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•• NLO: where we stand

•• NNLO: where we are going

•• Ahead of us



NLO? Yes, thank you!

•• NLO calculations are essential to extract reliable estimates for total and differen-
tial production rates. This is true not only for the signal, but for the backgrounds
too.

•• But NLO calculations do not produce events (negative weights).

•• It is highly non-trivial to establish an accurate connection between what is com-
puted (partonic quantities) and what is measured (hadronic quantities).

•• QCD physics at LEP and Tevatron has taught us that the concept of infrared (soft
and collinear) safety is essential to justify the use of fixed-order perturbative
calculations . . .

•• . . . but does NOT guarantee the accuracy of such calculations. In fact:

– power corrections effects

– large logarithms (that need to be resummed to all order)

can invalidate a fixed-order calculation.

•• In addition, showering and hadronization effects need to be understood at a
deeper level. This is the reason why we are all here today!
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Higgs boson couplings

✓ Extraction of Higgs-boson couplings possi-
ble at the level of 10–30% =⇒ NLO correc-
tions needed
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W production

✓ AW =
1

σ (tot)

∫
√

S/2

pe
T(min)

dpe
T

dσ
dpe

T
(cuts)

✓ K(x) =
dσNLO/dx
dσLO/dx

K factors STRONGLY phase-space
dependent.

Lepton spin correlations have to be taken account correctly!
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tt̄H → tt̄bb̄
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CMS Lint = 30 fb-1

k = 1.5

gen. mH: 115 GeV/c2

const. :  13.63 ± 3.76
mean  :  110.3 ± 4.14
sigma :  14.32 ± 3.70

✓ important channel for early discover (difficult measurement: combinatorics, b-tagging,
invariant-mass resolution, good knowledge of detector needed)

✓ ht = tt̄H Yukawa coupling =⇒ measure h2
t BR(H → bb̄)

✗ must know the background normalization precisely (NLO level).



Status of NLO programs at hadron colliders

• NLOJET++ [Nagy] pp→ (2,3) jets

• AYLEN/EMILIA [de Florian, Dixon, Kunszt, Signer] pp→(W, Z) + (W, Z, γ)

• DIPHOX/EPHOX [Aurenche, Binoth, Fontannaz, Guillet, Heinrich, Pilon, Werlen] pp→γ + 1 jet, pp→γγ,
γ∗p→γ + 1 jet

• MCFM [Campbell, Ellis] pp→(W, Z) + (0,1,2) jets, pp→(W, Z) + bb̄, . . .

• heavy-quark production [Mangano, Nason, Ridolfi] pp→QQ̄

• single-top production [Harris, Laenen, Phaf, Sullivan, Weinzierl] pp→Qq̄

• associated Higgs production with tt̄ [Dawson, Jackson, Orr, Reina, Wackeroth, Beenakker, Dittmaier,

Kramer, Plumper, Spira, Zerwas] pp→HQQ̄

• VBFNLO [Figy, Zeppenfeld, C.O.] pp→(W, Z, H, WW, ZZ, WZ) + 2 jets, QCD corrections to
electroweak production, when typical vector-boson fusion cuts are applied

• di-photon production [del Duca, Maltoni, Nagy, Trocsanyi] pp→γγ + 1 jet

For a more complete list, and the corresponding web pages, see:
http://www.cedar.ac.uk/hepcode



NLO ingredients

Z/γ→ 3 jets
Born term: order αs
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NLO ingredients, cont’d

Z/γ→ 3 jets
Virtual terms: order α2

s

+ cc + + cc + . . .

Two-loop terms: order α2
s

+ cc + + cc + . . .
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Divergences!

•• UV divergences =⇒ renormalization

•• IR divergences: SOFT and COLLINEAR

Real terms: divergences come from integra-
tion in particular regions of phase space
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Virtual terms: divergences come from loop
integration
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Dimensional Regularization: d = 4 − 2ε.
Divergences appear as poles: 1/ε and 1/ε2, and they cancel for sufficiently (infra-red safe)
inclusive observables.



The recipe: the subtraction method

Consider an n-parton final state

σNLO ≡
∫

dσNLO =
∫

n+1
dσR ⇐= divergences from collinear and soft regions

+
∫

n
dσV ⇐= divergences from loop integration

separately divergent (poles in ε), although their sum is finite.

The general idea of the subtraction method is to use the identity

dσNLO =
[

dσR − dσ A
]

+ dσ A + dσV

where, in the singular regions, in d dimensions

dσ A

dσR ∼ 1

dσ A acts as a local counterterm for dσR

σNLO=
∫

n+1

[

dσR− dσ A
]

︸ ︷︷ ︸

finite by construction

+
∫

n+1
dσ A+

∫

n
dσV =

∫

n+1

[(

dσR
)

ε=0
−

(

dσ A
)

ε=0

]

︸ ︷︷ ︸

done numerically in 4 dimensions

+
∫

n

[

dσV +
∫

1
dσ A

︸ ︷︷ ︸

done analytically

]

ε=0



Bottlenecks of NLO

✓ The construction of the counterterm dσ A can be done in an automated and sim-
ple way.

