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(Higgs, or what else?)

Discover new physics, Standard Model is deemed to 
fail around the TeV scale

Identify new physics (SUSY?, UED?...?), need to 
measure properties, masses, spin, couplings.... 

2

To fully exploit the discovery potential of the LHC, 
theoretical predictions must be of the highest standards 

At the LHC everything involves QCD! QCD provides 
interactions (the beam), the background, the challenge
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QCD Studies

E.g. Jet Physics Huge cross sections:
Eg for 1 fb-1 ~ 10000 events with ET> 1 TeV

100 events with ET> 2 TeV

• PDFs
• Jet shape
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Understanding QCD at 14 TeV
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Then: precise measurements of 
W,Z, tt, Drell-Yan production
Then: W,Z+1 jet; W,Z+2 jets etc
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NLO HEPcode for LHC

• NLOJET++ [Nagy] pp ⇒ 3j

• AYLEN/Emilia [Dixon,De Florian,Kunszt,Signer] pp ⇒ WW,WZ, ZZ, Wg, Zg

• PHOX [Aurenche,Binoth,Fontannaz,Guillet,Heinrich, Pilon,Werlen] pp ⇒ g+1j, gg

• MCFM [Campbell, Ellis] pp ⇒ V+2j, (V)QQ, V g, VV, VH, H +≤1j

• heavy quark production [Mangano, Nason, Ridolfi] pp ⇒ QQ

• single top [Harris, Laene, Phaf, Sullivan, Weinzierl] pp ⇒ t

• DYRAD/JETRAD [Giele, Glover, Kosower] pp ⇒ V+≤1j, ≤2j

• 2g+1j [Del Duca, Maltoni, Nagy, Trocsanyi] pp ⇒ 2g+1j

• H+QQ [Dawson, Jackson, Orr, Reina, Wackeroth] pp ⇒ HQQ
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Complete list available at http://www.cedar.ac.uk/hepcode

http://www.cedar.ac.uk/hepcode
http://www.cedar.ac.uk/hepcode
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Status of NLO 

2⇒2: well established in SM (and beyond)

2⇒3: most SM processes known (few ones still missing will 

be done soon) 

2⇒4: NO NLO CALCULATION FOR THE LHC EXISTS 

7

Problem for the LHC where most processes/
backgrounds involve high multiplicity final states 

“So, what is the big deal about NLO? It’s just Feynman diagrams, must be all known by now!
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‣ MC@NLO [Frixione, Webber]  and new approaches [Nason, Nagy& 
Soper,...]  
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➥Here I will address how to obtain NLO accuracy. Once this 
is done, NLO results can be merged with all-order predictions 
following one of the above methods 
NB: the merging is essential for a proper comparison with data 
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Ingredients at NLO

9

A full N-particle NLO calculation requires:

➥Here I will mainly address the calculation of virtual corrections 
[of course in the final predictions I will show all three points will have been addressed]

virtual correction to N-leg process 
➔ divergence from loop integration 

While the calculation of tree level amplitudes has been automated 
and subtraction terms is also well understood, the bottleneck is the 
complexity of the analytical evaluation of one-loop contribution 



Notation

The generic N -point one-loop graph

Iµ1···µM (D; ν1, . . . , νN ) ≡

∫
d Dl

iπD/2

lµ1 · · · lµM

dν1
1 dν2

2 · · · dνN

N

D = 4 − 2ε di ≡ (l + qi)
2 qi ≡

i
∑

j=1

pj σ ≡
N

∑

i=1

νi

! We consider only massless internal propagators, although the method is more general
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10

The generic M-tensor N-point integral:

NB: we consider here only massless propagators, although the method is more general (see later) 
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0→ p1 + · · · + pN @NLO

Use Qgraf/FeynArts to generate the NLO amplitude for a 
specific process (provide propagators/interaction vertexes)

A(p1, . . . pN ) =
∑

n

Kµ1···µM (p1, . . . , pN ; ε1, . . . , εN )Iµ1...µn(D; ν1, . . . νN )

use symbolic manipulation, e.g. FORM/Mathematica to 
write the amplitude as (provide Feynman rules) 

Iµ1...µM (D; {νl}) =
∑

λ,κ1,κ2,...,κN≥0
2λ+

P
i κi=M

(
− 1

2

)λ{[g]λ[q1]κ1 . . . [qN ]κN }µ1...µM

× (ν1)κ1 . . . (νN )κN I(D + 2(M − λ); {νl + κl})

 use Davydychev’s reduction of tensor integrals 



Semi-numerical method (II)

