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Shower Monte Carlo
what they are
and what they do




Implementations
COJETS Odorico (1984)
ISAJET Page+Protopopescu (1986)

FIELDAJET Field (1986)

JETSET Sjostrand (1986)

PYTHIA Bengtsson—+Sjostrand (1987), Sjostrand (1994)
ARIADNE Lonnblad (1991)

HERWIG Marchesini+Webber (1988),
Marchesini+Webber+4Abbiendi+Knowles+Seymour+Stanco (1992)

SHERPA Gleisberg+Hoche+Krauss+Schalicke4+Schumann4+Winter
(2004)

See Les Houches Guidebook hep-ph /0403045 for a complete list.




Capabilities

. Large library of hard events cross sections (SM and BSM)

. Dress hard events with QCD radiation

. Models for hadron formation

. Models for underlying event, multi-parton collisions, minimum bias

. Library for (spacetime) decays of unstable particles

The name SHOWER from item 2




Amazing models for hard interactions
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Shower basics: Collinear factorization

QCD emissions are enhanced near the collinear limit

Cross sections
factorize near
collinear limit

ag dt do

| M1 [2d®pt1 = |My|2d®, = — Pye(2) dz —
2w t 2

7

t: virtuality, or p2, or E26°?
2 =£k°/(k°4+1°):  energy (or p, or pT) fraction of the quark

14 22

qu(z) = CF
1—2

Altarelli-Parisi splitting function

(Ignore z—1 IR divergence for now)




If another gluon becomes collinear, iterate the previous formula:
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ag dt do'
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Collinear partons can be described by a factorized integral ordered in t.
For m collinear emissions:

/ dO1 / dor . ..
Omin 01 0




Same applies to all splitting processes
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“Leading log"’ description of hard event
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(Initial state radiation treated in similar way)




IR Divergences
Collinear divergences when t—0

dt d
|Mn\2/g—s — P, (z)dz 2—¢ o |M,|?as log (
T T

process scale
IR cutoff

According to the KLN (Kinoshita—Lee—Nauenberg) theorem
IR divergences cancel order by order in INCLUSIVE quantities.
So: virtual corrections MUST give

g dt do ren. scale)
—| M, |?dD,, / dz —— o —|M,|?ag o
[ M 1(2) dz or | M| evs 109 (IR cutoff

Must add n + 1 and n body cross section to get cancellation
Negative divergent correction to n body cross section

How do we get positive, exclusive, final state cross sections?
Only possible answer: add virtual terms to all orders

(same answer for textbooks IR problem in QED)




In the shower: UV and IR divergent virtual corrections for internal lines:

e UV renormalization at largest ¢ y A(t’t')t,
e IR cutoff at smallest ¢

Condition for cancellation:
applies recursively:
(to = IR cutoff = A& p)

ag dt d

tmax
A(tmax,to)—l—/ Altma )52 qq(z)dz2—¢=1

T

e do Sudakov
= A(tmax,t) = exp —/ = 7 Pua(2) dz - Form Factor
: o t 2T A ) |

tmax, tmax) =
A (tmax, to)— small
tmax g A (tmax, t) i.e. no radiation

= /t It dt =1 — A(tmax, o) is suppressed!!

so that:
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Recipe for shower with virtual corrections:

Include a factor

dt = «as (t)
s P,
—dz — = B(2)

at each splitting vertex (use renormalized coupling at scale t!).
Order the splittings in t: later splittings have smaller t.

Include the factor A,;(t1,t>) on each internal line going from a splitting
at the scale t; to a splitting at t», with

_ 2 dt’ as(t) _
A;(t1,t2) = exp —Z/ / S( Pij(z)
7 t1




Simple probabilistic interpretation:

A(t1,t2) is the probability for having no branching from ¢; to t».
The probability to have a branching in the interval t>,t> 4 dt» is

P(t1,t0)dts = [1—A(t1, to+dt)]|—[1—A(t1, t2)] = A(t1, 1) it; 0‘52(:) /P(z) dz

A(t1,t2) has uniform distribution!

Shower algorithm:

Generate a random number 0 <r < 1;
Solve the equation A(t,t') = r for t’ < ¢;

If t' < tg stop there (unresolvable emission);
generate a z distributed according to P(z);

restart for each branch, at an initial value ¢'.




