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Motivations

SMC (Shower Monte Carlo) programs: normally accurate at LL level
Naturally interfaced to Born processes (i.e. Matrix Elements generators)
NLO calculations: many available results for collider processes

Positive NLO experience with QCD tests at colliders;
PS predictive for multiplicities and multiplicity distributions;
Natural extension: NLO+PS

2



What is a SMC
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form factors
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Splitting vertices are given,
in the collinear approximation, by
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The Sudakov form factors are

∆ = exp
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d t
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]

Notice: ∆ d p =− d∆
Sudakov form factors are
uniformly distributed.

Uniformity of Sudakov form factors used for numerical implementations.
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The Sudakov form factor are the sum of all virtual corrections in the collinear
approximation. Notice that 0 < ∆ < 1; ∆ is referred to as the non-emission
probability. Notice also that the inclusion of real and virtual corrections gives
a net result of 1 (cancellation of collinear singularities in inclusive quantities).

The generation of a branching is analogous to the generation of the decay of a
radioactive source:
if p δt is the radiation probability in the interval δt,
the non radiation probability in the interval δt is (1− pδt)= exp(− pδt).
The non-radiation probability in a finite interval is exp(− pt).
The probability for the first radiation is exp(− pt)pδt (an exact differential).
For a Monte Carlo implementation, generate a random number 0 < r < 1 and
solve r = exp(− pt) for t.
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What is an NLO calculation

Typically (subtraction method) for an observable O

〈O〉 =

∫

O dσ =

∫

O(Φn) [B(Φn)+ V (Φn)] d Φn

+

∫

[

O(Φn+1)R(Φn+1)−O(Φ̃n+1)C(Φn+1)
]

d Φn+1

Φ̃n+1: singular n+ 1 body phase space point, function of Φn+1

• Soft case: Φ̃n+1 has a zero momentum parton

• Collinear case: Φ̃n+1 has two massless partons with parallel momenta

Near the singular limit Φ̃n+1≈Φn+1.

(In general, several singular regions, counterterms, Φ̃n+1 functions)
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The singular configurations Φ̃n+1 have an underlying Born kinematics Φ̄n,
obtained by:

• Soft case: removing the zero momentum parton

• Final state collinear: merging the collinear partons

• Initial state collinear: removing the radiated collinear parton,
and subtracting its momentum from initial state parton

Assume that we can parametrize the Φn+1 phase space in terms of (Φ̄n, Φr)
where Φr are three more radiation variables. We have

〈O〉 =

∫

O(Φn) [B(Φn) + V (Φn)] d Φn

+

∫

[

O(Φ̄n, Φr)R(Φ̄n, Φr)−O(Φ̄n)C(Φ̄n, Φr)
]

d Φ̄n dΦr

Defining the unregularized virtual Vb(Φn) = V (Φn)−
∫

C(Φn, Φr)d Φr:

〈O〉=

∫

O(Φn) [B(Φn)+ Vb(Φn)] d Φn +

∫

O(Φ̄n, Φr)R(Φ̄n, Φr)d Φ̄n dΦr

which is the starting formula with divergent real and virtual corrections.
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Singular configuration Underlying Born

Soft Delete soft

Collinear
final state

Merge collinear

Collinear

initial state
Subtract from
initial parton
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NLO in SMC
In SMC’s: Φn+1 = Φn+1(Φn, Φr), with Φr = (t, z, ϕ) (momentum reshuffling).
The form of the mapping depends upon the implementation.
SMC cross section for first emission:

〈O〉=

∫

B(Φn)dΦn

{

O(Φn)∆tm in
+

∫

tm in

O(Φn, Φr) ∆t
α

2π
P (z)

d t

t
dz dϕ

}

with

∆t = exp

[

−

∫

t

α

2π
P (z)

d t′

t′
dz dϕ

]

at NLOSMC order (expand the above formula to O(αS))

〈O〉=

∫

B(Φn)dΦn

{

O(Φn) +

∫

tm in

[O(Φn, Φr)−O(Φn)]
α

2π
P (z)

d t

t
dz dϕ

}

(of course, this is the inexact NLO correction implemented by the SMC)

How do we reach exact NLO accuracy?
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MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use (Φ̄, Φr) of the MC

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already
implemented: Vector Bosons, Vector
Bosons pairs, Higgs, Heavy Quarks,
Single Top.

9



MC@NLO
First viable (and useful) implementation of SMC+NLO.
No need to modify the shower program: straightforward to implement.
Drawbacks:

• Must use (Φ̄, Φr) of the SMC: SMC specific, needs the authors...

• NLO−NLOSMC must be regular in the singular limit. Therefore:

− SMC must implement correctly collinear singularities,
also in the azimuthal dependence

− SMC must implement correctly soft emission.
If not, one must worry about the importance of the left over.

