Simulating the $H \rightarrow WW \rightarrow IvIv$ Channel

Including new theoretical developments into an experimental analysis

Anne-Sylvie Giolo-Nicollerat (CERN-CMS) in collaboration with ETH-Zürich group Workshop sui Monte Carlo, la Fisica e le Simulazioni a LHC Frascati, May 22nd 2006

Outline

Goal: estimate CMS discovery potential for $H \rightarrow WW$

How to get a good simulation ? And at NLO ?

- Generation of signal and backgrounds at (N)NLO: reweighting
- Generating top background: generator comparison
- Including singly resonant top production at NLO

The $H \rightarrow WW \rightarrow |v|v$ channel

First proposed Dittmar, Dreiner, Phys. Rev. D55, 1997

- Discovery channel for 2mw<mH<2mz</p>
- Branching ratio close to 1 in this region
- But high backgrounds and no narrow mass peak reconstruction (need good S/B and good background understanding)

Signature for $H \rightarrow WW \rightarrow IvIv$

2 leptons plus missing energy Main backgrounds: WW, ttbar

Selection based on

Spin correlations (reduce WW)

Jet veto (reduce ttbar)

Leptons opening angle

generated distribution

Signal and backgrounds

Cross sections times e, μ, τ branching ratio (NLO)

• Higgs 165GeV gluon fusion: 2pb, qqH: 0.3pb

Main backgrounds

•	ttbar (doubly resonant top production)	86 pb
•	twb (singly resonant top production)	3.4pb
•	WW	l2pb
•	gg→ww (LO)	0.5pb

⇒ Need a good background rejection/understanding

Generation of signal and backgrounds at (N)NLO the reweighting technique

Signal and Background Generation

- need to know production cross sections and distributions of discriminating observables as precisely as possible
- Higher order QCD corrections are available
- simplest approach: inclusive K-factors

gg→H	LO (PYTHIA)	NLO (MC@NLO)	NNLO (FEHIP)
σ[pb]	12.20	23.75	27.78
K _{inc}	2.28	1.18	

- multiplication of each event with K_{inc} would give correct inclusive cross sections ...
- ... but not necessarily correct distributions and acceptance

A practical example:

Approximating Higgs pt spectrum using PYTHIA

pt(H)=0 at LO Need **higher order corrections** to predict **pt spectrum** PYTHIA LO+parton shower : mimic higher-order behavior

 \Rightarrow Higgs gets a pt through the parton shower

Jet veto \equiv cut on the Higgs p_t spectrum

Need an accurate description of Higgs pt spectrum

Reweighting

[Davatz et al. JHEP 0504, 2004]

 $p_t(WW)$ spectrum shape : PYTHIA \neq NLO (MC@NLO) reweight p_t spectrum $\Rightarrow p_t$ dependent k-factors

 \Rightarrow Apply method on gg \rightarrow H and WW production

Going one step further

[Davatz et al, hep-ph/0604077]

- NNLO parton generator FEHIP [Anastasiou, Melnikov, Petriello, Nucl.Phys.B724:197-246(2005)]
 ⇒ reweight MC@NLO(3.2) and PYTHIA(6.325)
- Reweighting in p_t(H) **and** Y(H)

$$K_{ij}^G := K^G(\{p_f\}) = \frac{\Delta \sigma_{ij}^{\text{PT}}}{\Delta \sigma_{ij}^G} \quad \text{if } p_\perp \in \left[p_\perp^j, p_\perp^{j+1}\right] \text{ and } Y \in \left[Y^i, Y^{i+1}\right]$$

Full event kinematic determined through pt, Y and jet multiplicity

Higgs transverse mass and rapidity

In Fehip, no log resummation Reweighting: constant K-factor from 0 to 25GeV rely on parton shower prediction for this region

The K-factors

Reweight Pythia and MC@NLO to FEHIP

A-S Giolo-Nicollerat

MCWS meeting May 22nd

Low p_t(H) description

Compare with calculation including **logarithm resummation** (NNLO+NNLL) Grazzini et al. [hep-ph/0302104] [hep-ph/0508068]

Low pt region: Still some uncertainty due to different models used

Jet veto efficiency

- Veto jets with $E_T > 30 \text{GeV}$ (H \rightarrow WW selection cuts)
- Jet veto efficiency (NNLO)
 0.47 Pythia rwth. to FEHIP^{NNLO}
 0.54 MC@NLO rwth. to FEHIP^{NNLO}
 6% spread
 0.54 FEHIP NNLO
- Comparison: jet veto efficiency (NLO)
 - 0.50 Pythia 0.51 MC@NLO 0.60 Pythia rwth. to FEHIP^{NLO} 0.68 FEHIP NLO

