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Shower Monte Carlo

what they are

and what they do



Implementations

• COJETS Odorico (1984)

• ISAJET Page+Protopopescu (1986)

• FIELDAJET Field (1986)

• JETSET Sjöstrand (1986)

• PYTHIA Bengtsson+Sjöstrand (1987), Sjöstrand (1994)

• ARIADNE Lönnblad (1991)

• HERWIG Marchesini+Webber (1988),

Marchesini+Webber+Abbiendi+Knowles+Seymour+Stanco (1992)

• SHERPA Gleisberg+Hoche+Krauss+Schalicke+Schumann+Winter

(2004)

See Les Houches Guidebook hep-ph/0403045 for a complete list.



Capabilities

1. Large library of hard events cross sections (SM and BSM)

2. Dress hard events with QCD radiation

3. Models for hadron formation

4. Models for underlying event, multi-parton collisions, minimum bias

5. Library for (spacetime) decays of unstable particles

The name SHOWER from item 2



Amazing models for hard interactions

(Half an hour of work)



IHEP ID IDPDG IST P-X P-Y P-Z ENERGY MASS V-X V-Y V-Z V-C*T
30 NU_E 12 1 64.30 25.12 -1194.4 1196.4 0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
31 E+ -11 1 -22.36 6.19 -234.2 235.4 0.00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

230 PI0 111 1 0.31 0.38 0.9 1.0 0.13 4.209E-11 6.148E-11-3.341E-11 5.192E-10
231 RHO+ 213 197 -0.06 0.07 0.1 0.8 0.77 4.183E-11 6.130E-11-3.365E-11 5.189E-10
232 P 2212 1 0.40 0.78 1.0 1.6 0.94 4.156E-11 6.029E-11-4.205E-11 5.250E-10
233 NBAR -2112 1 -0.13 -0.35 -0.9 1.3 0.94 4.168E-11 6.021E-11-4.217E-11 5.249E-10
234 PI- -211 1 0.14 0.34 286.9 286.9 0.14 4.660E-13 8.237E-12 1.748E-09 1.749E-09
235 PI+ 211 1 -0.14 -0.34 624.5 624.5 0.14 4.056E-13 8.532E-12 2.462E-09 2.462E-09
236 P 2212 1 -1.23 -0.26 0.9 1.8 0.94-4.815E-11 1.893E-11 7.520E-12 3.252E-10
237 DLTABR-- -2224 197 0.94 0.35 1.6 2.2 1.23-4.817E-11 1.900E-11 7.482E-12 3.252E-10
238 PI0 111 1 0.74 -0.31 -27.9 27.9 0.13-1.889E-10 9.893E-11-2.123E-09 2.157E-09
239 RHO0 113 197 0.73 -0.88 -19.5 19.5 0.77-1.888E-10 9.859E-11-2.129E-09 2.163E-09
240 K+ 321 1 0.58 0.02 -11.0 11.0 0.49-1.890E-10 9.873E-11-2.135E-09 2.169E-09
241 KL_1- -10323 197 1.23 -1.50 -50.2 50.2 1.57-1.890E-10 9.879E-11-2.132E-09 2.166E-09
242 K- -321 1 0.01 0.22 1.3 1.4 0.49 4.250E-11 6.333E-11-2.746E-11 5.211E-10
243 PI0 111 1 0.31 0.38 0.2 0.6 0.13 4.301E-11 6.282E-11-2.751E-11 5.210E-10



Shower basics: Collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections

factorize near

collinear limit

|Mn+1|2dΦn+1 ⇒ |Mn|2dΦn
αS

2π

dt

t
Pqq(z) dz

dφ

2π

t : virtuality, or p2
T, or E2θ2

z = k0/(k0 + l0) : energy (or p‖, or p+) fraction of the quark

Pqq(z) = CF
1 + z2

1− z
: Altarelli-Parisi splitting function

(Ignore z→1 IR divergence for now)



If another gluon becomes collinear, iterate the previous formula:

θ′, θ→0

with θ′ > θ

|Mn+1|2dΦn+1 ⇒ |Mn−1|2dΦn−1 ×
αS

2π

dt′

t′
Pqq(z

′) dz′
dφ′

2π

×
αS

2π

dt

t
Pqq(z) dz

dφ

2π
θ(t′ − t)

Collinear partons can be described by a factorized integral ordered in t.

