggs	$M_H = 200 GeV$	Ratio
800 GeV	40	16	2.50
900 GeV	32	11	2.91
1.0 TeV	25	8	3.13
$\Delta R = 0.4$			
800 GeV	23	12	1.92
900 GeV	15	8	1.88
1.0 TeV	10	5	2.00
$\Delta R = 0.5$			
800 GeV	15	10	1.50
900 GeV	10	6	1.66
1.0 TeV	6	4	1.50

- W's and Z's with high p_T are most likely to merge into one jet
- In case of light Higgs, vector boson distributions are less central
- \hookrightarrow A *light Higgs* scenario is less affected by ΔR cuts. To evidentiate new physics low ΔR cuts should be studied

$$pp \to qq' \to 4q + \mu \nu_{\mu}$$

 $\mathcal{O}(\alpha_{_{EM}}^6)$ predictions

 $pp \rightarrow qq' \rightarrow 4q + \mu \nu_{\mu}$

Comparison between $\mathcal{O}(\alpha_{EM}^6)$ and $\mathcal{O}(\alpha_{EM}^6) + \mathcal{O}(\alpha_{EM}^4 \alpha_s^2)$ predictions

No sensible difference at high $M_{j_c j_c l\nu}$ between the two scenarios without proper selection cuts!

$pp \rightarrow qq' \rightarrow 4q + \ \mu \ \nu_{\mu}$

Final $\mathcal{O}(\alpha_{EM}^6)$ result after applying selection cuts

 $pp \rightarrow qq' \rightarrow 4q + \mu \nu_{\mu}$

Final $\mathcal{O}(\alpha_{EM}^6) + \mathcal{O}(\alpha_{EM}^4 \alpha_s^2)$ result after applying selection cuts

Observable difference between no Higgs and $M_H = 200$ GeV: ratio ~ 1.5 at $M_{j_c j_c l \nu} = 1$ TeV

Integrated cross sections in the *high-M*_{$j_cj_cl\nu$} region

 $M_H = 200 \; \mathrm{GeV}$

•
$$\int_{1\,TeV}^{\infty} dM_{j_c j_c l \nu} \frac{d\sigma}{dM_{j_c j_c l \nu}} \sim 2 \, \text{fb}$$

 \hookrightarrow ~ 200 events/year expected at $\mathcal{L} = 100 \, \text{fb}^{-1}$

no Higgs

•
$$\int_{1\,TeV}^{\infty} dM_{j_c j_c l \nu} \, \frac{d\sigma}{dM_{j_c j_c l \nu}} \, \sim \mathbf{3} \, \mathrm{fb}$$

 $\, \hookrightarrow \, \sim 300$ events/year expected at $\mathcal{L} = 100\,\text{fb}^{-1}$

Comparison between $gg \rightarrow 4q + \mu \nu_{\mu}$ and $qq' \rightarrow 4q + \mu \nu_{\mu}$ $\mathcal{O}(\alpha_{_{EM}}^{6}) + \mathcal{O}(\alpha_{_{EM}}^{4}\alpha_{_{S}}^{2})$ contributions

Basic acceptance cuts:

$$\begin{split} E(l) &> 20 \; GeV \quad p_T(l) > 10 \; GeV \\ & |\eta_l| < 3 \\ E(j) &> 20 \; GeV \quad p_T(j) > 10 \; GeV \\ & |\eta_j| < 6.5 \quad m_{jj} > 20 \; GeV \end{split}$$

 $\begin{array}{l} \label{eq:selection cuts:} \\ \textit{b-tagging for } |\eta| < 1.5 \mbox{ with} \\ \mbox{efficiency 0.8} \\ \mbox{70 } GeV \leq M_{j_Cj_C} \leq 100 \ GeV \\ |\eta_{j_f} - \eta_{j_b}| > 4 \ |\eta(\mu\nu)| \leq 2 \\ p_T(\mu\nu) > 100 \ GeV \\ \mbox{min } (M_{j_f} l_\nu \ , M_{j_b} l_\nu) > 250 \ GeV \end{array}$

More realistic selection criteria based on *b-tagging* and invariant mass cuts are under study

Work in progress

Beyond the Standard Model

Alternative models of Electroweak Symmetry Breaking

Without Higgs, the amplitude for $W_L W_L$ scattering grows indefinitely with CM energy \rightarrow violation of unitarity

Different models of constructing amplitudes which satisfy unitarity constraints from low-order amplitudes have been implemented in Phantom for $W_L W_L$ and are currently under test (Butterworth *et al.*, Chanowitz)

Future projects

Phenomenology

- complete analysis including processes with 2 external gluons (Phantom) and boson + jets background contribution (AlpGen)
- more realistic studies in CMS accounting for detector simulation and reconstruction (in collaboration with the Torino CMS group)
- beyond the benchmark no-Higgs scenario: analysis of alternative models of EWSB

R&D

- Further optimization of the code
- Extension to e^+e^- colliders