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Fixed order calculations

Parton Shower simulations 

Predictions for the hard cross section can be obtained through:

We limit ourselves to considering hard scattering events:    

Introduction: QCD hard scattering

the starting point is the factorization theorem
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All-order resummed calculations



Fixed order calculations

Truncate perturbative expansion at a given order in

It provides a systematic framework to compute the partonic cross 
section for an inclusive enough hard scattering process
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It is reliable only when all the scales are of the same order:
if                         large logarithmic contributions of the formQ1 ! Q

(αSL
2)n L ≡ lnQ1/Qwith arise that may spoil the 

perturbative expansion

αS



In general: even if KLN theorem guarantees the cancellation of IR 
singularities, soft-gluon effects can still be large when real and virtual 
contributions are kinematically unbalanced

Look for an improved perturbative expansion when 
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Soft-gluon resummations
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Resummation is possible if the observable fulfills the property known
 as exponentiation

This implies two basic conditions:

Matrix element factorization

Phase space factorization

The first is a consequence of gauge invariance and unitarity: in soft and 
collinear limits the singular structure of QCD matrix elements can be 
factored out in a (universal) process independent manner

The second condition regards kinematics and depends on the cross 
section considered
If this condition can be fulfilled (typically working in a conjugate space) 
resummation is feasible



Well known examples:

Event shapes 
and jet rates in e

+
e
−

Resummation of soft gluons near threshold

} Q2

z = Q2/ŝ → 1

      distributions in hadron collisions or 
Energy-Energy Correlation in

Work in Mellin N-space

Work in impact parameter b-space

ŝ

Typically use Laplace transform

qT

e
+
e
−



General structure of resummed cross section  in conjugate space    :

The functions                  control LL, NLL, NNLL contributions, 
respectively 

Note: NLL terms formally suppressed by one power of        with 
respect to LL          The expansion is as systematic as the 
ordinary perturbative expansion         

αS

Note: The terms coming from      are of the same order as those
coming from the combined effect of         and

g1, g2, g3
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   -independent
hard coefficient
ν



How to combine resummed cross section to fixed order ?

matching procedure σ̂ = σ̂
res.

+ σ̂
fin.

σ̂
fin. = σ̂

f.o.

− [σ̂res.]f.o.

 Start from resummed contribution          which includes all the 
logarithmically enhanced terms

obtained by subtracting from the fixed 
order result the truncation of the 
resummed result at the same order: it 
does not contain large logarithmic terms

σ̂
res.

Define:

standard fixed order result

In this way the calculation is everywhere as good as the 
fixed order result but much better in the region where 
soft gluon effects are important
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Parton showers
Provide an all-order approximation of the partonic cross section in the 
soft and collinear regions

somewhat similar to resummed calculations

Make possible to include hadronization effects

What about logarithmic accuracy ?

Difficult matching with fixed order

Much more flexible, since they can give a fully exclusive 
description of the final state

No analytical information

+

+

-



The effect of quantum 
interferences is thus approximated 
by angular ordering constraint

The logarithmic accuracy achievable by parton showers is instead 
limited by quantum mechanics

Parton showers are essentially probabilistic: quantum interference 
cannot be taken into account

This problem is overcome by using colour coherence: soft gluon 
radiated at large angles distructively interfere

The extension to higher logarithmic accuracy is not necessarily feasible

Angular ordering allows to reach “almost” NLL accuracy
(for inclusive enough observables)

Resummed calculations can be in principle performed to arbitrary 
logarithmic accuracy



Resummation: an explicit example

 Consider the production of a vector boson at 
small transverse momentum

 Two-scale problem:  

 The recoiling gluon is forced to be either soft 
or collinear to one of the incoming partons

large logarithmic contributions of  
the form                             appear 

dσ
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→ +∞

dσ

dqT

→ −∞

qT → 0
 LO: 

 NLO: 

 as 

 Real radiation strongly inhibited: KLN cancellation still at work but
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 spoiling the perturbative expansion

qT ! Q = MZ
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Single-gluon contribution in the small      limitqT
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Write delta functions in b-space
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Real Virtual
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 More gluons: in b-space kinematics fulfill exact factorization

δ
2(qT − qT1 − . . .qTn) → e
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e
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 Adding a 1/n! symmetry factor the
single gluon contribution exponentiates
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 Replacing αS → αS(q2

T1)  we can control subleading effects

 The resummed cross section is now 
finite as qT → 0

 This is what we observe in the data !