For m collinear emissions:∫
θmin

dθ1

∫
θ1

dθ2 . . .

∫
θm−1

dθm ∝
logm 1

θ2
min

m!
≈

logm Q2

Λ2

m!
, Λ ≈ ΛQCD .



Same applies to all splitting processes

Pqq(z) = CF
1 + z2

1− z

Pgg(z) = CA

(
z

1− z
+

1− z

z
+ z(1− z)

)

Pgq(z) = TF

(
z2 + (1− z)2

)



“Leading log” description of hard event

(Initial state radiation treated in similar way)



IR Divergences

Collinear divergences when t→0

|Mn|2
∫

αS

2π

dt

t
Pqq(z) dz

dφ

2π
∝ |Mn|2αS log

(
process scale

IR cutoff

)
According to the KLN (Kinoshita–Lee–Nauenberg) theorem

IR divergences cancel order by order in INCLUSIVE quantities.

So: virtual corrections MUST give

−|Mn|2dΦn

∫
αS

2π

dt

t
Pqq(z) dz

dφ

2π
∝ −|Mn|2αS log

(
ren. scale

IR cutoff

)
Must add n + 1 and n body cross section to get cancellation

Negative divergent correction to n body cross section

How do we get positive, exclusive, final state cross sections?

Only possible answer: add virtual terms to all orders

(same answer for textbooks IR problem in QED)



In the shower: UV and IR divergent virtual corrections for internal lines:

• UV renormalization at largest t

• IR cutoff at smallest t

Condition for cancellation:

applies recursively;

(t0 = IR cutoff ≈ Λ2
QCD)

∆(tmax, t0) +

∫ tmax

t0

∆(tmax, t)
αS

2π

dt

t
Pqq(z) dz

dφ

2π
= 1

V ∆(tmax, t) = exp

[
−

∫ tmax

t

αS

2π

dt

t
Pqq(z) dz

dφ

2π

]
so that:

=

∫ tmax

t0

d∆(tmax, t)

dt
dt = 1−∆(tmax, t0)

Sudakov
Form Factor
∆(tmax, tmax) = 1

∆(tmax, t0)→ small

i.e. no radiation

is suppressed!!



Recipe for shower with virtual corrections:

• Include a factor
dt

t
dz

αS(t)

2π
Pij(z)

at each splitting vertex (use renormalized coupling at scale t!).

• Order the splittings in t: later splittings have smaller t.

• Include the factor ∆i(t1, t2) on each internal line going from a splitting

at the scale t1 to a splitting at t2, with

∆i(t1, t2) = exp

−∑
j

∫ t2

t1

dt′

t′

∫
dz

αS(t′)

2π
Pij(z)





Simple probabilistic interpretation:

∆(t1, t2) is the probability for having no branching from t1 to t2.

The probability to have a branching in the interval t2, t2 + dt2 is

P (t1, t2)dt2 = [1−∆(t1, t2+dt)]−[1−∆(t1, t2)] = ∆(t1, t2)
dt2

t2

αS(t′)

2π

∫
P (z) dz

∆(t1, t2) has uniform distribution!

Shower algorithm:

• Generate a random number 0 < r < 1;

• Solve the equation ∆(t, t′) = r for t′ < t;

• If t′ < t0 stop there (unresolvable emission);

• generate a z distributed according to P (z);

• restart for each branch, at an initial value t′.



Elementary example

Simulate a source with a probability p for emission per unit time.

Probability distributions for first emission:

P (t) dt = lim
n→∞

(
1− p

t

n

)n

p dt = e−pt p dt = −d
(
e−pt

)
so

∫
P (t)dt is distributed uniformly between 0 and 1.

Monte Carlo implementation for emissions between t = t0 and t = tf

• generate a random number 0 < r < 1

• solve the equation e−p(t−t0) = r for t

• if t > tf stop.

• continue starting from t



Soft divergences: double log region

z→1 (z→0) region problematic: for z→1: Pqq, Pgg ∝
1

1− z
Choice of shower variables makes a difference

virtuality: t ≡ E2 z(1− z)

1−cos θ︷︸︸︷
θ2

p2
T : t ≡ E2 z2(1− z)2 θ2

angle: t ≡ E2 θ2

Z
dt

t

Z 1−
√

t/E

√
t/E

dz

1− z| {z }
virtuality: z(1− z) > t/E2

≈
log2 t

E2

2
;

Z
dt

t

Z 1−t/E2

t/E2

dz

1− z| {z }
p2T: z2(1− z)2 > t/E2

≈ log2 t

E
;

Z
dt

t

Z 1

0

dz

1− z| {z }
angle

≈ log t log
E

Λ

sizeable difference in double log structure!