Use standard integration-by-parts

∫
dDl

iπD/2

∂

∂lµ





(∑N
i=1 yi

)
lµ +

(∑N
i=1 yiq

µ
i

)

dν1
1 dν2

2 · · · dνN
N



 = 0 ∀{yi}N
i=1

to derive the following reduction relations

(νk − 1)I(D; {νl}) = −
N∑

i=1

S−1
ki I(D−2; {νl−δli − δlk}) − bk (D − σ) I(D; {νl−δlk})

(D − 1 − σ) B I(D; {νl}) = I(D−2; {νl}) −
N∑

i=1

biI(D−2; {νl−δli})

(νk − 1)I(D; {νl}) = −bk

B
I(D−2; {νl−δlk}) +

N∑

i=1

(
bkbi

B
− S−1

ki

)
I(D−2; {νl−δli − δlk})

Notation: Sij = (qi − qj)
2 ; bi ≡

PN
j=1 S−1

ij ; B ≡
PN

j=1 bi =
PN

i,j=1 S−1
ij
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Use standard integration by part techniques 
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Semi-numerical method (II)

Use standard integration-by-parts

∫
dDl

iπD/2

∂

∂lµ





(∑N
i=1 yi

)
lµ +

(∑N
i=1 yiq

µ
i

)

dν1
1 dν2

2 · · · dνN
N



 = 0 ∀{yi}N
i=1

Triangles Boxes Pentagons

[n = D/2 − σ ⇒ degree of UV divergence]

! reduce any integral to a set of analytically known basis integrals
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Semi-numerical method (III) 

13

These few identities allow one to reduce any scalar 
integral to a set of analytically known basis integrals 
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Basis integrals  

two-point functions in any D
three-point functions with one off-shell leg in any D
three-point functions with three off-shell legs in D=4
four-point functions in D=4  
six dimensional pentagon  

14

All integrals known analytically! 

p2

p2

p3p3

p1p1

p1 p1

ν1 ν1
ν1

ν2

ν2ν2 ν3

ν3 ν4

p4



Giulia Zanderighi − Precision QCD at LHC /31

Exceptional configurations  

15

standard relations fail at exceptional points (accidental 
degeneracies, thresholds):   det(Sij)→ 0 or B ∝ det(Gij)→ 0



Giulia Zanderighi − Precision QCD at LHC /31

Exceptional configurations  

15

standard relations fail at exceptional points (accidental 
degeneracies, thresholds):   det(Sij)→ 0 or B ∝ det(Gij)→ 0

Exceptional momentum configurations

IDEA: exploit the existence of a small parameter (pa-

rameterizing the vicinity to the exceptional momentum

configuration) to define expanded recursion relations

! a simple example: if B ! 1 then expand the following relation in B

I(D; {νl}) =
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B(D − 1 − σ)

(
I(D − 2; {νl}) −
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)

and get

I(D − 2; {νl}) =
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“big terms”: O(1)
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+ (D − 1 − σ) B I(D; {νl})︸ ︷︷ ︸
“small term”: O(B)

“more difficult” integral

Example: if B is very small, numerical instabilities from
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standard relations fail at exceptional points (accidental 
degeneracies, thresholds):   det(Sij)→ 0 or B ∝ det(Gij)→ 0

Exceptional momentum configurations

IDEA: exploit the existence of a small parameter (pa-

rameterizing the vicinity to the exceptional momentum

configuration) to define expanded recursion relations

! a simple example: if B ! 1 then expand the following relation in B
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O(1) O(1) O(1)



︸ ︷︷ ︸
O(B)

Giulia Zanderighi − Precision QCD at LHC /31

Exceptional configurations  

15

standard relations fail at exceptional points (accidental 
degeneracies, thresholds):   det(Sij)→ 0 or B ∝ det(Gij)→ 0

Exceptional momentum configurations

IDEA: exploit the existence of a small parameter (pa-

rameterizing the vicinity to the exceptional momentum

configuration) to define expanded recursion relations

! a simple example: if B ! 1 then expand the following relation in B

I(D; {νl}) =
1

B(D − 1 − σ)

(
I(D − 2; {νl}) −

N∑

i=1

biI(D − 2; {νl − δli})
)

and get
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“big terms”: O(1)
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Example: if B is very small, numerical instabilities from
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‣practical implication: the method does not work! 

