Higgs Boson discovery at the LHC

Marco Zanetti INFN and Physics Department Padova

Outline

- Physics of the Higgs Boson at LHC
- Overview of the main inclusive discovery channels
 - *H*->үү
 - ♦ H->ZZ->41
 - ♦ H->WW->2/2v
- 2 brief examples of exclusive channels
 - ◆ t-t_bar H; H->bb
 - ◆ q-q_bar H; H->WW->µvqq_bar
- Higgs properties measurement (Mass, Width, quantum numbers)

Disclaimer: results for CMS only (Physics TDR to appear soon)

LHC status

- No more so far to come
- Installation progressing well on schedule. Pilot run end 2007
- Integrated luminosity in 2008 (4 months) $\sim<1$ fb⁻¹

Higgs at LHC

Production

gluon-gluon fusion main production mechanism in the whole mass range

- O(10) pb for $M_{H} < 200$ GeV => 1 Higgs every ~30sec at $2*10^{33}$ cm⁻²s⁻¹
- Vector Boson Fusion has sizable x-section. Important for Higgs coupling and for W-W scattering (unitary-violating \sim 800 GeV) • t-t_bar associated production relevant at low $M_{_{\rm H}}$

Higgs at LHC

• b-b_bar dominates for low M_{μ} (till M_{μ} ~130 Gev)

- WW dominant decay mode in the rest of the mass range • ZZ opens up for $M_H^{>\sim} 2M_Z$
- $\Gamma_{_{\!\!H}}<1~{\rm GeV}$ for $M_{_{\!\!H}}<200~{\rm GeV},$ afterwards grows ~linearly with the mass (still a resonance?)

Higgs discovery channels

At sqrt(s) O(100) GeV, QCD but also Electroweak processes have huge x-sections. Signal events are overwhelmed by the background.
To isolate a phase-space region with mainly signal events (if possible) background rejection of O(10⁵) needed.

Main channels

• Mass range [115 , 130] GeV

♦ H->үү

- Mass range [130 , 150] and [180 , Λ]
 - ✤ H->ZZ->41 (I=µ, e) golden channel
- Mass range [150 , 170] GeV

• H->WW->212v (1= μ , e) silver channel

Exclusive (initial) final states can help in reducing the possible SM backgrounds:

- ◆ t-t_bar H; H->bb or H->yy
- ◆ q-q_bar H; H->WW->µvqq_bar; H->tt; . . .

 usually disfavored by the small x-section, by the difficult to predict contribution form SM background and detector performances

$H \rightarrow \gamma \gamma$

- In the low mass range no hope for H->b-b_bar inclusive search
- Decay occurs via W, top and bottom loop. $BR \sim 2^{*}10^{-3}$ till $M_{\mu} < 140$
- σ^*BR ranging between 100 and 70 fb between LEP limit (115) and 140 GeV

Backgrounds

- 2 real prompt photons (irreducible):
 - Production via q-q_bar and gg with a box diagram
 - Processes simulated at LO and renormalized with global K factor to NLO
- γ + jet (reducible)
 - \bullet the 2^{nd} candidate from photon emitted during jet fragmentation or misidentified jet or isolated π^0
- >2 jets (reducible)
 - both photon candidates from mis-measured jets
 - huge x-section. Difficult to simulate the needed statistics => cuts at generator level

H-> YY Detector Issues

Calorimetry

• H-> $\gamma\gamma$ sets the most stringent requirements for electromagnetic calorimeter performances. Optimal energy resolution for M_H determination and granularity for π^0 suppression

Primary Vertex

• At LHC the longitudinal spread of the interaction vertices is of 53 mm resulting in almost 2 GeV smearing in M_{μ} resolution

 The hard scattering produces charged tracks with harder momentum than minimum bias interactions

 Tracking back those tracks allows to define the primary vertex with a 5mm precision in 83% of the signal events at low luminosity (warning for high lumi)

H-> YY Detector Issues

Photon Conversion

- Big amount of material before the Electromagnetic calorimeter
- High probability of the photon to convert into e^+e^- pairs before reaching the E-cal => M resolution spoiled!