✓ The integrations over the singular phase-space regions of dσ A are done once and
for all. They are universal and process-independent functions. [Catani & Seymour,

Frixione, Kunszt & Signer; . . . ].

✗ The analytic calculation of scalar loop integrals is complicated and process-
specific.

✗ The tensor-reduction procedure of virtual integrals is challenging.
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Scalar integrals

• Mellin-Barnes [Smirnov, Veretin & Tausk] to tackle loop integrals in the Feynman parametrization

(A + B)−ν =
1

2π i
1

Γ(ν) Bν

∫ c+i∞

c−i∞
dz

(
A
B

)z
Γ(−z) Γ(ν + z)

and use the residue theorem to compute the integral

• differential equations [Gehrmann & Remiddi]

s23
∂

∂s23 � -

--

p1 p3

p2q
=

d − 6
2 � -

--

p1 p3

p2q

− 2(d − 3)

s12 + s23

[
1

s123
-��

��p123 − 1
s13

-��
��p13

]

plus initial conditions (very easy to obtain).

Same tricks used for two-loop integrals!
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Tensor integrals

pn

k

p1

k+p1

p2

k+p1+p2

p3

p4

When the loop momentum appears in the numera-
tor (tensor integrals), things get more involved

∫

ddk
kαkβ . . .

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2 . . .

•• analytical tensor-reduction procedures are available but. . .

•• . . . is it possible to go numerical? If yes, “when” one goes numerical? Before or after some
reductions?

Only very recently some of these issues have been addressed.
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Tensor reduction: problems

∫

ddk

rank m
︷ ︸︸ ︷

kµ1 kµ2 . . . kµm

Dν1
1 Dν2

2 . . . Dνn
n

= ∑
i, j,...

Cd,m
i, j,... (pr · ps) {pµ1

i pµ2
j . . . , gµ1µ2 . . .}

Di =
(
k + ∑ p j

)2

Passarino and Veltman derived recursion relations that connect the tensor coeffi-
cients Cd,m

i, j,... with Cd,m−1
i, j,... , when νi = 1, down to scalar integrals (m = 0) in d dimen-

sions (d = 4 or 4 − 2ε in dimensional regularization).

✗ But these relations suffer from the presence of quantities in the denominator
(Gram determinants) that can approach zero, in particular phase-space regions.
They give rise to spurious singularities =⇒ numerical instabilities!

✗ The iterative procedure gives rise to large intermediate expressions, difficult to
handle and factorize.
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Tensor reduction: solutions

✓ Close to the “critical regions”, expand the tensor coefficients around limits of
vanishing Gram determinants, or other kinematics determinants, and then re-
duce all tensor coefficients to the usual scalar integrals [Denner, Dittmaier et al.]

✓ Relate the tensor integrals to other integrals in higher dimension d and higher
powers of the propagators [Davydychev]. Then, separate explicitly the infrared
and ultraviolet divergences analytically from the finite one-loop contributions,
which can then be evaluated numerically using recursion relations [Giele, Glover,

Binoth et al.]

None of these methods is completely numeric. They are a mixture of analytic reduc-
tions and numeric calculations.

✗ The only totally-numerical evaluation of a tensor integral, using Mellin-Barnes
technique, is in its infancy [Anastasiou & Daleo (hep-ph/0511176)]: it takes two hours
to evaluate a single phase-space point in a rank-6 hexagon!!
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Phenomenological applications

•• analytic reduction of pentagon integrals [Bern, Dixon & Kosower (hep-ph/9306240)].

PENT(d = 4 − 2ε) =
5

∑ BOX(d = 4 − 2ε)
︸ ︷︷ ︸

IR divergences

+ (d − 4)× PENT(d + 2 = 6 − 2ε)
︸ ︷︷ ︸

finite

pp → H + 2 jets H

[Del Duca, Kilgore, Schmidt, Zeppenfeld & C.O.

(hep-ph/0108030)]

pp → tt̄H

H

t

t

[Beenakker, Dittmaier, Krämer, Plümper, Spira & Zer-

was, (hep-ph/0211352); Dawson, Jackson, Orr, Reina &

Wackeroth (hep-ph/0305087)]

e+e− →νν̄H

ν

H

ν

e-

e+

γ

W

W

[Belanger, Boudjema, Fujimoto, Ishikawa, Kaneko, Kato

& Shimizu (hep-ph/0211268); Jegerlehner & Tarasov

(hep-ph/0212004); Denner, Dittmaier, Roth & Weber

(hep-ph/0302198)]
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NLO references cont’d

C. Anastasiou and A. Lazopoulos, “Automatic integral reduction for higher order perturbative cal-

culations,” JHEP 0407, 046 (2004) [arXiv:hep-ph/0404258]. Anastasiou, C. and Daleo, A., “Numerical
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+ Unitary-cut techniques [Bern, Dixon, Kosower et al.]

+ Maximum-Helicity-Violating techniques [Britto, Cachazo, Feng, Witten et al.] + . . .
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Final goal

The goal is to build a program that computes scattering processes at NLO
in a completely automated way.