‣this is the main problem of numerical methods 

O(1) O(1) O(1)
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Recursive application of the same relation allows one to 
compute integrals with arbitrary accuracy  

➪
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Does this work?

A method without application is like a closed bottle of red wine: no 
matter how big the name on it, you don’t know if it’s good till you open it 

a simple set of expanded relations allow one to treat any 
exceptional case 

no analytical understanding of the singularity is required 
automatic switch to expanded relations when needed  ➪

reach any predefined accuracy, at the price of computing 
more higher dimensional-integrals 
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Applications  

warmup: recompute some know results 

four-photon amplitudes

four-gluon amplitudes

five-gluon amplitudes

new results

Higgs plus di-jet production via gluon fusion in the large       
mt-limit at NLO

six-gluon amplitudes

ongoing... 

18
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-clean: small QCD effects
-known at NLO [Figy et. al `03]

-most important for measurements 
of the Higgs couplings 

Higgs plus dijet production

Higgs plus dijet production via VBF is one of the most promising

channels to measure the Higgs couplings at the LHC

Vector Boson Fusion

O
(
α2

ew

)

H

W+

W−

Gluon Gluon Fusion

O
(
α4

s

)

H

g

g

! small QCD uncertainties

! suitable for Higgs coupling

measurements

! known at NLO

Figy, Oleari, Zeppenfeld, ’03

! large QCD uncertainties

! despite kinematical cuts

remains dominant background

! NLO new!

Vector Boson Fusion
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! small QCD uncertainties

! suitable for Higgs coupling

measurements

! known at NLO
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! large QCD uncertainties

! despite kinematical cuts

remains dominant background

! NLO new!

Vector Boson Fusion

-large QCD corrections
-dominant background to VBF-
Higgs production

-important to know it at NLO

Higgs plus dijet production

Higgs plus dijet production via VBF is one of the most promising

channels to measure the Higgs couplings at the LHC

Vector Boson Fusion

O
(
α2

ew

)

H

W+

W−

Gluon Gluon Fusion

O
(
α4

s

)

H

g

g

! small QCD uncertainties

! suitable for Higgs coupling

measurements

! known at NLO

Figy, Oleari, Zeppenfeld, ’03

! large QCD uncertainties

! despite kinematical cuts

remains dominant background

! NLO new!

Gluon gluon fusion

Large mt effective coupling
∼
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‣ After the discovery of the Higgs, will need to identity it! 
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Higgs plus four partons virtual amplitudes

Gluon-gluon fusion processes

p1 p2

p3 p4

pH

@NLO

Diagrams 30/60 191 739

[Ellis,Giele,GZ ’06]
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Virtual Higgs plus 4 parton processes 

checks:
for the simpler H+4q done analytical calculations too

Ward identities, identities between color amplitudes (decoupling 
identities.... ), symmetries, collinear limits, poles

relative accuracy:
for non-exceptional points:
for exceptional points (predefined):               

20

O(10−13)
O(10−6)

Higgs plus four partons virtual amplitudes

Gluon-gluon fusion processes

p1 p2

p3 p4

pH

@NLO

Diagrams 30/60 191 739

[Ellis,Giele,GZ ’06]
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Selection cuts 

21

Signal most interesting in mass range 115GeV ! MH ! 160GeV

choose two Higgs masses at either end of the range

➥cuts designed to suppress ggf compared to VBF signal

|ηj | < 4.5 Rjj > 0.8pt > 40GeV

➡ inclusive cuts: select events where at least two jets satisfy 

|ηj1 − ηj2| > 4.2 mjj > 600GeVηj1 · ηj2 < 0

➡ vector boson fusion cuts: add the following requirements



Total cross sections: inclusive vs WBF cuts

Inclusive cuts: define jets with pt > 40 GeV, |yj | < 3.5, Rjj > 0.8

WBF cuts: add |yj1 − yj2| > 4.2, yj1 · yj2 < 0, mjj > 600 GeV

inclusive WBF-cuts

mH 115 GeV 160 GeV mH 115 GeV 160 GeV

σLO [pb] 3.50 2.19 σLO [pb] .271 .172

σNLO [pb] 4.03 2.76 σNLO [pb] .346 (±5) .236 (±3)

