Università degli Studi Ferrara

Simulazioni MonteCarlo del processo $t\bar{t}$ + N jet ai collider adronici

in collaborazione con: M.L. Mangano, M. Moretti, F.Piccinini.

MCWS Frascati, 23 Maggio 2006

Sommario

- Produzione $t\bar{t}$ + n jet ai collider adronici
- Prescrizione di matching in ALPGEN (procedura mlm)
- Analisi della stabilità della prescrizione : $t\bar{t}$ + 3 jet
- Confronto tra ALPGEN e MC@NLO: $t\bar{t}$ + 1 jet
 - Osservabili inclusive
 - Osservabili legate alla radiazione

I processi con molti jet nello stato finale possono essere simulati con 2 tecniche differenti:

- I strategia: generare il processo partonico più semplice possibile, generando gli ulteriori partoni esclusivamente con il Parton Shower.
 - risomma i termini soffici e collineari
 - problemi con emissioni a grande angolo
- II strategia: generare attraverso Elementi di Matrice esatta l'evento con molti partoni in stato finale, e successivamente applicare il PS.
 - migliora il comportamento a grande angolo
 - problemi con il double counting

the MLM procedure

- prescrizione per utilizzare Matrix Element + Parton Shower, che applica un veto ad eventi doppi
- non prevede nessuna modifica, né di PS, né di ME (modulo un reweighting di α_s)
- indipendente dal particolare PS
- per un confronto critico con altre tecniche di matching, si veda:
 S. Hoche, F. Krauss, N. Lavesson, L. Lonnblad, M. Mangano, A. Schalicke and S. Schumann,
 "Matching parton showers and matrix elements [hep- ph/0602031]
- attualmente implementata in ALPGEN(2.05)

M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, JHEP 0307 (2003) 001 [hep- ph/0206293] Il veto rimuove il double counting a livello double- log (soffice e collineare) e single- log(collineare) eliminando gli eventi ME descritti anche (meglio) da PS

Abbiamo 2 set di parametri che determinano la simulazione:

- P^t e ΔR che separano la regione ME da PS (parton level)
- $E_{jet}^t e \Delta R_{jet}$ che determinano il veto

in teoria indipendenti! in pratica, si cerca la regione dei parametri che:

- sia stabile rispetto a variazioni dei parametri
- abbia un'alta efficienza di matching

Analisi della stabilità: variazioni dei parametri

Setup delle simulazioni

- produzione di coppie $t\bar{t}$ + 0,1,2,3 jet
- interfaccia con HERWIG
- simulazioni sia LHC che TeVatron
- contribuiscono ai jet solo particelle entro $-2.5 < \eta < 2.5$
- ricostruzione dei jet: GETJET cone- clustering algorithm
 F. E. Paige and S. D. Protopopescu, in "Physics of the SSC", Snowmass, 1986, Colorado, edited by R. Donaldson and J. Marx
- si mantiene il top non decaduto
- nessuna adronizzazione e underlying event

eliminare le sistematiche comuni (adronizzazione, jet dal top, ...) per evidenziare le eventuali discrepanze

Stabilità della prescrizione mlm

strategia: variare i parametri di matching e/o di generazione

Matching	$\sigma_{tot}(pb)$
$E_{min}^t = 20 GeV, \Delta R = 0.7$	468.2(7)
$E_{min}^t = 30 GeV, \Delta R = 0.5$	443.7(7)
$E_{min}^t = 20 GeV, \Delta R = 0.9$	474.5(7)
$E_{min}^t = 30 GeV, \Delta R = 0.7$	464.7(7)

Matching = Generazione	$\sigma_{tot}(pb)$
$E_{min}^t = 30 GeV, \Delta R = 0.7$	441.9(7)
$E_{min}^t = 20 GeV, \Delta R = 0.5$	478.2(7)
$E_{min}^t = 20 GeV, \Delta R = 0.7$	468.2(7)
$E_{min}^t = 20 GeV, \Delta R = 0.9$	446.0(7)

