Contents

Identification of tau-Leptons

Measurement of Missing Transverse Energy

- **Introduction** \bullet
- **Reconstruction and** \bullet **Identification of Taus**
- **Performance** \bullet
- **ETMiss, Reconstruction** \bullet
- **Performance** \bullet
- **Conclusions** \bullet

Michael Heldmann University of Freiburg

Remark: the content of this talk is the result of the work of many people in CMS and ATLAS, many thanks to all involved

Physics with Taus

- **Channels using taus** ۰
- $\rm A^0/H^0 \to \tau^- \tau^-$
- $H^+ \rightarrow \tau \nu$
- $\widetilde{\tau}$ SUSY with prodcution of $\widetilde{\tau} \rightarrow$ \bullet .
V τ + \widetilde{X}^0 1
- Standardmodell Higgs (VBF qq $H \rightarrow qq \tau \tau$)
- \bullet Z $\rightarrow \tau$ τ , w $\rightarrow \tau$ v (for comissioning)
- \bullet τ could perhaps provide a way to access the chiral structure of **SUSY**

Taus, a short reminder

Tau decay modes

- Leptonical decay modes
	- \bullet $\tau \rightarrow v_{\tau} + v_{\rho} + \theta$ (17.4%)
	- $\tau \rightarrow v_\tau + v_\mu$ (17.8%)
- Hadronical decay modes
	- 1 prong

$$
\begin{aligned}\n\bullet \ \tau &\to \nu_{\tau} + \pi^c \\
\bullet \ \tau &\to \nu_{\tau} + \pi^c + \pi^0 \\
\bullet \ \tau &\to \nu_{\tau} + \pi^c + \pi^0 + \pi^0 \\
\bullet \ \tau &\to \nu_{\tau} + \pi^c + \pi^0 + \pi^0 + \pi^0 \\
\bullet \ \tau &\to \nu_{\tau} + \mathsf{K}^c + \mathsf{X} \bullet \pi^0\n\end{aligned}
$$

 $\tau{\rightarrow}\nu_{\tau}$ + 3 • π^{c} + x • π^{0}

 (1.4%)

 (1.6%)

(15.2%)

1 track only thing different from prompt leptons: impact parameter

 (11.0%) (25.4%) (10.8%) 1 track, impact parameter shower shape, energy sharing 3 track, impact parameters, secondary vertex shower shape, energy sharing

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 3

• 3 prong

Reconstruction of taus

Reconstruction - How to find taus

- seeding from Calorimeter objects
	- Clusters from a sliding window algorithm
	- Jets from various jet algorithms
	- **Topoclusters**
- seeding from Tracker objects
	- Isolated tracks above p_T threshold
- Different seeds are optimal for different decay modes
- **ATLAS**
	- default is Cluster, with $p_T > 15$ GeV
	- seeding from isolated tracks with $p_T > 9$ GeV is also used a lot and well understood
- **CMS**
	- Cone jet algorithm, offline or from the trigger chain

Calibration

- Calibration of taus is based on the calibration of jets -> see also talk of I. Vivarelli
- **CMS**
	- \bullet E=(a*EC+b*HC)
	- EFlow methods developed for jets could also be easily used for taus and have there potentially an easier environment (not studied yet to my knowledge)

ATLAS

- "H1 style method" : cells are weighted and summed in a cone of $AR < 0.4$
	- weights depend on the energy density in the cells
	- idea is that em energy has higher density, hadronic energy has lower density
- EFlow method : energy with tracks nearby is (nearly) always hadronic energy, the rest is em energy (from $\pi^0 \rightarrow \gamma \gamma$

Energy flow

ATLAS

0.08

 $0.06⁺$

 $0.04₁$

 $0.02₁$

 $\overline{\mathbf{8.4}}$

- EFlow method comparison to "H1 style method", for Z \rightarrow $~\tau~$ $~\tau$
- **EFlow improves significantly for low** $p_T < 50$ GeV

 $\frac{10}{15}$ 0.12 ATLF, \overline{x} =0.976, σ =0.086 $0.1⁺$ $FS, \overline{x}=0.991, \sigma=0.121$

1

 0.8

pT(tauMC)/pT(tauRec) vs pT vs eta ATLF_x

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ (6

 0.6

 1.4

 1.2

 1.6

Identification

Identification – How to tell them apart from jets \bullet

- **calorimeter information**
	- **•** narrow
	- isolated
	- mixture of em energy and hadronic energy

tracker information

- one or three isolated tracks
- good tracks
- impact parameter
- three prong: limited invariant mass

vertexing

- for three prong decays reconstruction of secondary vertex may be possible
- decay length (distance primary vertex \rightarrow secondary vertex)

combination with multivariate technics

Identification CMS 1

- **Calorimeter Isolation:** $P_{\text{isol}} = \Sigma_{\text{AR}<0.4}$ E_{T} $\Sigma_{\text{AR}<0.15}$ E_{T}
- **Tracker Isolation:**
	- search leading track in a cone of $\varDelta {\sf R}$ < ${\sf R}_\mathsf{m}$, \bullet around the calorimeter jet axis
	- "signal tracks" around leading track, ΔR < $R_{\rm s}$ "isolation tracks", around jet axis ΔR < $R_{\rm i}$
	- R_s and R_i depend on the energy of the τ -jet
	- no isolation tracks are allowed
- **Impact parameter:**
	- **IPsignificance = IP/** σ_{IP} \bullet
	- sign tried but found to be not useful
	- only useful for 1 prong decays

