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Higgsless Models

• literally break the electroweak 
symmetry without producing a Higgs 
boson,

• are effective field theories,

• may be viewed as “dual” to models of 
dynamical symmetry breaking, such as 
walking technicolor. 
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“Minimal” Higgsless Models

• The “Standard Model” Higgsless

• It is a non-renormalizable theory. 
Example, unitarity of             scattering 
is violated at 1.6 TeV.
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• N – Site Higgsless Model
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• N – Site Higgsless Model

• Approximate SM on the end sites.

“Minimal” Higgsless Models

g2 ≪ g̃2 g′2 ≪ g̃2



g g̃ g̃ g̃ g′
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• N – Site Higgsless Model

• Approximate SM on the end sites. SM is 
recovered for                  .

“Minimal” Higgsless Models

f, g̃ →∞
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• N – Site Higgsless Model

• Flat background with “brane” kinetic 
terms     approx. equally spaced states.

“Minimal” Higgsless Models

γ W,Z W1, Z1 W2, Z2 WN , ZN
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• N – Site Higgsless Model

•
extra-dimensional model, with flat 
background and large brane kinetic 
terms.

“Minimal” Higgsless Models

N →∞, f ∼
√
N + 1, g̃ ∼

√
N + 1
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• Example:            elastic scattering.

• Upper bound on         :                     .        
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Delay of Unitarity Violation

• Example:            elastic scattering.

• However a coupled channel analysis 
gives much lower bounds.
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Coupling of Matter Fields

• Localized fermions. ψR
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Coupling of Matter Fields

• Localized fermions.

• Notice:      couples to both first and last 
sites. Non local from a deconstructed 
point of view, fine in theory space.
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Coupling of Matter Fields

• Localized fermions.

• Also, mass term from chain of     fields            
Wilson line in continuum limit          non-
local in 5D
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Σ

LY ukawa = ψ̄LΣ1Σ2 · · ·ΣN+1ψR + h.c.



Coupling of Matter Fields

• Localized fermions.

• To order                      the corrections 
are purely oblique:                                 .

ψR

ψL

(mW /mW1
)2

W ∼ Y ∼ (mW/mW1
)4



Coupling of Matter Fields

• Localized fermions.

• At tree level:
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, αT ≃ 0, αU ≃ 0



Coupling of Matter Fields

• Localized fermions.

• Also, because of custodial symmetry:

ψL

ψR

∆ρ ≡ ρ− 1 = 0



Coupling of Matter Fields

• First, localized fermions.

• General result for localized fermions 
(Chivukula et al., 2004) :

S − 4 cos θWT � O(1)

ψL

ψR
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• Delocalized fermions.
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Coupling of Matter Fields

• Delocalized fermions.

• amount of SM left-handed fermion
delocalization,                    amount of 
SM right-handed fermion delocalization.

ψ(N+1)RψNRψ2Rψ1R

ψNL

tL =
tuR , tdR =

ψ0L ψ1L ψ2L



Coupling of Matter Fields

• Delocalized fermions.

• SM fermions mostly        and               .
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Coupling of Matter Fields

• Delocalized fermions.

• Local mass terms.

ψ(N+1)RψNRψ2Rψ1R

ψNL

Mψ̄jLΣj+1ψ(j+1)R + h.c. Mψ̄jLψjR + h.c.
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Coupling of Matter Fields

• Delocalized fermions.

• Gauge and fermion mass 
scales independent.

ψ(N+1)RψNRψ2Rψ1R

ψNLψ0L ψ1L ψ2L

M = f



Coupling of Matter Fields

• Delocalized fermions.

• If                         ,     can be tuned to 
zero.

ψ(N+1)RψNRψ2Rψ1R

ψNL

tL ∼ mW /mW1
S
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Coupling of Matter Fields

• Delocalized fermions.

• At tree level:

ψ(N+1)RψNRψ2Rψ1R

ψNL

S = 0, T ≃ 0, U ≃ 0
∆ρ = 0

ψ0L ψ1L ψ2L



Coupling of Matter Fields

• Delocalized fermions.

• With      fixed, fermion masses uniquely 
determined by               .
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Coupling of Matter Fields

• Delocalized fermions.

• Therefore, the only BSM parameter are 
the gauge and fermion mass scales,        
and     .
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One Loop Correction to

• The fermionic loop contribution is 
cutoff independent.

• It can be compared to experimental 
data: lower bound on the fermion sector 
mass scale,     .

• Only the top-bottom loops give non-
negligible contributions.

• as               . Setting           , 
leading order new physics contribution 
of order      .

M

ρ

∆ρ→ 0 ttR → tbR tbR = 0

t4tR



• arises from .

One Loop Correction to ρ
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• It has been proved analytically that the 
infinities cancel at all orders.
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• It has been proved analytically that the 
infinities cancel at all orders.

• The analytical calculation of      has 
been made for           and             .

• The arbitrary form of             ,  for 
arbitrary    , is

One Loop Correction to

∆ρ
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One Loop Correction to
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• Experimental bound                        .

One Loop Correction to

(∆ρ)new � 10
−3

ρ



• Experimental bound                        .

• This implies that the mass of the first 
heavy fermion is ten times or more the 
mass of      .
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• Experimental bound                        .

• This implies that the mass of the first 
heavy fermion is ten times or more the 
mass of      .

• Therefore the theory needs to be UV 
completed long before reaching the 
lightest fermion excited mode.

One Loop Correction to

(∆ρ)new � 10
−3

W1
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• There are also other bounds on the 
gauge and fermion mass scales.

One Loop Correction to ρ
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Conclusions

• In Higgsless models                          are 
naturally suppressed at tree level.

• can be tuned to zero by appropriately 
delocalizing the fermion fields.

• Fermionic one-loop corrections to the    
parameter are cutoff independent.

• They impose a strong lower bound on 
the fermion mass scale: a UV completion 
is needed before the first heavy mode. 
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