We will obtain the GOLEM = General One-Loop Evaluation of Matrix elements!
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NNLO?

Do we need NNLO jet cross sections at hadron colliders?

•• jets are very complicated objects

•• steep ET-dependence magnifies energy-scale and luminosity uncertainties

•• underlying events are surely a problem

YES. At least it helps to focus more attention on

•• reduction of renormalization- and factorization-scale dependence of the cross sections

•• less worries (hopefully!) about matching theoretical and experimental jet algorithms, and
reducing dependence from artificially-introduced parameters (Rsep)

•• more complicated transverse-momentum final states, due to double initial-state radiation (no
need of intrinsic kT)

•• reduced dependence on power-correction effects.
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Ingredients for NNLO n-jet final state

••
Two-loop 2 → 2 matrix elements
M2-loop(n)×M0-loop(n) + cc

••
One-loop 2 → 2 matrix elements
|M1-loop(n)|2

••
One-loop 2 → 3 matrix elements
M1-loop(n + 1)×M0-loop(n + 1) + cc

••
Tree-level 2 → 4 matrix elements
|M0-loop(n + 2)|2
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Technical breakthroughs

•• algorithms (in FORM, Maple, Mathematica) to reduce recursively or by Gauss elimination,
large systems of linear equations (104–106) to 10–30 master integrals, the building blocks of
the computation.

– Integration-by-Parts [Chetyrkin & Tkachov] to build recursive relations
∫

ddk
∂

∂kµ
f (k, pi) = 0 pi = external momenta

– Lorentz invariance [Gehrmann & Remiddi]
∫

ddk f (k, pi) = F(pi · p j)

– implementation of efficient computer-algebra algorithms
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Technical breakthroughs, cont’d

– sector decomposition: an automated procedure to break an integration domain into
various singular regions, disentangling the overlapping singularities.

I =
∫ 1

0
dx dy x−1−ε y−1−ε(x + y)−ε = . . .

=
∫ 1

0
dx dy x−1−3ε y−1−ε(1 + y)−ε +

∫ 1

0
dx dy x−1−ε y−1−3ε(1 + x)−ε

It has been used

∗ in the numerical evaluation of hexagon integrals [Binoth, Heinrich & Kauer]

∗ to express the 1 → 4 phase-space volume, in a way suitable for numerical integration
(all divergences extracted) [Anastasiou, Melnikov & Petriello (hep-ph/0311311)].

– harmonic (nested) sums [Moch, Uwer & Weinzierl]

S(n; m1, ..., mk; x1, ..., xk) = ∑
n≥i1≥i2≥...≥ik≥1

xi1
1

i1m1
. . .

xik
k

ik
mk
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Totally inclusive: Higgs production at LHC

NLO corrections are 80% of the LO!

Is the series well behaved?
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Totally inclusive: Higgs production at LHC

Is the series well behaved? =⇒ YES NNLO 15%

•• using “conventional” techniques & series expansions [Harlander & Kilgore (hep-ph/0201206)]

Result cross-checked without approximation [Smith, Ravindran & van Neerven (hep-ph/0302135)]

•• confirmed using a new technique [Anastasiou & Melnikov (hep-ph/0207004)]



New technique

•• Convert phase-space integrals into loop integrals i→ f (n particles)

∫

|Mi→ f |2 dLIPS(n − 1)
dd−1~p

2E
︸ ︷︷ ︸

E2=~p2+m2

=
∫

|Mi→ f |2 dLIPS(n − 1) dd p δ(p2 − m2) θ(E)

δ(x) =
1

2π i

(
1

x − i0
− 1

x + i0

)

=
∫

|Mi→ f |2 dLIPS(n − 1) θ(E)dd p
[

1
p2 − m2 − i0

− 1
p2 − m2 + i0

]
1

2π i

Use the formalism developed for the loop reduction to deal with integration over the phase
space of final-state particles.
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Partially inclusive: rapidity distribution at NNLO

✓ Semi-inclusive quantities have been com-
puted: rapidity-distribution for W pro-
duction [Anastasiou, Dixon, Melnikov & Petriello

(hep-ph/0312266)]

✓ Remarkable stability to QCD corrections.

✓ Use W and Z production to monitor
proton-proton luminosity and constrain
PDFs at LHC.

✗ But spin-correlations effects can be more
important than NNLO effects [Frixione &

Mangano, (hep-ph/0405130)], when cuts are
applied to final-state lepton. Same for
electroweak corrections.

Carlo Oleari NLO and NNLO: status and progresses 26/26



First totally exclusive results

• e+e− → 2 jets
[Anastasiou, Melnikov & Petriello (hep-ph/0402280)].
Infrared structure studied also in Gehrmann-De Ridder, Gehrmann & Glover (hep-ph/0403057).

•
Higgs production in gluon fusion: pp → H
[Anastasiou, Melnikov & Petriello (hep-ph/0409088)]

mH = 150 GeV p j
T < 40 GeV
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Ahead of us!

•• e+e−→ 3 jets at NNLO

•• pp( p̄)→ 2 jets at NNLO

•• . . .
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