1 track

50-70 GeV $80-110$ GeV

 $IP_T < 300 \mu m$ First $cut=0$ Cut step= 30-50 GeV

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})\$ 8

Signal efficiency

 0.8

 0.7

 Ω

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Background efficiency

Identification CMS 2

flight-path ٠

- IP not useful for 3 prong \rightarrow use flight- \bullet path
- propability for finding 3 signal tracks \bullet for a 3 prong decay is $\sim 63\%$
- reconstruction of secondary vertex for taus challenging

tau-mass \bullet

calculate invariant mass from signal tracks and EM-Calo only clusters

recommended strategy

- use calo and tracker isolation
- 1 prong: use IP, 3 prong use flight path ۰
- mass cut may be used for both ٠
- cut on pT of the leading track may be useful ٠
- optimal strategy depends on the channel

Identification ATLAS 1

- **calorimeter variables** \bullet
	- R_{em}: transverse energy weighted radius in the EM calorimter
	- ΔE_{τ} ¹² : transverse energy between ΔR < 0.2 and ΔR < 0.1
	- N_{strip} : Number of cells with E > 200 MeV in the η -strip layer
	- $E_{T, \text{width, strip}}$: transverse energy weighted width calculated only in the η -strip layer
	- **tracker variables**
		- N_{tr} : number of tracks, $p_T > 2$ GeV, $\triangle R$ (jet axis) < 0.2
		- Charge : sum of charge of tracks (like for N_{tr})
		- E_T / p_{T1} : Ratio between calorimeter and tracker energy
		- signed Impactparameter (for 1 prong)
		- secondary vertex (3 prongs)
	- combine them all with a likelihood method
	- Variables depend heavily on $p_{\tau} \rightarrow p_{\tau}$ dependant likelihood

Identification ATLAS 2

alternative approach: \bullet

- seed from good quality, isolated tracks $p_T > 9$ GeV
- accept only exactly two nearby tracks with $p_T > 2$ GeV
- build EFlow (as shown before)
- combine Id variables as before (with narrower cone) and from EFlow using a multivariate technic (here PDRS)

Identification ATLAS 3

- more exclusive reconstruction ٠
- PDRS powerful multivariate technic ۰
- energy scale from EFlow \bullet
- good to have two independent methods to cross check \bullet

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{P}(\mathbb{Q})\$ 12

Conclusions (taus)

- Final states including tau-leptons are interesting for standard model and beyond the standard model physics
- hadronically decayed taus can be separated against jets, using tracker \bullet and calorimeter information
- reconstruction of candidates is done starting with calorimeter objects or \bullet tracks
- energy can be obtained calibrating calorimeter information or with \bullet EFlow technics
- with an efficiency of 50% for taus, rejections from ~100-3000 are ۰ possible against QCD-jets, for 20 - 200 GeV tau-jets
- CMS provides a series of well studied variables to the user (analysis) ۰
- ATLAS provides multivariate discriminants to the user۰

ETMiss 1

- ETMiss is an important ingredient for many channels, for standard model studies like top quark production, W but especially for beyond the standard model studies like search for Supersymmetry, invisible Higgs, certain types of extra dimensions and so on
- Missing transverse energy is based on the 2D (in the transverse plane) \bullet vector sum of certain objects
- two extreme approaches \bullet
	- transverse vector sum of all calorimeter cells + detected muons
		- sums up all electronic and pileup noise too
	- transverse vector sum of all objects

• muons, electrons, jets, b-jets, taus

- a lot of energy comes from low E_T objects that may not end up in reconstructed objects
- question of calibration is very important

- many different contributions to ETMiss resolution \bullet
	- calorimeter resolution
	- \cdot limited calorimeter coverage: $|\eta|$ < 5
	- electronic noise
	- pile up energy (in-time and out-of-time)
	- non compensating calorimeter \rightarrow e/h
	- magnetic field (curling particles, particles bend out of coverage)
- many of these are of the same order of magnitude \rightarrow difficult to improve ETMiss resolution

