One Loop Correction to the ρ Parameter in Higgsless Models

by Roshan Foadi

Niels Bohr Institute (Copenhagen) & Southern Denmark University (Odense)

Higgsless Models

 literally break the electroweak symmetry without producing a Higgs boson,

Higgsless Models

- literally break the electroweak symmetry without producing a Higgs boson,
- are effective field theories,

Higgsless Models

- literally break the electroweak symmetry without producing a Higgs boson,
- · are effective field theories,
- may be viewed as "dual" to models of dynamical symmetry breaking, such as walking technicolor.

The "Standard Model" Higgsless

The "Standard Model" Higgsless

 $\mathcal{L} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu}$

The "Standard Model" Higgsless

 $\mathcal{L} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$

The "Standard Model" Higgsless

 $\mathcal{L} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$ $+ \frac{4}{f^2} \left(D^\mu \Sigma \right)^\dagger D_\mu \Sigma$

The "Standard Model" Higgsless

 $\mathcal{L} = -\frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$ $+ \frac{4}{f^2} \left(D^{\mu} \Sigma \right)^{\dagger} D_{\mu} \Sigma \qquad \Sigma = e^{i\pi^a T^a}$

The "Standard Model" Higgsless

• It is a non-renormalizable theory. Example, unitarity of $W_L^+W_L^-$ scattering is violated at 1.6 TeV.

N-Site Higgsless Model

 $\mathcal{L} = -\frac{1}{4} \sum_{j=0}^{N} W_{j\mu\nu}^{a} W_{j}^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{4}{f^2} \sum_{j=1}^{N+1} (D^{\mu} \Sigma_{j})^{\dagger} D_{\mu} \Sigma_{j}$

N-Site Higgsless Model

· Approximate SM on the end sites.

 $\ll ilde{q}^2 \quad q\prime^2 \ll ilde{q}^2$

N-Site Higgsless Model

- Approximate SM on the end sites. SM is recovered for $f, \ \tilde{g} \to \infty$.

N-Site Higgsless Model

 Flat background with "brane" kinetic terms → approx. equally spaced states.

N-Site Higgsless Model

• Example: $W_L^+W_L^-$ elastic scattering.

• Example: $W_L^+W_L^-$ elastic scattering.

• Example: $W_L^+W_L^-$ elastic scattering.

• Example: $W_L^+ W_L^-$ elastic scattering.

• Upper bound on $m_{W_1}: m_{W_1} \lesssim 1 \text{ TeV}$.

• Example: $W_L^+ W_L^-$ elastic scattering.

 However a coupled channel analysis gives much lower bounds.

 ψ_R

Localized fermions.

 $\psi_L = \left(egin{array}{c} u_L \ d_L \end{array}
ight) \quad \psi_R = \left(egin{array}{c} u_R \ 0 \end{array}
ight) + \left(egin{array}{c} 0 \ d_R \end{array}
ight)$

• Notice: ψ_L couples to both first and last sites. Non local from a deconstructed point of view, fine in theory space.

• Also, mass term from chain of Σ fields \rightarrow Wilson line in continuum limit \longrightarrow non-local in 5D

$$\mathcal{L}_{Yukawa} = \bar{\psi}_L \Sigma_1 \Sigma_2 \cdots \Sigma_{N+1} \psi_R + h.c.$$

• Localized fermions. ψ_R ψ_L

• To order $(m_W/m_{W_1})^2$ the corrections are purely oblique: $W \sim Y \sim (m_W/m_{W_1})^4$.

 ψ_R

• Localized fermions.

At tree level:

$$\alpha S \sim \left(\frac{m_W}{m_{W_1}}\right)^2, \ \alpha T \simeq 0, \ \alpha U \simeq 0$$

• Localized fermions. ψ_R ψ_L

Also, because of custodial symmetry:

 $\Delta \rho \equiv \rho - 1 = 0$

 ψ_R

• First, localized fermions.

• General result for localized fermions (Chivukula et al., 2004):

$$S - 4\cos\theta_W T \gtrsim \mathcal{O}(1)$$

• Delocalized fermions.

• Delocalized fermions.

• Delocalized fermions.

• t_L = amount of SM left-handed fermion delocalization, t_{u_R} , t_{d_R} = amount of SM right-handed fermion delocalization.

• Delocalized fermions.

• SM fermions mostly ψ_{0L} and $\psi_{(N+1)R}$.