30% spread

At NNLO, jet multiplicity is better described \Rightarrow leads to smaller discrepancy between predictions

Kinematic variables

 $p_t(lep): very similar$ Apply selection cuts and (pythia)reweighting on: $p_t \rightarrow global \ K factor of 2.0$ $p_t and \Upsilon \rightarrow global \ K factor of 2.1$

 \Rightarrow Reweighting to Y <5% effect

Next step: add in FEHIP W decays to study lepton angles

Reweighting is a good phenomenological approach to include higher order corrections in event generators

Simulation of top background:

generator comparison

Simulating ttbar background

[Davatz, Zanetti, A.G.]

High cross section, need reduction of $O(10^5)$...

What is the accuracy of Monte Carlo predictions ?

Compare the predictions of PYTHIA, TOPREX, HERWIG and MC@NLO

	PYTHIA 6.227	TopREX 4.11	HERWIG 6.508	MC@NLO 2.31
Matrix Elements	LO	LO	LO	NLO
hadronization model	LUND	LUND	Cluster	Cluster
shower model	Q ² ordered	Q ² ordered	angular ordered	angular ordered
spin correlations between t and \overline{t}	no	yes	yes	no

study on generator tree (add cuts to include CMS acceptance)

ttbar: do we need reweighting?

Compare HERWIG and MC@NLO

Small (<10%) difference in jet veto efficiency (already two hard jets in LO) Similar lepton kinematics

\Rightarrow constant k-factors can be used

ttbar: effect from the different shower models

Compare PYTHIA and HERWIG

Pythia produces less and softer jets Sizable difference in jet veto efficiency (~15%)

Other cut efficiencies similar

ttbar: spin correlations

Compare PYTHIA and TOPREX

Including spin correlation flattens Φ_{II} distribution (but Φ_{II} more similar after jet veto) Difference of ~10% in selection efficiency

ttbar generator study - conclusion

Cannot rely only on ttbar Monte Carlo predictions (up to 30% spread in the predictions...)

Differences can be constrained/understood from data

Use a normalization region to estimate ttbar in the signal region

see M. Zanetti's talk tomorrow

Theoretical errors are also reduced in the efficiency ratio Vary renormalization and factorization scale : 40-50% variation in total cross section at LO 5% variation in the ratio ! [N. Kauer, Phys.Rev.D70, 2004]

Simulating singly resonant top production

Simulating singly resonant top

[solution proposed in les Houches '05]

t ~ 90% of total top cross 000000 section is doubly resonant ttbar g 00000 $\sim 10\%$ one off-shell top (twb) 100000 This fraction increases after jet veto From gluon splitting

Need to consider also singly resonant top production

How to get a NLO estimate of twb ?

Problem: NLO twb contains LO ttbar !!

ttbar and twb are well separated when a jet veto is applied [Campbell, Tramontano, hep-ph/0506289]

Leave out diagrams proportional to $\alpha^2 \alpha_w$

- ✦ Interference diagrams are neglected
- ✦ Gauge invariant solution
- ✦ Physically equivalent to a jet veto !
- ✦ But k-factor for twb is phase space dependent

Is twb kinematic different at NLO ? can we use a constant k-factor ?

Compare MCFM NLO and LO (parton level) with TOPREX (parton shower from PYTHIA)

	MCFM				TopREX
	LO		NLO		LO
Selection cuts	$\sigma \times BR$	rel. eff	$\sigma \times BR$	rel. eff	rel. eff
	(fb)		(fb)		
No cuts	271		377		
2 lep, $ \eta < 2, p_t > 20 \text{GeV}$	204	0.75	277	0.73	
$E_t^{miss} > 40$	148	0.73	209	0.75	0.75
$\phi_{\ell\ell} < 45$	20.8	0.14	34.4	0.16	0.17
$5 \text{ GeV} < m_{\ell\ell} < 40 \text{ GeV}$	10.6	0.51	15.6	0.45	0.50
Partonic jet veto, 40 GeV	1.55	0.15	1.12	0.07	0.16
$30 \text{ GeV} < p_t^{\ell \max} < 55 \text{ GeV}$	1.08	0.70	0.73	0.65	0.63
$p_t^{\ell \min} > 25 \text{ GeV}$	0.73	0.68	0.49	0.67	0.67

At NLO only jet veto has a different efficiency (as expected !)

