PARTIAL COMPOSITENESS AND ITS IMPLICATIONS FOR THE LHC

ROBERTO CONTINO

UNIVERSITÀ ROMA La Sapienza & INFN

In collaboration with:

Raman Sundrum Thomas Kramer

MOTIVATION:

Solving the Hierarchy Problem by having the Higgs as a composite at ~ TeV

PARTIAL COMPOSITENESS AND ITS IMPLICATIONS FOR THE LHC

A SCENARIO WE KNOW:

The electromagnetic correction to the pion mass

 $(\exp. \simeq 4.6 \,\mathrm{MeV})$

TURNING ON THE FULL ELECTROWEAK GROUP:

The pions are eaten and the EWS is broken

- \checkmark U(1)_Q unbroken: massless photon
- Problems:

1) $f_{\pi} = 93 \text{ MeV} \implies$ $M_W = g f_{\pi}/2 = 30 \text{ MeV}!$

2) we actually observe the pions!

IDEA: WHAT IF THERE IS A TECHNI-QCD ?

 \checkmark $F_{\pi} \gg f_{\pi} \Box$

TECHNICOLOR [Weinberg, Susskind]

1) W_{long} , Z_{long} mostly from H : $M_W \simeq g F_{\pi}/2 = 80 \text{ GeV}$ 2) still a physical pion in the spectrum, mostly π

1) if H comes from $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ no physical Higgs leftover

 \odot

2) usual ETC mechanism to generate the quark masses leads to generally large FCNC :

 $\frac{(\bar{\Psi}\Psi)(\bar{\Psi}_{TC}\Psi_{TC})}{\Lambda_{ETC}^2} \to \frac{(\bar{\Psi}\Psi)^2}{\Lambda_{ETC}^2}$

SOLUTION TO 1)

[Georgi, Kaplan `80]

* Enlarge the flavor symmetry of the new strong sector to: $G \xrightarrow{H} G'$ such that

H is a doublet of SU(2)_L
 G_{SM}⊂G' → extra alignment parameter 0<€<1 suppresses all EWPT:

ex: $S = S_{TC} \cdot \epsilon^2$

<u>Example</u>: $SO(5) \rightarrow SO(4) \sim SU(2)_L \times SU(2)_R$ gives 4 real Goldstones: one $SU(2)_L$ doublet H

PARTIAL COMPOSITENESS AND ITS IMPLICATIONS FOR THE LHC

NEW INGREDIENT:

Linear couplings

mass mixing

$$\mathcal{L}_{mix} = \sum_{n} \Delta_n \, \bar{\Psi} \chi_n + h.c.$$

CONNECTION TO EXTRA DIMENSIONS:

if BSM = conformal field theory (CFT) at $E \gg TeV$:

4D picture DUAL to (AdS/CFT correspondence)

5D (warped) theory where χ_n = Kaluza-Klein modes

SD model gives an explicit realization of the 4D composite Higgs theory

SD field theory is perturbative (= calculable)!

WARPED/COMPOSITE PHENOMENOLOGY SIMPLIFIED

Keep only the first resonance of each tower

mass mixing

 \leftrightarrow

 Ψ

 χ

 $\mathcal{L}_{mix} = \Delta \bar{\Psi} \chi + h.c.$

RULES

•Elementary sector:

{SM - Higgs}

inter-elementary coupling: $g_{el} \sim 1$

•Composite sector:

{ρ, χ + Higgs} [~ excited massive copy of the SM] inter-composite coupling: g_{*}»1

only mass mixings allowed

•Mixing:

H couples only to ρ and χ

... enough to derive a lot of physics

$$|\mathrm{SM}\rangle = \cos \varphi |\Psi\rangle + \sin \varphi |\chi\rangle$$

 φ parametrizes the <u>degree of partial compositeness</u>

- the larger φ the more "composite" will be a SM particle
- the Higgs is a full composite (= solution to the Hierarchy Problem)
- heavier SM particles = more composites light SM particles = almost elementary
- Precision Tests: sort of GIM mechanism

 $y = g_* \sin \varphi_L \sin \varphi_R$

 $\left(\bar{\Psi}\Psi\right)^2 \left(rac{\sin^4 \varphi}{M^2}
ight)$

small enough for light fermions

PARTIAL COMPOSITENESS AND ITS IMPLICATIONS FOR THE LHC

 $|\mathrm{SM}\rangle = \cos\varphi |\Psi\rangle + \sin\varphi |\chi\rangle$ $|\mathrm{heavy}\rangle = -\sin\varphi |\Psi\rangle + \cos\varphi |\chi\rangle$

amplitude for single production:

 $\mathcal{A}\left[\mathrm{SM}_{1} + \mathrm{SM}_{2} \to \mathrm{heavy}\right] \propto g_{*}\varphi_{1}\varphi_{2}\cos\varphi_{\mathrm{heavy}} - g_{el}\sin\varphi_{\mathrm{heavy}}$

 g_* more than compensated by $\varphi_1 \varphi_2$ suppression

despite *g*_{*} large seems promising:

might be cheaper to proceed via the elementary component of the heavy state

EXAMPLE: Z^{*} PRODUCTION & DECAY

highly suppressed

Once produced the heavy resonances will decay mostly to the SM particles with the largest mixing angle: H, W_{long}, Z_{long}, top, bottom

 e^{+}/μ^{+} g_{SM} decays to e^+e^- , $\mu^+\mu^$ g_{SM} SUPPRESSED e⁻/μ⁻

The efficiency for identifying top and bottom quarks will be a key determinant of our ability to find New Physics

T PAIR PRODUCTION

Т Т + Т Т

T SINGLE PRODUCTION & DECAY

 $Z_{long}\text{, }H\,/\,W_{long}$ Wlong 3222 h b T t/b

top and bottom quarks important also in the production mechanism

CONCLUSIONS

A non-supersymmetric solution to the Hierarchy Problem is theoretically motivated

new insight on strongly interacting theories from extra dimensions makes it even more attractive

* Partial Compositeness might be the way in which New Physics hides from precision and flavor tests

* prediction: well defined pattern of new signals at the LHC
* final states populated by tops and bottoms