σWBF [pb] 1.77 1.32 σWBF [pb] .911 .731

! at LO, WBF cuts probe only ∼ 8% of the cross section⇒ integration

over phase space at NLO difficult⇒ statistical error of ∼ 1.5% shown

! WBF-cuts: NLO more important ∼ 30(40)% for mH = 115(160)GeV

Giulia Zanderighi − Precision QCD at LHC /31

Total cross section 
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σVBF∼ 1/2 σggF

‣ NLO moderate: 

‣ background dominates:

∼ 15(25)% for mH = 115(160)GeV

‣ NLO more important: 

‣ signal dominates:
σVBF∼ 5/2 σggF

∼ 30(40)% for mH = 115(160)GeV

[Campbell, Giele,GZ ’06]



‣ very moderate dependence:
         for

Scale dependence at NLO for “signal”

Inclusive cuts

! very moderate dependence, ∼ 1.5% in the range mH/2 < µ < 2mH

∼ 1.5%

Giulia Zanderighi − Precision QCD at LHC /31

Scale uncertainties  

23

Scale dependence LO vs NLO for ggf “background”

Inclusive cuts

! reduced renormalization scale dependence at NLO, still ∼ 35% effect

! NB: with lower pt cut things would get worse‣ reduced dependence at NLO, 

but still important (similar for VBF-cuts)

∼ 30(40)% for mH = 115(160)GeV1/2 < µ/MH <= 2

VBF signal: ggf background:

[Campbell, Giele,GZ ’06]



Figure 9: Azimuthal-angle distribution between the two final jets, with the WBF

cuts of Eqs. (5.1) and (5.3). Results are shown for gluon-fusion processes induced

by a top-quark loop with mt = 175 GeV and in the mt →∞ limit, computed using

the heavy-top effective Lagrangian, and for weak-boson fusion.

fusion and WBF processes are shown in Fig. 9. In the WBF process qQ→ qQH , the matrix

element squared is proportional to

|AWBF|2 ∝
1

(2 p1 · p2 + M2
W )2

1

(2 p3 · p4 + M2
W )2 ŝm2

jj , (5.5)

and is dominated by the contribution in the forward region, where the dot products in

the denominator are small. Since the dependence of m2
jj on φjj is mild, we have the flat

behavior depicted in Fig. 9. The azimuthal-angle distribution of the gluon-fusion process
is instead characteristic of the CP-even operator HGµνGµν , where Gµν is the gluon field

strength tensor [15]. This effective coupling can be taken as a good approximation for the
ggH coupling in the high-mt limit. Note that the large-mt limit (dotted line) is almost

indistinguishable from the mt = 175 GeV result (solid line).

Finally, in Fig. 10, we show the transverse-momentum distribution of the Higgs boson in
gluon-fusion (solid lines) and in WBF (dashes lines) processes, with the inclusive selection

of Eq. (5.1). Within these cuts, both differential cross sections peak around a value of
pTH ≈ 50 GeV. Note, however, that, while the peak position of the WBF distribution is

largely tied to the mass of the exchanged intermediate weak bosons, the peaking of the gluon

24
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Because of CP even nature of SM Higgs, azimuthal distribution of jets is 
peaked at iiiiiiiiiiiiiiiii  , for the ggF processes, while it’s almost flat for VBFφjj = 0,π

[Del Duca et al. ‘01]
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Example: azimuthal angle between jets

24

Because of CP even nature of SM Higgs, azimuthal distribution of jets is 
peaked at iiiiiiiiiiiiiiiii  , for the ggF processes, while it’s almost flat for VBFφjj = 0,π

-discriminators between the processes

-probe of CP properties of the Higgs

 Angular distributions are useful as

[Del Duca et al. ‘01]
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Because of CP even nature of SM Higgs, azimuthal distribution of jets is 
peaked at iiiiiiiiiiiiiiiii  , for the ggF processes, while it’s almost flat for VBFφjj = 0,π

-discriminators between the processes

-probe of CP properties of the Higgs

 Angular distributions are useful as

-an MC based study pointed out that the 

correlation is reduced at higher order
 [Odagiri ‘02]
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Figure 2: The distribution of the azimuthal angle between the two highest pT jets, after imposing
the cuts of eqn. (3.2). Simulation at the parton-shower level. The error-bars are for the statistics.

The correlation is evidently diluted. As the distribution is almost proportional to

1 + cos(2∆φ) for the CP-even case in fig. 1, we may say that there is dilution by nearly

one order of magnitude, in agreement with the analysis in sect. 2.