− The matching in the subtraction is crucial and delicate

• Events with negative weights may be generated (undesirable feature).
Physical distributions should turn out positive.
However this may be difficult to prove for all cases.
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POWHEG
Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies only affect next-to-hardest emissions;
no matching problems

• As the name says, it generates events with positive weight

11



How it works

〈O〉 =

∫

O(Φn) [B(Φn) + V (Φn)] d Φn

+

∫

[

O(Φ̄n, Φr)R(Φ̄n, Φr)−O(Φ̄n)C(Φ̄n, Φr)
]

d Φ̄n dΦr

=

∫

O(Φn)

[

B(Φn) + V (Φn) +

∫

{R(Φ̄n, Φr)−C(Φn, Φr)} dΦr

]

d Φn

+

∫

R(Φn, Φr)[O(Φn, Φr)−O(Φn)] d Φn dΦr

Define: B̄(Φn) = B(Φn)+ V (Φn) +
∫

{R(Φ̄n, Φr)−C(Φn, Φr)} dΦr , get:

〈O〉=

∫

O(Φn)B̄(Φn)d Φn +

∫

R(Φn, Φr)[O(Φn, Φr)−O(Φn)] d Φn dΦr

In NLOSMC was

〈O〉=

∫

O(Φn)B(Φn) d Φn +

∫

B(Φn)
α

2π
P (z)

1

t
[O(Φn, Φr)−O(Φn)] d Φn dΦr
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Thus: NLOSMC ↔NLO: B(Φn)↔ B̄(Φn), B(Φn)
α

2π
P (z)

1

t
↔R(Φn, Φr)

All order emission probability in SMC:

〈O〉=

∫

B(Φn)dΦn

{

O(Φn)∆tm in
+

∫

tm in

O(Φn, Φr) ∆t
α

2π
P (z)

1

t
dΦr

}

∆t = exp

[

−

∫

t

α

2π
P (z)

1

t′
dΦr ′

]

All order emission probability in POWHEG:

〈O〉=

∫

B̄(Φn)dΦn

{

O(Φn)∆tm in
+

∫

O(Φn, Φr)∆tr

R(Φn, Φr)

B(Φn)
dΦr

}

∆t = exp

[

−

∫

θ(tr − t)
R(Φn, Φr)

B(Φn)
dΦr

]

with tr = kT(ΦnΦr), the transverse momentum for the radiation.
Positive if B̄ is positive (i.e. NL<LO).
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First example: ZZ production in hadron collisions
(Ridolfi, P.N.)

• NLO known

(Mele,Ridolfi, P.N.)

• Intermediate complexity

• Hadrons in initial state

• Similar to WZ, WW , QQ̄
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Φ̄ and Φr variables

Φ̄ variables: choose Mzz, Yzz and θ, where

• Mzz: invariant mass of the Z Z pair

• Yzz: rapidity of Z Z pair

• θ: go in the (longitudinally) boosted frame where Yzz = 0.
go to the Z Z rest frame with a transverse boost
In this frame θ is the angle of a Z to the longitudinal direction.

Φr variables:

• x = Mzz/s, (s is the invariant mass of the incoming parton system)
x→ 1 is the soft limit

• y: cosine of the angle of the radiated parton to the beam direction
in the partonic CM frame.

• φ: radiation azimuth.
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Few tricks to do it

B̄(Φ) = B(Φ) + V (Φ) +

∫

dΦr [R(Φ, Φr)−C(Φ, Φr)]

Seems to need one Φr integrations to get weight of each Φ point.

In fact, write

B̃(Φ, Φr) = N [B(Φ) + V (Φ)] + R(Φ, Φr)−C(Φ, Φr) , N =
1

∫

dΦr

.

so that

B̄(Φ)=

∫

B̃(Φ, Φr)dΦr .

Use standard procedures (SPRING-BASES, Kawabata)
to generate unweighted events for B̃(Φ̄, Φr)dΦrdΦ̄.
discard Φr (same as integrating over it!).
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∆(Φ, pT)= exp

[

−

∫

R(Φ, Φr)

B(Φ)
θ(kT(Φ, Φr)− pT)dΦr

]

,

Look for an upper bounding function;

R(Φ, Φr)

B(Φ)
≤U(Φ)= N

αS(kT)

(1− x)(1− y2)

Generate x, y according to

exp

[

−

∫

U(Φ)θ(kT(Φ, Φr)− pT)dΦr

]

accept the event with a probability

R(Φ, Φr)

B(Φ)U(Φ)
.

If the event is rejected generate a new one for smaller pT , and so on
(This procedure reconstructs the exact emission probability).
In the Z Z case, an event is generated with about six calls ro R(Φ, Φr).
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Interfacing to SMC’s

For a pT ordered SMC, nothing else needs to be done.
Use the standard Les Houches Interface for User’s Processes (LHI):
put partonic event generated by POWHEG on the LHI;
Run the SMC in the LHI mode.
The LHI provides a facility to pass the pT of the event to the SMC (SCALUP).
As far as the hardest emission is concerned, POWHEG guarantees:

• NLO accuracy of (integrated) shape variables

• Collinear, double-log, soft (large Nc) accuracy of the Sudakov FF.
(In fact, corrections that exponentiates are obviously OK)

As far as subsequent (less hard) emissions, the output has the accuracy of
the SMC one is using.
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For angular ordered SMC’s (i.e. HERWIG):

Angular ordering accounts

for soft gluon interference.