In short: use parton shower MC to simulate twb and add a constant k-factor (calculated for the region defined by signal cuts)

CMS discovery potential in the $H \rightarrow WW \rightarrow IvIv$ channel

Generators used

- Signal PYTHIA
 WW PYTHIA
 WW PYTHIA
- wz, zz **PYTHIA** constant k-factors
- $gg \rightarrow WW$ private implementation from N. Kauer et al.
- ttbar, twb TOPREX k-factors of resp. 1.6/0.7

Plug them in a full CMS detector simulation

Selecting Higgs events

Start with 2 leptons, opposite charge:

- $E_t > 20$ GeV, $|\eta| < 2$, $\sigma_{IP} < 3$
- Missing energy > 50 GeV
- No jet with $E_t^{raw} > 15$ GeV and $|\eta| < 2.5$
- Φ_{II} < 45°
- 12 GeV< m_{ll} < 40 GeV
- 30 GeV < $p_t(lep)^{max}$ < 55 GeV
- pt(lep)^{min} > 25 GeV

Experimental details and issues: see M. Zanetti's talk tomorrow

Some distributions (full CMS detector simulation)

Missing energy

Leptons invariant mass

Expected signal and background

Leptons angular distribution after all cuts

Reaction $pp \rightarrow X$	$\sigma_{\rm NLO} \times {\rm BR}$	L1+HLT	2 leptons	All cuts
$\ell = e, \mu, \tau$	pb	Number of events per fb^{-1}		
$H \rightarrow WW \rightarrow \ell \ell, m_H = 160 \text{ GeV}$	2.34	1353	359	42
$H \rightarrow WW \rightarrow \ell \ell, m_H = 165 \text{ GeV}$	2.36	1390	393	46
$H \rightarrow WW \rightarrow \ell \ell, m_H = 170 \text{ GeV}$	2.26	1350	376	33
$qq \to WW \to \ell\ell$	11.7	6040	1400	12
$gg \rightarrow WW \rightarrow \ell\ell$	0.48	286	73	3.7
$\mathrm{tt} \to \mathrm{WWbb} \to \ell\ell$	86.2	57400	15700	9.8
$tWb \to WWb(b) \to \ell\ell$	3.4	2320	676	1.4
$ZW \rightarrow \ell\ell\ell$	1.6	1062	247	0.50
$ZZ \rightarrow \ell\ell, \nu\nu$	1.5	485	163	0.35
Sum backgrounds	105	67600	18300	28

good S/B ! Assume systematics of 13% for 5fb⁻¹

[All NLO cross sections from M. Spira and J. Campbell]

CMS Higgs discovery potential in H→WW→lvlv

Summary

- A Higgs could be **discovered** at CMS in the WW channel with I0fb⁻¹ if it has a mass between 150 and 180GeV
- The Higgs pt spectrum was **reweighted** to get a more accurate estimate of signal and WW background
 - A further step is to introduce an additional reweighting in Y, leading to a <5% correction
- **Top background** prediction vary a lot from generator to another. Need background estimation from data.
- Singly resonant top production was simulated and represent 13% of total top background

Special thanks to G. Davatz, G. Dissertori and F. Stöckli

References

- Combining Monte Carlo generators with next-toleading order calculations: event reweighting for Higgs boson production at LHC, Davatz et al., hep-ph/ 0604077
- Standard Model Higgs Discovery Potential of CMS in the H→WW→IVIV Channel, Davatz, Dittmar, Giolo-Nicollerat, CERN-CMS-NOTE 2006/047
- Systematic uncertainties of the top background in the H→WW channel, Davatz, Giolo-Nicollerat, Zanetti CERN-CMS-NOTE 2006/048

BACKUP slides

Adding gluon fusion to WW production

A-S Giolo-Nicollerat

MCWS meeting May 22nd

A limitation:

$qq \rightarrow WW \Phi_{II}$ distribution for MC@NLO and Pythia (reweighted on MC@NLO)

[Drollinger et al. CERN-CMS-NOTE-2005-024]

Reconstructing jets

Efficiency of jet veto depends on jet reconstruction !

Reducing fake jets

"Alpha parameter" allows to reduce the number of fakes

ttbar theory uncertainties reduced in ratio !

Variation of renormalization and factorization scale **40-50%** uncertainty at LO **5%** with the ratio !

Systematic errors on backgrounds (5fb⁻¹)

- ww: 17% (dominated by statistics)
- ttbar: 16% (dominated by systematics)
- wz ~20% (could be reduced with further study)
- gg→ww: ~30% (dominated by theoretical errors)
- wtb: ~22% (dominated by theoretical errors)