ETMiss ATLAS 1

- ATLAS persues mainly two strategies \bullet
- both are based on calo cells + detected muons + cryo correction \bullet
- method 1 : take all calorimeter cells with $|E| > 2 \cdot \sigma$ (noise of the cell) \bullet
- method 2 : take only calorimeter cells which belong to a TopoCluster \bullet
	- a TopoCluster is a collection of cells that fullfill certain neighbour criteria and tries to grab the full 3D shower of single particles
- for both methods cells are then calibrated using the same H1 style \bullet calibration as jets and taus (mentioned before)
- same weights as for jets (and taus) ۰
- the energy lost in the cryostat (between EM and HAD calorimeter) is \bullet estimated for all reconstructed jets and added to ETMiss
	- cryo correction = c •sqrt(E(last EM layer) E(first HAD layer))
- also an object based calibration is currently under investigation۰

ETMiss ATLAS 2

- Resolution: METTruth METReco, SumET = scalar sum(particles/cells) \bullet
- Event sample: $Z\rightarrow \tau\tau$ \bullet

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{P}(\mathbb{Q})$ 17

ETMiss ATLAS 3

- ETMiss is calculated from the energy one sees in the calorimeter 0
- \rightarrow the resolution depends on how much energy is in the calorimeter \bullet
- \rightarrow parametrisation as : ex/ymiss resolution = p0 $\cdot\sqrt{(SumET)}$

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 18

ETMiss CMS 1

- ETMiss is calculated from the transverse energy sum of calorimeter cells
- cells with a muon track going through have the expected deposit substracted \bullet and the muon energy is added
- EM calo cells are used with a photon calibration and HAD calo cells are used with the hadron calibration

ETMiss CMS 2

Jet corrected MET is calculated as \bullet

EFlow strategies are expected to improve the MET resolution and are \bullet under investigation

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 10

ETMiss + Tau

- Many analysis use the collinear approximation (assumption: direction of $tau =$ direction of tau jet)
- \rightarrow reconstructed mass (e.g. Higgs mass) is composed of tau-jets and ETMiss
- ETMiss resolution usually dominates \bullet

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})\$ 21

200

400

600

800

A/H, $m_{A/H}$ =450, tan β =25

 \sum_{50} 035

 $\sum_{20.03}$

0.025

 0.02

0.015

 0.01

0.005

 0_0^{\dagger}

1400

M. /GeV

ATLAS

bbA \rightarrow τ (h) τ (h) mA 450 Mean 525.8

RMS 126.5

GausMean 474.4

GausSigma 58.0

فاجه همقالهه

1200

1000

ETMiss Calibration

- \bullet $Z\rightarrow\tau(h)\tau(l)$ is one of the potential ETMiss calibration channels
- very preliminary ATLAS analysis
	- low background statistics \bullet
	- no bb background \bullet
	- cuts not tuned \bullet
- study made for 10 fb-1 \rightarrow not for the first months of running
- 10% shift in the ETMiss scale ۰ gives 3% shift in the Z mass

Conclusion (ETMiss)

- ETMiss can be a key incridient to many beyond the standard model \bullet searches (e.g. SUSY)
- most direct approach is to calculate tranverse vector sum of all \bullet calorimeter cells
- these can be calibrated following several strategies \bullet
- various corrections have to be applied ۰
	- muons \bullet
	- jet corrections
	- cryostat corrections
	- electronic noise and pile-up has to be treated
- EFlow technics can be useful and are under investigation \bullet
- both experiments show comparable ETMiss resolutions ۰
- both experiments show comparable inv. mass (with ETMiss) resolutions \bullet

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 14

$Z^{\circ} \rightarrow \tau \tau \rightarrow$ lept-had channel : $\tau \tau$ mass for Signal and Backgrounds with 10fb-1

Applied cuts : pt(jet) > 25 GeV, $|\eta|$ < 2.5 pt(lep) > 25/20 GeV, |η|<2.5 isEM & 0x7FF) ==0 , lep isolation: Etcone30<5geV $1.$ < $\Delta\phi$ < 2.7 or 3.6 < $\Delta\phi$ < 5.3 m_T (lept-pTmiss)<50GeV τ-likelihood > 8 (τ-eff ~ 30%) 66 <rec m $_{\tau\tau}$ <116 GeV Expected in 10fb-1 \sim 9000 evts with \sim 20% backgd Lowering pt thresholds:

pt(jet) > 20 GeV, |η|<2.5 pt(lep) > 15 GeV, |η|<2.5

 \sim 25000 evts with 30% backg

But more severe cuts necessary to reduce bb backgd? pTmiss>20 GeV m_T (lept-pTmiss)<25GeV

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ \mathbb{Q} 25

Z°→ττ→ lept-had channel : EtMiss Scale sensitivity of the measured Z° mass to the absolute EtMiss scale

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 36

EtMiss Performance in 10.0.1 Rome data : Linearity EtMiss shift / EtMiss Truth % vs EtMiss Truth

EtMiss shift = < **MET_Truth(NonInt) – MET_Final > Linearity from TopoCluster within 5 %, except for low energy region**

Tau-Leptons, Missing ET 28.02.2006 M. Heldmann $\mathscr{D}(\mathbb{Q})$ 17