Next, let us look at the jet pT scale dependence of the correlation coefficient. In order

to account for the possibly intrinsically non-flat distribution, we calculate the mean of the

CP-even and CP-odd correlation coefficients given by:
〈∣∣∣∣

a1

a0

∣∣∣∣

〉
=

1

2

[(
a1

a0

)

CP−even

−
(

a1

a0

)

CP−odd

]
. (3.3)

For the evolution equation analysis, the correlation coefficient is calculated as the square

of <ρ‖> given in eqn. (2.20).

The result is shown in fig. 3, taking the jet pT scale to be the minimum pT j for the

HERWIG simulation and pT j in the evolution equation analysis as seen in eqn. (2.20). We

rather arbitrarily chose Λ = 180 MeV in this case, equal to the value of the HERWIG

variable QCDLAM. We set the higher scale ∼
√

ŝ = 120 GeV to correspond to the Higgs

boson mass.

We see that the HERWIG results are in good agreement with the evolution equation

analysis in sect. 2. The running of the correlation coefficient at low jet energy scales is

slower in HERWIG. This is natural when we consider the fact that the actual pT j is always

higher than the imposed pT j cut, especially so when the cut is low. We verified this by

taking the pT j > 10 GeV point and further imposing the constraint that neither of the

tagged jets have pT j greater than 20 GeV. We obtain 0.000 ± 0.024 for the coefficient in

this case.

As mentioned in sect. 2, there is further dilution in the HERWIG analysis compared

to the evolution equation analysis due to the imperfect polarization at the jet pT scale

– 7 –

[Del Duca et al. ‘01]
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Because of CP even nature of SM Higgs, azimuthal distribution of jets is 
peaked at iiiiiiiiiiiiiiiii  , for the ggF processes, while it’s almost flat for VBFφjj = 0,π

-discriminators between the processes

-probe of CP properties of the Higgs

 Angular distributions are useful as

-an MC based study pointed out that the 

correlation is reduced at higher order
 [Odagiri ‘02]

-a matrix element based study pointed out 

that the correlation mostly survives

[Del Duca et al. ‘06]

Figure 5: Normalised distribution of the
azimuthal distance between the two tagging
jets in Higgs + 2 parton production via gluon
fusion, with (solid histogram) and without
(dot–dashed curve) parton shower, and via
VBF with parton shower (dashes).

Figure 6: Normalised distribution of the
azimuthal distance between the two tagging
jets as in Fig. 5, but for Higgs + 3 parton
production.

Aφ parton level shower level

ggH + 2 jets 0.474(3) 0.357(3)

V BF + 2 jets 0.017(1) 0.018(1)

ggH + 3 jets 0.394(4) 0.344(4)

V BF + 3 jets 0.022(3) 0.024(3)

Table 1: The quantity Aφ as defined in Eq. (3.1), for event selection a).

We conclude that although it is desirable to include showering and hadronisation for

a quantitative analysis of the azimuthal correlation between two tagging jets in Higgs +

2 jet production, it is mandatory to generate the tagging jets through the hard radiation of

the appropriate matrix elements. In Fig. 6 we consider the azimuthal correlation between

the two tagging jets in Higgs + 3 parton generated production. The curves have the same

meaning as in Fig. 5. It is apparent that the hard radiation of a third jet does not modify

the pattern established in Fig. 5.

In order to characterise the ∆φjj distribution and quantify the relative depth of the

dip at ∆φjj = π/2, it is useful to introduce the following quantity,

Aφ =
σ(∆φ < π/4) − σ(π/4 < ∆φ < 3π/4) + σ(∆φ > 3π/4)

σ(∆φ < π/4) + σ(π/4 < ∆φ < 3π/4) + σ(∆φ > 3π/4)
, (3.1)

which is free of the normalisation uncertainties affecting the gluon-fusion production mech-

anism. Aφ can be used as a probe of the nature of the Higgs coupling, since for a SM gauge

coupling Aφ " 0, while for a CP-even (CP-odd) effective coupling Aφ is positive (nega-

tive) [7]. As can be seen from Table 1, it is very close to zero for VBF, while it is positive

for gluon fusion. Adding the parton shower on top of Higgs + 2 partons, the value of Aφ

decreases, quantifying the effect of the decorrelation between the tagging jets introduced