Elementary example

Simulate a source with a probability p for emission per unit time.
Probability distributions for first emission:

t n
P(t)dt = Iim (1 — p—) pdt =e P pdt = —d (e_pt)

n—7>00 n

so [ P(t)dt is distributed uniformly between 0 and 1.
Monte Carlo implementation for emissions between ¢t = tg and t =ty

generate a random number 0 <r <1
solve the equation e ?(~t0) = » for t
if ¢ >ty stop.

continue starting from t




Soft divergences: double log region

1

z—1 (2—0) region problematic: for z—1: Py, Py T
— <

Choice of shower variables makes a difference

1—cosé
; zF

virtuality: ¢ E?22(1—2) 67 E
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virtuality: z(1 —z) > 15/E2 pT' z2( z)2 > 15/E2
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sizeable difference in double log structure!




Angular ordering

IS the correct choice (Mueller 1981)

df as(pz)
0 27

P(z) dz <§ Y,

01 > 60> >05...
pr = E%2° (1 — 2)? 62
as(pz) for correct treatment of charge renormalization in soft region.

Notice: soft divergence for emission off an off-shell linel




With virtuality ordering:

Soft emissions give small virtuality.
At end of shower, large amount of
unrestricted (all angles) soft radiation

But soft gluons emitted at large angles from final state partons add
coherently!

l %Z
emissions k k
from all
final lines

large angle, high energy: already ordered in angle
large angle, small energy: should be reordered by angle

Thus: order in angle




It affects jets distributions in enhanced regions

Most important effect: reduced multiplicity!
(interference is mainly distructive)

e HERWIG: angular ordered

e PYTHIA, SHERPA: virtuality ordered
interference implemented as fully destructive

totally vetoing large angle radiation

e ARIADNE implements a different (dipole) approach to soft radiation
(recent PYTHIA versions borrow this approach)

Vetoing: an algorithm to simply implement cuts (i.e. 6 functions) in the
elementary emission process: If a branching from ¢ to ¢ does not satisfy

the cut, set t = ¢ and generate a new t' < t.




COLOUR

SMC'’s assign colour labels to partons.

Only colour connections are recorded (as in large N limit).

Initial colour assigned according to cross section for each colour structure.
Showering has colour ambiguities only in g—gg (exchange of final gluons)
(one of the two possibility chosen at random)

< <
v %

Colour assignements are used in the hadronization phase




HADRONIZATION

One very simple model (just to get the feeling): Cluster model

e All gluons are forced to decay into gg pairs, so that colour connected
partons are just gg pairs.

Compute the mass of the ¢q pair, make it decay into 2 hadrons (or 1

if too light).
e Decay the resonance according to known branchings

Shower dynamics guarantees that clusters have small mass
(Sudakov suppression of large dynamic gaps between final ¢q).

Most popular model: Lund String Model.




Conclusions

SMC are amazing models for hard interactions
Include most useful background and signals for LHC
Reliable in leading order for

e Hard interaction

e Jet structure

Less reliable (but very realistic) for

e Hadron formation
e Underlying event

e Multiple interactions
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A(t,t1) example in QED (for Theorists)

In this case, virtual corrections amount to
a — a(t1) (alpha at scale of photon virtuality).

// In amplitude squared: a?(¢1).
)t According to our recipe, we must supply

a(t) x a(ty) x At t1)

that must equal a?(¢1); so

and indeed using

1
alt) = , -
(t) bo log 2 127

we get

qu in QED T

Ldt a(t) ~ > R
A(t) = exp ol ne(z2 + (1 — 2)?) dz
t 2w




Single Inclusive
Distribution D(x,t)zz bt

o5 by Dasa iy ¥

¢
: : dt
Obeys evolution equation: D(z,t) = A(t,to)é(l—x)—l—/ At t) 7
to

divide by A(t o) f((;c;i))) — 5(1 P(z) D(x/z,t) %

d D(xz,t)
dlogt A(t, tg)

take A(t,to)ﬁgt A(t, tg)

d d _ag(t) dz
dlogtD(:v,t) — D(a:,t)dlogt log A(t) = o™ /P(z)D(x/z,t) —

The second term on the left hand side regularizes the splitting kernels:
Altarelli-Parisi equation

d t
D(x,t) = £si0
dlogt 27

as(t)
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