Angular ordering

is the correct choice (Mueller 1981)

dθ

θ

αS(p2
T )

2π
P (z) dz

θ1 > θ2 > θ3 . . .

p2
T = E2 z2 (1− z)2 θ2

αS(p2
T ) for correct treatment of charge renormalization in soft region.

Notice: soft divergence for emission off an off-shell line!



With virtuality ordering:

Soft emissions give small virtuality.

At end of shower, large amount of

unrestricted (all angles) soft radiation

But soft gluons emitted at large angles from final state partons add

coherently!

large angle, high energy: already ordered in angle

large angle, small energy: should be reordered by angle

Thus: order in angle



It affects jets distributions in enhanced regions

Most important effect: reduced multiplicity!

(interference is mainly distructive)

• HERWIG: angular ordered

• PYTHIA, SHERPA: virtuality ordered

interference implemented as fully destructive

totally vetoing large angle radiation

• ARIADNE implements a different (dipole) approach to soft radiation

(recent PYTHIA versions borrow this approach)

Vetoing: an algorithm to simply implement cuts (i.e. θ functions) in the

elementary emission process: If a branching from t to t′ does not satisfy

the cut, set t = t′ and generate a new t′ < t.



COLOUR

SMC’s assign colour labels to partons.
Only colour connections are recorded (as in large N limit).

Initial colour assigned according to cross section for each colour structure.

Showering has colour ambiguities only in g→gg (exchange of final gluons)

(one of the two possibility chosen at random)

Colour assignements are used in the hadronization phase



HADRONIZATION

One very simple model (just to get the feeling): Cluster model

• All gluons are forced to decay into qq̄ pairs, so that colour connected

partons are just qq̄ pairs.

• Compute the mass of the qq̄ pair, make it decay into 2 hadrons (or 1

if too light).

• Decay the resonance according to known branchings

Shower dynamics guarantees that clusters have small mass

(Sudakov suppression of large dynamic gaps between final qq̄).

Most popular model: Lund String Model.



Conclusions

SMC are amazing models for hard interactions

Include most useful background and signals for LHC

Reliable in leading order for

• Hard interaction

• Jet structure

Less reliable (but very realistic) for

• Hadron formation

• Underlying event

• Multiple interactions
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∆(t, t1) example in QED (for Theorists)

In this case, virtual corrections amount to

α → α(t1) (alpha at scale of photon virtuality).

In amplitude squared: α2(t1).

According to our recipe, we must supply

α(t)× α(t1)×∆(t, t1)

that must equal α2(t1); so

∆(t, t1) =
α(t1)

α(t)
=

log Λ
t

log Λ
t1

and indeed using

α(t) =
1

b0 log Λ
t

, b0 =
4nf

12π

we get

∆(t) = exp

− ∫ t

t0

dt′

t′
α(t′)

2π

Pgq in QED︷ ︸︸ ︷
nf(z

2 + (1− z)2) dz

 =
log Λ

t

log Λ
t0



Single Inclusive
Distribution

Obeys evolution equation: D(x, t) = ∆(t, t0) δ(1−x)+

Z t

t0

∆(t, t′)
dt′

t′
αS(t′)

2π
P (z)D(x/z, t′)

dz

z

divide by ∆(t, t0)
D(x, t)

∆(t, t0)
= δ(1− x) +

Z t

t0

1

∆(t′, t0)
dt′

t′
αS(t′)

2π
P (z)D(x/z, t′)

dz

z

take ∆(t, t0)
d

d log t ∆(t, t0)
d

d log t

D(x, t)

∆(t, t0)
=

d

d log t
D(x, t)−D(x, t)

d

d log t
log∆(t) =

αS(t)

2π

Z
P (z)D(x/z, t)

dz

z

The second term on the left hand side regularizes the splitting kernels:

Altarelli-Parisi equation

d

d log t
D(x, t) =

αS(t)

2π

Z
P (z)D(x/z, t)

dz

z
−

αS(t)

2π

Z
P (z)D(x, t)

dz

z