 \bullet Tracker itself used to reconstruct the e^+e^- pairs and to recover the photon energy resolution

marco zanetti - INFN Padova

H-> YY Analysis and Results

- Two approaches:
 - Standard cut-based analysis (photons' Et and isolation) applied to different Mι regions
 - Neural Network optimized analysis profiting of the different signalbackground kinematics and photon candidate isolation
- Background estimation from sidebands. Systematic error from the predicted shape, statistics uncertainty from the mass range to perform the fit on

H->ZZ->41

• muons (cleanest), electrons and combinations (double x-sec) considered as possible final states. Signal produced at LO and reweighted at NLO with $K(Pt_{H})$. Further enhancement due to interference of permutation of identical fermions from different Z's (15% at low MH).

- Backgrounds:
 - $\sim Z/\gamma Z/\gamma$ (irreducible). Generated with CompHEP (t and s channels) and reweighted with K(MH) to NLO (MCFM). gg->ZZ also included
 - \bullet Z/ $\gamma-b-b_bar$. Generated with CompHEP (gg and qqbar initial state) and reweighted with constant K to NLO (MCFM)
 - +++_bar. NLO x-sec (840 pb) used
- Other processes as bbbb, bbcc, cccc, single-top Z-cc, Wbb, Wcc demonstrated to be negligible

 $2e 2\mu$ final state

	tt	Zbb	ZZ
σ (fb)	840x10 ³	555x10 ³	28.9x10 ³
σ .BR. ϵ (fb)	744	390	37.0

H->ZZ->41

Selections and Search strategies

- Cleanest signal possible: 4 isolated, high Pt leptons pointing to the same primary vertex with at least two lepton with $M_{\mu} \sim M_{\gamma}$
- Two selections strategies:
 - M_H independent cuts (all analysis): to reduce systematic uncertainties and MC dependence
 - $M_{_{H}}$ dependent cuts (4 μ final state): $M_{_{4l}}$ is the most discriminating variable => Optimization only on isolation, Pt of the 3rd μ and window $M_{_{4l}}$
- In both cases only ZZ->41 remains as important background the others beeing negligible
- All analysis use to discriminate the presence of the signal the significance estimator(s) based on log-likelihood ratio $\int_{a}^{a} 14_{p} + \frac{1}{2} \int_{a}^{a} 14_{p} + \frac{1}{2} \int_{a}^{a} \frac{1}$

$$S_L = \sqrt{-2 \ln Q}$$
 where $Q = \left(1 + \frac{N_s}{N_b}\right)^{N_s + N_b} e^{-N_s}$

H->ZZ->41

Systematics on ZZ->41

- Sources:
 - PDF and QCD scale
 - NLO vs LO dynamics
 - Isolation efficiency
 - Reconstruction efficiency (only for electrons)
 - Energy/Momentum Scale
 - Identification (charge)
- Normalization from data compulsory. Two control samples:
 - Drell Yan (no statistical limitation)
 - A M_{μ} sidebands (reduces NLO-LO uncertainties, pays low statistics)

H->ZZ->41

Systematics for 4μ final state

 Extremely clean signal: 2 isolated high Pt leptons pointing to the same primary vertex, "high" Missing Et and NOTHING else in the detector

High x-sec*BR but NO Invariant mass peak!

Main backgrounds:

- \bullet WW. irreducible. Reweighted by NLO Pt_{ww}. gg->WW also simulated
- +++_bar. reduced by jet veto. NLO x-sec (840 pb) used
- Single top (Wt final state). Non trivial to separate from t-t_bar
- Drell Yan. in the case of same flavor final state, reduced by M₁ and MEt

♦ WZ, ZZ->21, b-b_bar negligible

 Discriminating variable is the opening angle between the 2 leptons (scalar nature of the Higgs + V-A structure of weak interactions). Spin correlation in the simulation matters!

 The viability of the channel depends on the possibility to evaluate each background contribution from the data H->WW->212v Detector Issues

 At the LHC the MEt is never 0. Long tail even in clean events like DY+0 jets.
 Need to normalize MEt measurement directly on data, best candidate Z boson