Intensity for photon jets = 0

Intensity for gluon jets = CA

instead of 2CF + CA

Consistent with a boosted jet pair, in the case of a photon jet.
In angular ordered SMC large angle soft emission is generated first.
Hardest emission (i.e. highest pT) happens later.
Difficult to correct it explicitly.
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Recipe for angular ordered showers

• Generate event with harderst emission

• Generate all subsequent emissions with a pT veto
equal to the hardest emission pT

• Pair up the partons that are nearest in pT

• Generate an angular ordered shower associated with the paired parton,
stopping at the angle of the paired partons (truncated shower)

• Generate all subsequent (vetoed) showers
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Example of truncated shower: e
+
e
−

Nearby partons: 1,2

Truncated shower: 1,2 pair,

from maximum angle to θ

1 and 2 shower from θ to cutoff

3 showers from maximum to cutoff

The truncated shower reintroduces coherent soft radiation from 1,2 at
angles larger than θ (Angular ordered SMC’s generate those earlier).

Truncated showers not yet implemented; work in progress with S. Frixione.
(No evidence of effects from their absence up to now)
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Results

• We studied distributions for LHC and the TEVATRON

• We interfaced the output to both HERWIG and PYTHIA

• No truncated showers for now

• Haven’t found yet significant differences from from MC@NLO
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Accuracy of the Sudakov Form Factor
POWHEG’s Sudakov FF has the form (with c≈ 1)

∆t = exp

[

−

∫

t

Q2

dkT
2

kT
2

αS(c kT
2 )

π

{

A log
M2

kT
2

+ B

}

]

We know that the NLL Sudakov form factor has the form

∆t
NLL = exp

[

−

∫

t

Q2

dkT
2

kT
2

αS(kT
2 )

π

{(

A1 + A2

αs(kT
2 )

π

)

log
M2

kT
2

+ B

}

]

provided the colour structure of the process is sufficiently simple
(6 3 coloured legs). Can use this to fix c in POWHEG’s Sudakov FF.
(Suggested in (Catani, Webber, Marchesini, 1991) for HERWIG)
> 4 coloured legs: exponentiation only holds in LL, or large Nc

Summarizing:
POWHEG Sudakov is: always LL accurate,
NLL accurate for 6 3 coloured legs, NLL accurate in leading Nc in all cases.
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Some topics on general formulation of POWHEG
Frixione, Oleari, P.N., work in progress

Extension to the general case only a matter of bookkeeping;
POWHEG is fully general, can be applied in any subtraction framework.

We look in details at POWHEG in

• the FKS (Frixione, Kunszt, Signer)

• the CS (Catani, Seymour) subtraction frameworks.
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Flavour separation
There are several allowed flavour structures in the n body process. A flavour
structure is a flavour assignment to the incoming and outgoing partons.
The B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specif flavour structure, and is singular in only one
singular region. This partition of R is trivial to perform:

• FKS provides specific kinematic functions Sαr
, with

∑

αr

Sαr
= 1 that

suppress all but one singular regions.

• in CS one can use instead Sαr
= Cαr

/(
∑

αr

Cαr
) where Cαr

are the
dipole subtraction terms.
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B̄ carries an fb index;
Sudakov FF also carries an fb index:

∆fb(Φn, pT) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)







or

∆fb(Φn, pT)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)

}

where

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [� ]αr
means that everything inside is relative to the αr singular term:

thus R is Rαr
, the parametrization (Φn, Φr) is the one appropriate to

the αr singular region

The last expression is closer to typical SMC’s, with each emission considered
independently.
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Soft: �

Gluon quark

collinear

�

Take away gluon

Take away gluon

Quark Antiquark
collinear

(opposite flavours!)

Merge into gluon�
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Work in progress: Heavy Flavour Production
with S. Frixione, M. Mangano and G. Ridolfi

NLO calculation much more complex than in ZZ production.
However, POWHEG implementation is as easy.
Detailed soft structure of HVQ production hidden in the ratio R/B.

Status:

• POWHEG Generator ready and working

• LHI interface under work

Some raw plots follow ...
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Top prod. (Tevatron)

Red: POWHEG

Black: NLO
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Top production

Tevatron
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Top production

(Tevatron)
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Top production

Tevatron
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Black: MC@NLO
Red: POWHEG

(Tevatron)
Top production
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M. Treccani
Frascati,
23 Maggio 2006
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Top, Tevatron

Red: POWHEG

Black: MC@NLO
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POWHEG/MC@NLO
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POWHEG/MC@NLO
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Bottom production
Tevatron

Red: POWHEG
Black: MC@NLO
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POWHEG/MC@NLO
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Black: NLO

Red: POWHEG
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Conclusions and Perspective

• POWHEG is a viable method for interfacing NLO and SMC

• It is easy to implement, does not require new NLO computations

• Does not require committment to specific SMC implementations

• Its output is closer to traditional SMC’s: positive weighted events

• To get it going, we will implement a number of processes: vector
bosons and boson pairs, Higgs, Heavy Flavour, etc.

• We collect and publish material to make it easy for others to
implement POWHEG with their NLO calculation
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