• Delocalized fermions.

Local mass terms.

• Delocalized fermions.

• Local mass terms.

 $M\bar{\psi}_{jL}\Sigma_{j+1}\psi_{(j+1)R} + \mathbf{h.}c.$

• Delocalized fermions.

Local mass terms.

 $M\bar{\psi}_{jL}\Sigma_{j+1}\psi_{(j+1)R} + h.c.$

 $M\bar{\psi}_{jL}\psi_{jR} + \mathrm{h.}c.$

• Delocalized fermions.

• $M \neq f \longrightarrow$ Gauge and fermion mass scales independent.

• Delocalized fermions.

• If $t_L \sim m_W/m_{W_1}$, S can be tuned to zero.

• Delocalized fermions.

- At tree level: $S=0, \ T\simeq 0, \ U\simeq 0$

• Delocalized fermions.

- With t_L fixed, fermion masses uniquely determined by t_{u_R}, t_{d_R} .

• Delocalized fermions.

• Therefore, the only BSM parameter are the gauge and fermion mass scales, f and M .

 The fermionic loop contribution is cutoff independent.

- The fermionic loop contribution is cutoff independent.
- It can be compared to experimental data: lower bound on the fermion sector mass scale, M.

- The fermionic loop contribution is cutoff independent.
- It can be compared to experimental data: lower bound on the fermion sector mass scale, M.
- Only the top-bottom loops give nonnegligible contributions.

- The fermionic loop contribution is cutoff independent.
- It can be compared to experimental data: lower bound on the fermion sector mass scale, M.
- Only the top-bottom loops give nonnegligible contributions.
- $\Delta \rho \rightarrow 0$ as $t_{t_R} \rightarrow t_{b_R}$. Setting $t_{b_R} = 0$, leading order new physics contribution of order $t_{t_R}^4$.

• $\Delta \rho \neq 0$ arises from $\Pi_{11}(0) - \Pi_{33}(0) \neq 0$.

• $\Delta \rho \neq 0$ arises from $\Pi_{11}(0) - \Pi_{33}(0) \neq 0$.

One Loop Correction to

• $\Delta \rho \neq 0$ arises from $\Pi_{11}(0) - \Pi_{33}(0) \neq 0$.

• It has been proved analytically that the infinities cancel at all orders.

- It has been proved analytically that the infinities cancel at all orders.
- The analytical calculation of $\Delta\rho$ has been made for N=1 and $N\to\infty$.

- It has been proved analytically that the infinities cancel at all orders.
- The analytical calculation of $\Delta\rho$ has been made for N=1 and $N\to\infty$.
- The arbitrary form of $(\Delta \rho)_{new}$, for arbitrary N, is

$$(\Delta \rho)_{new} = \frac{12\kappa}{16\pi^2} \frac{t_{t_R}^4 M^2}{v^2}$$

• Experimental bound $(\Delta \rho)_{new} \lesssim 10^{-3}$.

- Experimental bound $(\Delta \rho)_{new} \lesssim 10^{-3}$.
- This implies that the mass of the first heavy fermion is ten times or more the mass of W_1 .

- Experimental bound $(\Delta \rho)_{new} \lesssim 10^{-3}$.
- This implies that the mass of the first heavy fermion is ten times or more the mass of W_1 .
- Therefore the theory needs to be UV completed long before reaching the lightest fermion excited mode.

 There are also other bounds on the gauge and fermion mass scales.

- In Higgsless models $\hat{T}, \ \hat{U}, \ W, \ Y$ are naturally suppressed at tree level.

- In Higgsless models $\hat{T}, \ \hat{U}, \ W, \ Y$ are naturally suppressed at tree level.
- \hat{S} can be tuned to zero by appropriately delocalizing the fermion fields.

- In Higgsless models $\hat{T}, \ \hat{U}, \ W, \ Y$ are naturally suppressed at tree level.
- \hat{S} can be tuned to zero by appropriately delocalizing the fermion fields.
- Fermionic one-loop corrections to the ρ parameter are cutoff independent.

- In Higgsless models $\hat{T}, \ \hat{U}, \ W, \ Y$ are naturally suppressed at tree level.
- $\cdot \ S$ can be tuned to zero by appropriately delocalizing the fermion fields.
- Fermionic one-loop corrections to the ρ parameter are cutoff independent.
- They impose a strong lower bound on the fermion mass scale: a UV completion is needed before the first heavy mode.