$$\alpha = \frac{\sum_{sel.tracks} p_T}{E_T(jet)}$$

Selections

Reaction $pp \rightarrow X$	$\sigma_{\rm NLO} \times {\rm BR}$	L1+HLT	2 leptons	All cuts
$\ell=\mathrm{e},\mu,\tau$	pb	Expected event rate in fb		
${ m H} ightarrow { m WW} ightarrow \ell\ell, { m m}_{ m H} = 160 \ { m GeV}$	2.34	1353 (58%)	359 (27%)	42 (12%)
${ m H} ightarrow { m WW} ightarrow \ell\ell$, ${ m m_{H}} = 165~{ m GeV}$	2.36	1390 (59%)	393 (28%)	46 (12%)
${ m H} ightarrow { m WW} ightarrow \ell\ell$, ${ m m_{H}} = 170~{ m GeV}$	2.26	1350 (60%)	376 (28%)	33 (8.8%)
$qq \to WW \to \ell\ell$	11.7	6040 (52%)	1400 (23%)	12 (0.9%)
$\mathrm{gg} ightarrow \mathrm{WW} ightarrow \ell\ell$	0.48	286 (60%)	73 (26%)	3.7 (5.1%)
$\mathrm{tt} \to \mathrm{WWbb} \to \ell\ell$	86.2	57400 (67%)	15700 (27%)	9.8 (0.06%)
$tWb \to WWb(b) \to \ell\ell$	3.4	2320 (68%)	676 (29%)	1.4 (0.2%)
$\mathrm{ZW} ightarrow \ell \ell \ell$	1.6	1062 (66%)	247 (23%)	0.50 (0.2%)
${ m ZZ} ightarrow \ell\ell, u u$	1.5	485 (32%)	163 (34%)	0.35 (0.2%)
Sum backgrounds	105	67600 (64%)	18300 (27%)	28 (0.2%)

Backgrounds normalization

 Compulsory to rely on data to get background contribution in the signal region. A control phase space region for each background eventually with subcontrol regions (e.g. for WW)

 The uncertainties on the extrapolated number of background events set the amount of integrated luminosity needed

t-t_bar background normalization (example)

Control region defined by the same selections as for the signal region but the jet veto. 2 b-tagged jets are required in addition
The procedure relies on the relation:

	Theor.	Theor. Detector systematics			Stat.	Total
	Error	JES	α crit.	b-tagging	Error	Error
(L = 1 fb ⁻¹)	10 %	10 %	4 %	11 %	24 %	30 %
(L = 5 fb ⁻¹)	10 %	6 %	4 %	9 %	11 %	19 %

|--|

Channel	Signal region	II region
Signal	14.3	0.0
tī	2.6	17.0
WW	5.1	0.0
DY	0.3	0.0
Wt,ZZ,WZ	0.8	0.1
all	23.1	17.1

H->WW->212v Results

190

ttH; *H-*>*b-b_bar*

• Extremely exclusive signature suitable for low M_{H} , disfavored by the low x-sec

- 3 final states taken in consideration:
 - H->bb_bar, t_bar-> $\mu/e v b$, t-> $\mu/e v b$ (fully leptonic)
 - H->bb_bar, t->bqq_bar, t_bar-> $\mu/e \ v \ b_bar$ (semileptonic)
 - H->bb_bar, t->bqq_bar, t_bar->b_bar qq (fully leptonic)
- In all cases many jets in the event. Background coming also from the wrong jets combinatorial
- Major backgrounds from ttbb, Ztt, tt+Njets and multijets QCD events
 Major problem is the normalization of the background from data: Anti b-tag methods used to select ttNjets background w/o signal contribution
 Many sources of uncertainty: manly MC predictions, Jet Energy Scale and
- b-tagging efficiency. These systematics (too pessimistic?) kill the signal.

	Mh=115	Mh=120	Mh=130
fully leptonic	1.76	1.39	0.86
semi leptonic (mu)	2.4	1.9	1.3
semi leptonic (e)	1.7	1.4	0.86
fully hadronic	2.61	2.37	1.61

q-q_bar H; H->WW->lvq-q_bar

 $_{\rm H}$ Exclusive signature suitable for ${\rm M}_{\rm H}$ ranging between 120 and high masses, characterized by two forward tagging jets

- Like inclusive H->WW but with hadronic W => Higgs mass
- Backgrounds from tt+Njets, W(W)+jets and QCD

 To extrapolate the selection efficiency for QCD events, the selections are factorized into 3 groups and each group's efficiency measured directly from data

 \bullet Main systematics from Jet energy scale and resolution, MEt resolution and lepton isolation (~15%)

Higgs properties

from H->ZZ->2e2µ

marco zanetti - INFN Padova

Higgs properties

Scalar CP violating PseudoScalar

Conclusions

• Most up-to-date full simulation studies show that the Higgs boson can be discovered with ~10 fb⁻¹ whatever M_{H} . For specific mass ranges (~160) even ~1 fb⁻¹ could be enough

• Exclusion at 95% can be obtained with 5 fb^{-1} for very low masses and ~ $1fb^{-1}$ in the rest of the mass range.