Generazione: $P_{min}^t = 20 \, GeV/c, \, \Delta R = 0.7$

- le variazioni sono al di sotto del 10%: buona stabilità
- aumentano i parametri di generazione→ diminuisce la sezione d'urto
- dipendenza non banale dai parametri di matching (work in progress)

Stabilità rispetto alla generazione

 $\square P_{min}^t = 20 \, GeV/c, \, \Delta R = 0.7 \Rightarrow P_{min}^t = 20 \, GeV/c, \, \Delta R = 0.9 \, \text{N.B.}$ medesimi tagli in matching

ALPGEN & MC@NLO

Processo: $t\bar{t} + 1$ jet

- S. Frixione and B. R. Webber, "The MC@NLO 3.2 event generator" hep-ph/0601192 General approach: S. Frixione and B. R. Webber, JHEP 0206 (2002) 029 [hep-ph/0204244]; *tī* production: S. Frixione, P. Nason and B. R. Webber, JHEP 0308 (2003) 007[hep-ph/0305252].
- ALPGEN:
 - Generazione: $P_{min}^t = 30 \, GeV$, $\Delta R = 0.7$
 - Matching: $E_{min}^t = 30 \text{ GeV}, \Delta R = 0.7$

Definizione dei jet per l'analisi:

TeVatron $E_{min}^t = 15 \, GeV$, $\Delta R = 0.4$ LHC $E_{min}^t = 20 \, GeV$, $\Delta R = 0.5$

Confronto tra ALPGEN e MC@NLO→ introdurre il K- factor

TeVatron K = 1.45 *LHC* K = 1.57

```
Osservabili al TeVatron, P_{t+\bar{t}}^T, Y_{t(\bar{t})}
```


sostanziale accordo nella shape

LHC: MC@NLO più soft rispetto ALPGEN nelle code

Extra-radiazione, P^T del jet leading e ΔR_{jet}

LHC: MC@NLO(\$) più soft rispetto ALPGEN(\$) nelle code

Extra-radiazione, *Y* del jet leading

Struttura differente sia TeVatron che LHC TeVatron effetto maggiore, studiamo i contributi parziali

Jet da extra-radiazione, Y_{jet} , HERWIG

Conclusioni

- Abbiamo studiato la prescrizione di matching mlm implementata in ALPGEN
- Impatto dei contributi con n extra- partoni: il matching mlm separa efficacemente lo spazio fasi, rigettando gli eventi doppi (double log e single log collineari)
- La procedura di matching risulta stabile rispetto a (piccole) variazioni dei parametri (work in progress)
- Confrontato ALPGEN(0+1) normalizzato con MC@NLO
 - Osservabili della coppia $t\bar{t}$, sostanziale accordo
 - Osservabili legate alla radiazione, discrepanze evidenti
- Il PS evidenzia uno "svuotamento" nel (leading) jet a Y = 0
- ALPGEN veta gli eventi da PS e utilizza eventi da ME, riempiendo tale regione

Plots addizionali

Y , contributo ME al leading jet, LHC

Y, contributo ME al leading jet, TeVatron

Y leading jet >100 GeV

Y leading jet >50 GeV

Y leading jet >150 GeV

Contributi parziali a distribuzioni del top, TeVatron

osservabili esclusive LHC

contributi parziali al numero di jet

Number of jets

Variabili leptoniche, TeVatron

Delta Phi(charged lepts)

Variabili leptoniche, LHC

Delta Phi(charged lepts)

the MLM procedure II

- genera campioni:
 - ★ $[t\bar{t}]_{esclusivo}$
 - * ...
 - ★ $[t\bar{t}+N-1 \text{ partoni}]_{esclusivo}$
 - ★ $[t\bar{t}+N \text{ partoni}]_{inclusivo}$
- ogni evento a parton level viene processato dal PS e successivamente da un algoritmo di ricostruzione dei jet (definito dai parametri ΔR e E_{min}^T).
- veto: l'evento viene accettato solo se
 - tutti i partoni corrispondono ad un jet ricostruito (entro un ΔR)
 - ★ campione esclusivo → $N_{jet}^o = N_{partoni}^o$
 - * campione inclusivo $\rightarrow N_{jet}^{o} > N_{partoni}^{o}$

Esempi di applicazione del veto

cettato