G. Parisi, R. Petronzio (1979)
G. Gurci, M.Greco, Y.Srivastava(1979)

J. Kodaira, L. Trentadue (1982)
 J. Collins, D.E. Soper, G. Sterman (1985)

F. Landry e al. (2003)

Z production at the 
Tevatron Run 1
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An improved b-space formalism
We use b-space resummation and introduce some novel features

G. Bozzi, S. Catani, D. de Florian, MG (2005)

Parton distributions are factorized at 

where the large 
logs are organized 

as:

αS = αS(µR)

Unitarity constraint enforces correct total cross section

and
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The qt spectrum of the Higgs

We applied the formalism to compute the Higgs spectrum at the LHC

G. Bozzi, S. Catani, D. de Florian, MG (2003,2005)

NLL+LO and NNLL+NLO results with consistent study of theoretical 
uncertainties and high quality matching to fixed order

Integral of resummed spectra 
reproduces the correct NLO and 
NNLO total cross sections

Calculation implemented in the 
fortran code HqT available at

http://theory.fi.infn.it/grazzini/codes.html



Higgs spectrum: comparison of 
different approaches

C. Balazs et al., Les Houches 2003

RESBOS: basically NLL+LO 
accuracy: NLO at large   
included though a K-factor

Kulesza et al.: joint resummation 
of transverse momentum and 
threshold corrections

qT

Berger et al.: basically (N)NLL+LO

Reasonable agreeement in shape but 
Pythia 6.2 considerably softer !

HERWIG 6.3 (no ME correction)

PYTHIA 6.2 (ME correction 
included)



Higgs spectrum: comparison of 
different approaches

C. Balazs et al., Les Houches 2003

RESBOS: basically NLL+LO 
accuracy: NLO at large   
included though a K-factor

Kulesza et al.: joint resummation 
of transverse momentum and 
threshold corrections

qT

Berger et al.: basically (N)NLL+LO

Reasonable agreeement in shape but 
Pythia 6.2 considerably softer !

HERWIG 6.3 (no ME correction)

PYTHIA 6.2 (ME correction 
included)

normalized to the same area



Nice agreement with MC@NLO NNLL effect tends to make 
the spectrum harder

NLO result (not shown) diverges to           as+∞ p
WW
T → 0

WW : Resummation vs MC@NLO
MG (2005)

Resummation effects generally small on leptonic observables

Effects seen only when hard cuts are applied



Recent progress: automated 
resummation

Resummed calculations usually worked out (when possible) 
analytically for each observable        generally painful 

Fixed order NLO calculations typically implemented in observable-
independent parton levels MC codes

A. Banfi, G. Salam, G. Zanderighi (2003)

Automatic resummation of a large class of  event-shape variables

Avoids the need to find the conjugate space in which the 
observable factorizes 

To be done: matching with fixed order

 CAESAR

Price to pay: more limited range of applicability and accuracy



Recent progress: non-global logs
Non global observables: sensitive to emissions 
in only a part of phase space

These observables are affected by previously 
neglected single logarithmic contributions

M. Dasgupta, G. Salam (2001)

These effects are due to soft-gluon radiation at 
large angles difficult to take them into account in MC parton 

shower

Recently: even “superleading” terms discovered in gap-between jets 
cross section at hadron colliders

J.R.Forshaw, A. Kyrieleis, M.H.Seymour (2006)

Resummed in closed form only in the large     limitNc



Summary

Resummed calculations allowed us to push the validity of QCD 
perturbation theory to the boundary of the available phase space 
where fixed order predictions are not reliable

Resummed predictions are automatically provided by standard MC:

  

Much more flexible, since they can give a fully exclusive description 
of the final state

Make possible to include hadronization effects

Difficult matching with fixed order

Logarithmic accuracy often unclear

Difficult to estimate uncertainties

+

+

-
-
-



Analytical resummations provide the most advanced theoretical 
accuracies available at present

  

Easier to estimate uncertainties

Up to NNLL in some cases (threshold,       , EEC)

Easy matching with fixed order

qT

Have to be worked out for each observable (but 
progress in automatization is being made)

Bottom line:

MC and analytical resummations are complementary !
Analytical resummed calculation will be particularly helpful in 
the validation of MC simulation tools

-

+
+
+



EXTRA SLIDES



M
WW
T

50 GeV

The               distribution is 
completely off at NLO !
The position of the peak is 
shifted by about 

p
l
Tmin > 25 GeV 35 GeV < p

l
Tmax

< 50 GeV

p
miss

T > 20 GeV mll < 35 GeV∆φ < 45
o

But try now with cuts used for  Higgs search in the
H → WW → lνlν

p
jet
T

< 30 GeV

channel