– 6 –

[Del Duca et al. ‘01]
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Because of CP even nature of SM Higgs, azimuthal distribution of jets is 
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interesting to see what happens at NLO
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that the correlation mostly survives
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Angular distributions

! no appretiable change of shape at NLO, correlation survives

" more on Higgs + 2 jets via gluon fusion in the talk of Zeppenfeld

Giulia Zanderighi − Precision QCD at LHC /31

Angular distribution

25

no appreciable change of shape, correlation survives at NLO
[Ellis, Giele,GZ ’06]



+ ∼ 12000
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The one-loop six gluon amplitude (I)

26

Motivation:
essential ingredient for NLO four-jet production at LHC

most complicated six-leg calculation in QCD 

tests applicability of the method to six-leg processes

Overview

diagrams



The one-loop six gluon amplitude (II)

Giulia Zanderighi − Precision QCD at LHC /3127

[Ellis, Giele,GZ ’06]

color decomposition: define color-stripped ampliudes

Elements of the calculation:
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supersymmetric decomposition: compute amplitudes with 
supersymmetric multiplets (                          ) in the loops (useful 
for comparison with partial analytical results in the literature)

AN=4, AN=1, AN=0

The one-loop six gluon amplitude (II)

Giulia Zanderighi − Precision QCD at LHC /3127

[Ellis, Giele,GZ ’06]

color decomposition: define color-stripped ampliudes

Elements of the calculation:

helicity amplitudes: fix the helicity of external gluons (8 independent 
amplitudes out of 64)

number of diagrams involved:12000, the most complicated involve 
up to rank six six-point integrals

modified tensor reduction: exploit completeness of space for N ≥ 5
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Results:

numerical methods: powerful, completely independent checks

agreement with published results, apart from           amplitudes, 

agreement with revised version

N = 1
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The one-loop six gluon amplitude (III)

28

Results:

complementary between analytical/numerical methods: scalar 
piece is numerically the “easiest” one

time estimate: 9s/amplitude on 2.8GHz Pentium

six gluon amplitudes first fully computed numerically, now 
analytical calculation completed too [Xiao,Yang,Zhu ‘06]

numerical methods: powerful, completely independent checks

agreement with published results, apart from           amplitudes, 

agreement with revised version

N = 1
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The one-loop six gluon amplitude (III)

28

For N=6 it’s still a long way to go from amplitudes to cross-
section. For the moment we decided not to purse this further. 

Results:

complementary between analytical/numerical methods: scalar 
piece is numerically the “easiest” one

time estimate: 9s/amplitude on 2.8GHz Pentium

six gluon amplitudes first fully computed numerically, now 
analytical calculation completed too [Xiao,Yang,Zhu ‘06]

numerical methods: powerful, completely independent checks

agreement with published results, apart from           amplitudes, 

agreement with revised version

N = 1
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Ongoing/next applications

Giulia Zanderighi − Precision QCD at LHC /3129

                      cross section at NLOpp→WW + 1jet
background to Higgs and new physics searches

stepping stone to pp→WW + 2jets

                 and                    cross section at NLOpp→WWW pp→WWZ

measurement of anomalous couplings 

background to SUSY tri-lepton signal 

background to associated              production

                           top-like signature  

H + W

WWZ(Z → bb̄)

                         cross section at NLOpp→WW + 2jets
background to Higgs + 2 jet production 

background to     productiontt̄
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time estimate: <1s per virtual ampliude 

                qq̄ →WWg

  qq̄ →WW, qq̄ → γg, qq̄ → Zg
gg →WW

 virtual calculation done

 real corrections known (and recomputed)
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Status of WW+jet

 higher order                    (enhanced by gluons PDFs) gg →WWg
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 warmup: recalculation of known virtual results 

checks done: Ward identities and poles 

time estimate: <1s per virtual ampliude 

                qq̄ →WWg

  qq̄ →WW, qq̄ → γg, qq̄ → Zg
gg →WW

 virtual calculation done

 real corrections known (and recomputed)

 subtraction terms done

 last piece missing: massive top/botton contribution (in progress) 

 virtual calculation done
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Conclusions

Giulia Zanderighi − Precision QCD at LHC /3131

We developed a method to evaluate one-loop corrections to N-leg 
(N<7) processes and implemented it in a numerical program 

Applications:

‣ Higgs plus dijet via gluon fusion at the LHC

‣ six gluon amplitudes 

‣ in progress: WW+jet, ZZ+j,WWW, ZZW

‣ Next: WW+2 jets