• However, pay attention to the systematic estimation!

 Exclusive channels not suitable for a fast discovery but useful as confirmation and for exploring Higgs properties
 Mass resolution ~0.1% for M Width resolution below natural width only

• Mass resolution ~0.1% for M_{H} . Width resolution below natural width only above 200 GeV. CP properties for higher luminosity

marco zanetti - INFN Padova

BAK UPs

• $m_{4\mu}$ distributions for randomly selected pseudo-experiments ('data') with the expected statistics for $L = 5 \text{fb}^{-1}$ and $L = 15 \text{ fb}^{-1}$.

assuming $m_{\rm H} = 150 \ GeV$

• $1-CL_b$ distributions show how incompatible with the B-only hypothesis are data:

• Low significance over the background expectation for $L = 5 fb^{-1}$

• Higher significance (above 3 σ) after accumulating 10 fb^-1 more

 $Q = \frac{\text{Probability}(s+b)}{\text{Probability}(b)}$ Likelihood Ratio: Significance Estimator: $S = \sqrt{2 \ln Q}$ One-bin LLR (counting experiment, S_{cL}) $2\ln Q = 2\ln \frac{\frac{(s+b)^n}{n!}e^{-(s+b)}}{\frac{b^n}{n!}e^{-b}} = 2n\ln(1+s/b) - 2s$ $2\ln Q = 2\sum_{bins} \left(n_i \ln \left(1 + s_i / b_i \right) - 2s_i \right)$ Binned LLR (S_{τ}) $2\ln Q = 2 \sum_{events} \ln \left(\frac{pdf_{S+B}(m_i)}{pdf_B(m_i)} \right)$ Unbinned LLR (S_{L})

ww control region

- $\Delta \phi$ between muons > 0.8
- 50 GeV < Muon Invarian Mass < 80 GeV

Number of events

Channel	Signal region	WW region	tt(WW) region	DY (WW) region
Signal	14.3	6.0	0.0	0.1
tī	2.6	6.2	24.7	3.2
WW	5.1	11.5	0.0	4.4
DY	0.3	15.0	0.0	267
Wt,ZZ,WZ	0.8	1.9	0.1	7.3
all	23.1	40.6	24.8	282

tt(WW) control region

- JET veto removed
- 2 b-tagged jets

Dy(WW) control region

• 80 GeV <
$$m_{\mu 1 \mu 2}$$
 < 100 GeV

 $\frac{N_{signal_{reg}}^{MC}}{N_{control_{reg}}^{MC}} = \frac{11.5}{5.1}$

$$N_{control_{reg}} = N_{tot} - N_{tt} - N_{DY} - N_{Wt, ZZ, WZ} - N_{h \, 165} \qquad \Longrightarrow \qquad N_{signal_{reg}} = 5.1 \quad (*)$$

$$N_{control_{reg}} = N_{tot} - N_{tt} - N_{DY} - N_{Wt, ZZ, WZ} \qquad \Longrightarrow \qquad N_{signal_{reg}} = 7.3$$

 $(L = 1 \text{ fb}^{-1})$

(*) removing the signal contamination

Systematic error

uncertanty on the composition of *tt(WW)* control region

	Syst. Error	Stat. Error	Total Error
(L = 1 fb ⁻¹) (L = 5 fb ⁻¹)	20 %	20 %	28 %
	15 %	9 %	17 %

uncertanty on the composition of $\mathcal{DY}(\mathcal{WW})$ control region

Syst. Error	Stat. Error	Total Error
5 %	6 %	8 %
5 %	3 %	6 %

ww control region: dominant error from statistics

	Err. tt(WW)	Err. DY(WW)	Sys. WW	Sys. Wt	Sys. ZW	Sys. ZZ	Bkg ±Err.	Bkg±Err. (*)
$(L = 1 \text{ fb}^{-1})$	28 %	8 %	9 %	40 %	20 %	20 %	7.3±3.0 (41%)	5.1±3.0 (60 %)
$(L = 5 ID^{+})$	17 %	6 %	9 %	40 %	20 %	20 %	36.8±7.8 (21%)	25.5±7.8 (21%)

Ref (DY(WW): T.Sjostrand et all, Comp. Phys. Comm. 135 (2001)

Ref. *ww*. V. Drollinger, CMS NOTE 2005/024

(*) removing the signal contamination